欢迎大家参与本项目,贡献其他语言版本的代码,拥抱开源,让更多学习算法的小伙伴们收益!
题目链接:https://leetcode-cn.com/problems/subsets-ii/
给定一个可能包含重复元素的整数数组 nums,返回该数组所有可能的子集(幂集)。
说明:解集不能包含重复的子集。
示例: 输入: [1,2,2] 输出: [ [2], [1], [1,2,2], [2,2], [1,2], [] ]
做本题之前一定要先做78.子集。
这道题目和回溯算法:求子集问题!区别就是集合里有重复元素了,而且求取的子集要去重。
那么关于回溯算法中的去重问题,在40.组合总和II中已经详细讲解过了,和本题是一个套路。
剧透一下,后期要讲解的排列问题里去重也是这个套路,所以理解“树层去重”和“树枝去重”非常重要。
用示例中的[1, 2, 2] 来举例,如图所示: (注意去重需要先对集合排序)
从图中可以看出,同一树层上重复取2 就要过滤掉,同一树枝上就可以重复取2,因为同一树枝上元素的集合才是唯一子集!
本题就是其实就是回溯算法:求子集问题!的基础上加上了去重,去重我们在回溯算法:求组合总和(三)也讲过了,所以我就直接给出代码了:
class Solution {
private:
vector<vector<int>> result;
vector<int> path;
void backtracking(vector<int>& nums, int startIndex, vector<bool>& used) {
result.push_back(path);
for (int i = startIndex; i < nums.size(); i++) {
// used[i - 1] == true,说明同一树支candidates[i - 1]使用过
// used[i - 1] == false,说明同一树层candidates[i - 1]使用过
// 而我们要对同一树层使用过的元素进行跳过
if (i > 0 && nums[i] == nums[i - 1] && used[i - 1] == false) {
continue;
}
path.push_back(nums[i]);
used[i] = true;
backtracking(nums, i + 1, used);
used[i] = false;
path.pop_back();
}
}
public:
vector<vector<int>> subsetsWithDup(vector<int>& nums) {
result.clear();
path.clear();
vector<bool> used(nums.size(), false);
sort(nums.begin(), nums.end()); // 去重需要排序
backtracking(nums, 0, used);
return result;
}
};
使用set去重的版本。
class Solution {
private:
vector<vector<int>> result;
vector<int> path;
void backtracking(vector<int>& nums, int startIndex, vector<bool>& used) {
result.push_back(path);
unordered_set<int> uset;
for (int i = startIndex; i < nums.size(); i++) {
if (uset.find(nums[i]) != uset.end()) {
continue;
}
uset.insert(nums[i]);
path.push_back(nums[i]);
backtracking(nums, i + 1, used);
path.pop_back();
}
}
public:
vector<vector<int>> subsetsWithDup(vector<int>& nums) {
result.clear();
path.clear();
vector<bool> used(nums.size(), false);
sort(nums.begin(), nums.end()); // 去重需要排序
backtracking(nums, 0, used);
return result;
}
};
本题也可以不适用used数组来去重,因为递归的时候下一个startIndex是i+1而不是0。
如果要是全排列的话,每次要从0开始遍历,为了跳过已入栈的元素,需要使用used。
代码如下:
class Solution {
private:
vector<vector<int>> result;
vector<int> path;
void backtracking(vector<int>& nums, int startIndex) {
result.push_back(path);
for (int i = startIndex; i < nums.size(); i++) {
// 而我们要对同一树层使用过的元素进行跳过
if (i > startIndex && nums[i] == nums[i - 1] ) { // 注意这里使用i > startIndex
continue;
}
path.push_back(nums[i]);
backtracking(nums, i + 1);
path.pop_back();
}
}
public:
vector<vector<int>> subsetsWithDup(vector<int>& nums) {
result.clear();
path.clear();
sort(nums.begin(), nums.end()); // 去重需要排序
backtracking(nums, 0);
return result;
}
};
其实这道题目的知识点,我们之前都讲过了,如果之前讲过的子集问题和去重问题都掌握的好,这道题目应该分分钟AC。
当然本题去重的逻辑,也可以这么写
if (i > startIndex && nums[i] == nums[i - 1] ) {
continue;
}
Java:
class Solution {
List<List<Integer>> result = new ArrayList<>();// 存放符合条件结果的集合
LinkedList<Integer> path = new LinkedList<>();// 用来存放符合条件结果
boolean[] used;
public List<List<Integer>> subsetsWithDup(int[] nums) {
if (nums.length == 0){
result.add(path);
return result;
}
Arrays.sort(nums);
used = new boolean[nums.length];
subsetsWithDupHelper(nums, 0);
return result;
}
private void subsetsWithDupHelper(int[] nums, int startIndex){
result.add(new ArrayList<>(path));
if (startIndex >= nums.length){
return;
}
for (int i = startIndex; i < nums.length; i++){
if (i > 0 && nums[i] == nums[i - 1] && !used[i - 1]){
continue;
}
path.add(nums[i]);
used[i] = true;
subsetsWithDupHelper(nums, i + 1);
path.removeLast();
used[i] = false;
}
}
}
Python:
class Solution:
def subsetsWithDup(self, nums: List[int]) -> List[List[int]]:
res = [] #存放符合条件结果的集合
path = [] #用来存放符合条件结果
def backtrack(nums,startIndex):
res.append(path[:])
for i in range(startIndex,len(nums)):
if i > startIndex and nums[i] == nums[i - 1]: #我们要对同一树层使用过的元素进行跳过
continue
path.append(nums[i])
backtrack(nums,i+1) #递归
path.pop() #回溯
nums = sorted(nums) #去重需要排序
backtrack(nums,0)
return res
Go:
var res[][]int
func subsetsWithDup(nums []int)[][]int {
res=make([][]int,0)
sort.Ints(nums)
dfs([]int{},nums,0)
return res
}
func dfs(temp, num []int, start int) {
tmp:=make([]int,len(temp))
copy(tmp,temp)
res=append(res,tmp)
for i:=start;i<len(num);i++{
if i>start&&num[i]==num[i-1]{
continue
}
temp=append(temp,num[i])
dfs(temp,num,i+1)
temp=temp[:len(temp)-1]
}
}
Javascript:
var subsetsWithDup = function(nums) {
let result = []
let path = []
let sortNums = nums.sort((a, b) => {
return a - b
})
function backtracing(startIndex, sortNums) {
result.push(path.slice(0))
if(startIndex > nums.length - 1) {
return
}
for(let i = startIndex; i < nums.length; i++) {
if(i > startIndex && nums[i] === nums[i - 1]) {
continue
}
path.push(nums[i])
backtracing(i + 1, sortNums)
path.pop()
}
}
backtracing(0, sortNums)
return result
};