-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathpredict_new_data_jpg.py
129 lines (103 loc) · 4.54 KB
/
predict_new_data_jpg.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
# Code for making predictions on individual micrographs
import copy
from utils.denoise import denoise, denoise_jpg_image
import config
import matplotlib.pyplot as plt
import numpy as np
import torch
import cv2
import glob
import os
from dataset.dataset import transform
from models.model_5_layers import UNET
import config
import mrcfile
from segment_anything import SamAutomaticMaskGenerator, sam_model_registry
import statistics as st
print("[INFO] Loading up model...")
model = UNET().to(device=config.device)
state_dict = torch.load(config.cryosegnet_checkpoint)
model.load_state_dict(state_dict)
sam_model = sam_model_registry[config.model_type](checkpoint=config.sam_checkpoint)
sam_model.to(device=config.device)
mask_generator = SamAutomaticMaskGenerator(sam_model)
def get_annotations(anns):
if len(anns) == 0:
return
sorted_anns = sorted(anns, key=(lambda x: x['area']), reverse=True)
ax = plt.gca()
ax.set_autoscale_on(False)
img = np.ones((sorted_anns[0]['segmentation'].shape[0], sorted_anns[0]['segmentation'].shape[1], 4))
img[:,:,3] = 0
for ann in sorted_anns:
m = ann['segmentation']
color_mask = np.concatenate([np.random.random(3), [0.35]])
img[m] = color_mask
return img
def prepare_plot(image, predicted_mask, sam_mask, coords, image_path):
plt.figure(figsize=(40, 30))
plt.subplot(221)
plt.title('Testing Image', fontsize=14)
plt.imshow(image, cmap='gray')
plt.subplot(222)
plt.title('Attention-UNET Mask', fontsize=14)
plt.imshow(predicted_mask, cmap='gray')
plt.subplot(223)
plt.title('SAM Mask', fontsize=14)
plt.imshow(sam_mask, cmap='gray')
plt.subplot(224)
plt.title('Final Picked Particles', fontsize=14)
plt.imshow(coords, cmap='gray')
path = image_path.split("/")[-1]
path = path.replace(".png", "_result.png")
path = path.replace(".jpg", "_result.jpg")
final_path = os.path.join(f"{config.output_path}/results/", f'{path}')
cv2.imwrite(final_path, coords)
def make_predictions(model, image_path):
# set model to evaluation mode
model.eval()
with torch.no_grad():
image = cv2.imread(image_path, 0)
#Check if denoising makes difference or not! If the images are already denoised don't denoise them else denoise them!
image = denoise_jpg_image(image)
height, width = image.shape
orig_image = copy.deepcopy(image)
image = cv2.resize(image, (config.input_image_width, config.input_image_height))
segment_mask = copy.deepcopy(orig_image)
image = torch.from_numpy(image).unsqueeze(0).float()
image = image / 255.0
image = image.to(config.device).unsqueeze(0)
predicted_mask = model(image)
predicted_mask = torch.sigmoid(predicted_mask)
predicted_mask = predicted_mask.cpu().numpy().reshape(config.input_image_width, config.input_image_height)
sam_output = np.repeat(transform(predicted_mask)[:,:,None], 3, axis=-1)
predicted_mask = cv2.resize(predicted_mask, (width, height))
masks = mask_generator.generate(sam_output)
sam_mask = get_annotations(masks)
sam_mask = cv2.resize(sam_mask, (width, height) )
bboxes = []
for i in range(0, len(masks)):
if masks[i]["predicted_iou"] > 0.94:
box = masks[i]["bbox"]
bboxes.append(box)
if len(bboxes) > 1:
x_ = st.mode([box[2] for box in bboxes])
y_ = st.mode([box[3] for box in bboxes])
d_ = np.sqrt((x_ * width / config.input_image_width)**2 + (y_ * height / config.input_image_height)**2)
r_ = int(d_//2)
th = r_ * 0.20
segment_mask = cv2.cvtColor(segment_mask, cv2.COLOR_GRAY2BGR)
for b in bboxes:
if b[2] < x_ + th and b[2] > x_ - th/3 and b[3] < y_ + th and b[3] > y_ - th/3:
x_new, y_new = int((b[0] + b[2]/2) / config.input_image_width * width) , int((b[1] + b[3]/2) / config.input_image_height * height)
coords = cv2.circle(segment_mask, (x_new, y_new), r_, (0, 0, 255), 8)
try:
prepare_plot(orig_image, predicted_mask, sam_mask, coords, image_path)
except:
pass
else:
pass
print("[INFO] Loading up test images path ...")
images_path = list(glob.glob(f"{config.my_dataset_path}/*.*p*g"))
for i in range(0, len(images_path), 1):
make_predictions(model, images_path[i])