-
Notifications
You must be signed in to change notification settings - Fork 56
/
Copy pathMPNCOV.py
executable file
·209 lines (192 loc) · 8.15 KB
/
MPNCOV.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
'''
@file: MPNCOV.py
@author: Jiangtao Xie
@author: Peihua Li
Please cite the paper below if you use the code:
Peihua Li, Jiangtao Xie, Qilong Wang and Zilin Gao. Towards Faster Training of Global Covariance Pooling Networks by Iterative Matrix Square Root Normalization. IEEE Int. Conf. on Computer Vision and Pattern Recognition (CVPR), pp. 947-955, 2018.
Peihua Li, Jiangtao Xie, Qilong Wang and Wangmeng Zuo. Is Second-order Information Helpful for Large-scale Visual Recognition? IEEE Int. Conf. on Computer Vision (ICCV), pp. 2070-2078, 2017.
Copyright (C) 2018 Peihua Li and Jiangtao Xie
All rights reserved.
'''
import torch
import torch.nn as nn
from torch.autograd import Function
class MPNCOV(nn.Module):
"""Matrix power normalized Covariance pooling (MPNCOV)
implementation of fast MPN-COV (i.e.,iSQRT-COV)
https://arxiv.org/abs/1712.01034
Args:
iterNum: #iteration of Newton-schulz method
is_sqrt: whether perform matrix square root or not
is_vec: whether the output is a vector or not
input_dim: the #channel of input feature
dimension_reduction: if None, it will not use 1x1 conv to
reduce the #channel of feature.
if 256 or others, the #channel of feature
will be reduced to 256 or others.
"""
def __init__(self, iterNum=3, is_sqrt=True, is_vec=True, input_dim=2048, dimension_reduction=None):
super(MPNCOV, self).__init__()
self.iterNum=iterNum
self.is_sqrt = is_sqrt
self.is_vec = is_vec
self.dr = dimension_reduction
if self.dr is not None:
self.conv_dr_block = nn.Sequential(
nn.Conv2d(input_dim, self.dr, kernel_size=1, stride=1, bias=False),
nn.BatchNorm2d(self.dr),
nn.ReLU(inplace=True)
)
output_dim = self.dr if self.dr else input_dim
if self.is_vec:
self.output_dim = int(output_dim*(output_dim+1)/2)
else:
self.output_dim = int(output_dim*output_dim)
self._init_weight()
def _init_weight(self):
for m in self.modules():
if isinstance(m, nn.Conv2d):
nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
elif isinstance(m, nn.BatchNorm2d):
nn.init.constant_(m.weight, 1)
nn.init.constant_(m.bias, 0)
def _cov_pool(self, x):
return Covpool.apply(x)
def _sqrtm(self, x):
return Sqrtm.apply(x, self.iterNum)
def _triuvec(self, x):
return Triuvec.apply(x)
def forward(self, x):
if self.dr is not None:
x = self.conv_dr_block(x)
x = self._cov_pool(x)
if self.is_sqrt:
x = self._sqrtm(x)
if self.is_vec:
x = self._triuvec(x)
return x
class Covpool(Function):
@staticmethod
def forward(ctx, input):
x = input
batchSize = x.data.shape[0]
dim = x.data.shape[1]
h = x.data.shape[2]
w = x.data.shape[3]
M = h*w
x = x.reshape(batchSize,dim,M)
I_hat = (-1./M/M)*torch.ones(M,M,device = x.device) + (1./M)*torch.eye(M,M,device = x.device)
I_hat = I_hat.view(1,M,M).repeat(batchSize,1,1).type(x.dtype)
y = x.bmm(I_hat).bmm(x.transpose(1,2))
ctx.save_for_backward(input,I_hat)
return y
@staticmethod
def backward(ctx, grad_output):
input,I_hat = ctx.saved_tensors
x = input
batchSize = x.data.shape[0]
dim = x.data.shape[1]
h = x.data.shape[2]
w = x.data.shape[3]
M = h*w
x = x.reshape(batchSize,dim,M)
grad_input = grad_output + grad_output.transpose(1,2)
grad_input = grad_input.bmm(x).bmm(I_hat)
grad_input = grad_input.reshape(batchSize,dim,h,w)
return grad_input
class Sqrtm(Function):
@staticmethod
def forward(ctx, input, iterN):
x = input
batchSize = x.data.shape[0]
dim = x.data.shape[1]
dtype = x.dtype
I3 = 3.0*torch.eye(dim,dim,device = x.device).view(1, dim, dim).repeat(batchSize,1,1).type(dtype)
normA = (1.0/3.0)*x.mul(I3).sum(dim=1).sum(dim=1)
A = x.div(normA.view(batchSize,1,1).expand_as(x))
Y = torch.zeros(batchSize, iterN, dim, dim, requires_grad = False, device = x.device).type(dtype)
Z = torch.eye(dim,dim,device = x.device).view(1,dim,dim).repeat(batchSize,iterN,1,1).type(dtype)
if iterN < 2:
ZY = 0.5*(I3 - A)
YZY = A.bmm(ZY)
else:
ZY = 0.5*(I3 - A)
Y[:,0,:,:] = A.bmm(ZY)
Z[:,0,:,:] = ZY
for i in range(1, iterN-1):
ZY = 0.5*(I3 - Z[:,i-1,:,:].bmm(Y[:,i-1,:,:]))
Y[:,i,:,:] = Y[:,i-1,:,:].bmm(ZY)
Z[:,i,:,:] = ZY.bmm(Z[:,i-1,:,:])
YZY = 0.5*Y[:,iterN-2,:,:].bmm(I3 - Z[:,iterN-2,:,:].bmm(Y[:,iterN-2,:,:]))
y = YZY*torch.sqrt(normA).view(batchSize, 1, 1).expand_as(x)
ctx.save_for_backward(input, A, YZY, normA, Y, Z)
ctx.iterN = iterN
return y
@staticmethod
def backward(ctx, grad_output):
input, A, ZY, normA, Y, Z = ctx.saved_tensors
iterN = ctx.iterN
x = input
batchSize = x.data.shape[0]
dim = x.data.shape[1]
dtype = x.dtype
der_postCom = grad_output*torch.sqrt(normA).view(batchSize, 1, 1).expand_as(x)
der_postComAux = (grad_output*ZY).sum(dim=1).sum(dim=1).div(2*torch.sqrt(normA))
I3 = 3.0*torch.eye(dim,dim,device = x.device).view(1, dim, dim).repeat(batchSize,1,1).type(dtype)
if iterN < 2:
der_NSiter = 0.5*(der_postCom.bmm(I3 - A) - A.bmm(der_postCom))
else:
dldY = 0.5*(der_postCom.bmm(I3 - Y[:,iterN-2,:,:].bmm(Z[:,iterN-2,:,:])) -
Z[:,iterN-2,:,:].bmm(Y[:,iterN-2,:,:]).bmm(der_postCom))
dldZ = -0.5*Y[:,iterN-2,:,:].bmm(der_postCom).bmm(Y[:,iterN-2,:,:])
for i in range(iterN-3, -1, -1):
YZ = I3 - Y[:,i,:,:].bmm(Z[:,i,:,:])
ZY = Z[:,i,:,:].bmm(Y[:,i,:,:])
dldY_ = 0.5*(dldY.bmm(YZ) -
Z[:,i,:,:].bmm(dldZ).bmm(Z[:,i,:,:]) -
ZY.bmm(dldY))
dldZ_ = 0.5*(YZ.bmm(dldZ) -
Y[:,i,:,:].bmm(dldY).bmm(Y[:,i,:,:]) -
dldZ.bmm(ZY))
dldY = dldY_
dldZ = dldZ_
der_NSiter = 0.5*(dldY.bmm(I3 - A) - dldZ - A.bmm(dldY))
der_NSiter = der_NSiter.transpose(1, 2)
grad_input = der_NSiter.div(normA.view(batchSize,1,1).expand_as(x))
grad_aux = der_NSiter.mul(x).sum(dim=1).sum(dim=1)
for i in range(batchSize):
grad_input[i,:,:] += (der_postComAux[i] \
- grad_aux[i] / (normA[i] * normA[i])) \
*torch.ones(dim,device = x.device).diag().type(dtype)
return grad_input, None
class Triuvec(Function):
@staticmethod
def forward(ctx, input):
x = input
batchSize = x.data.shape[0]
dim = x.data.shape[1]
dtype = x.dtype
x = x.reshape(batchSize, dim*dim)
I = torch.ones(dim,dim).triu().reshape(dim*dim)
index = I.nonzero()
y = torch.zeros(batchSize,int(dim*(dim+1)/2),device = x.device).type(dtype)
y = x[:,index]
ctx.save_for_backward(input,index)
return y
@staticmethod
def backward(ctx, grad_output):
input,index = ctx.saved_tensors
x = input
batchSize = x.data.shape[0]
dim = x.data.shape[1]
dtype = x.dtype
grad_input = torch.zeros(batchSize,dim*dim,device = x.device,requires_grad=False).type(dtype)
grad_input[:,index] = grad_output
grad_input = grad_input.reshape(batchSize,dim,dim)
return grad_input
def CovpoolLayer(var):
return Covpool.apply(var)
def SqrtmLayer(var, iterN):
return Sqrtm.apply(var, iterN)
def TriuvecLayer(var):
return Triuvec.apply(var)