-
Notifications
You must be signed in to change notification settings - Fork 0
/
DESCRIPTION
30 lines (30 loc) · 1.03 KB
/
DESCRIPTION
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
Package: FairnessTutorial
Title: A tutorial on fairness of machine learning models in healthcare
Version: 1.0.0
Authors@R:
c(
person("Jianhui", "Gao", email = "jianhui.gao@mail.utoronto.ca", role = c("aut", "cre")),
person("Benson", "Chou", email = "benson.chou@mail.utoronto.ca", role = c("aut")),
person("Jessica", "Gronsbell", email = "j.gronsbell@utoronto.ca", role = c("aut"))
)
Description: Functions to evaluate various fairness metrics along with a confidence
interval. The package also provides a tutorial using real-world data to demonstrate
how to evaluate fairness of machine learning models in healthcare. The tutorial is
available at <https://jianhuig.github.io/FairnessTutorial/>.
Imports:
dplyr,
magrittr
License: use_mit_license()
Encoding: UTF-8
Roxygen: list(markdown = TRUE)
RoxygenNote: 7.3.1
Suggests:
knitr,
rmarkdown,
testthat (>= 3.0.0)
Config/testthat/edition: 3
Depends:
R (>= 2.10)
LazyData: true
URL: https://jianhuig.github.io/FairnessTutorial/
VignetteBuilder: knitr