-
Notifications
You must be signed in to change notification settings - Fork 13
/
optim_AUC.py
67 lines (53 loc) · 2.15 KB
/
optim_AUC.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
import numpy as np
from functools import partial
from scipy.optimize import fmin
from sklearn import metrics
def max_voting(preds):
"""
Create mean predictions
:param probas: 2-d array of prediction values
:return: max voted predictions
"""
'''
preds: np.array([[0, 2, 2, 2], [1, 1, 0, 1]])
return : [[2]
[1]]
'''
idxs = np.argmax(preds, axis=1)
return np.take_along_axis(preds, idxs[:, None], axis=1)
class OptimizeAUC:
def __init__(self):
self.coef_ = 0.
def _auc(self, coef, outputs, labels):
"""
This functions calulates and returns AUC.
:param coef: coef list, of the same length as number of models
:param X: predictions, in this case a 2d array
:param y: targets, in our case binary 1d array
"""
# multiply coefficients with every column of the array
# with predictions.
# this means: element 1 of coef is multiplied by column 1
# of the prediction array, element 2 of coef is multiplied
# by column 2 of the prediction array and so on!
x_coef = coef * outputs
# create predictions by taking row wise sum
predictions = x_coef / np.sum(x_coef, axis=1, keepdims=True)
# calculate auc score
auc_score = metrics.roc_auc_score(labels, predictions, average='weighted', multi_class='ovo')
# return negative auc
return -1.0 * auc_score
def fit(self, X, y):
# remember partial from hyperparameter optimization chapter?
loss_partial = partial(self._auc, outputs=X, labels=y)
# dirichlet distribution. you can use any distribution you want
# to initialize the coefficients
# we want the coefficients to sum to 1
initial_coef = np.random.dirichlet(np.ones(X.shape[1]), size=1)
# use scipy fmin to minimize the loss function, in our case auc
self.coef_ = fmin(loss_partial, initial_coef, disp=True)
def predict(self, X):
# this is similar to _auc function
x_coef = X * self.coef_
predictions = x_coef / np.sum(x_coef, axis=1, keepdims=True)
return predictions