Skip to content

jiaqiw09/pytorch

 
 

Repository files navigation

PyTorch Ascend Adapter

Overview

This repository develops the PyTorch Ascend Adapter named torch_npu to adapt Ascend NPU to PyTorch so that developers who use the PyTorch can obtain powerful compute capabilities of Ascend AI Processors.

Ascend is a full-stack AI computing infrastructure for industry applications and services based on Huawei Ascend processors and software. For more information about Ascend, see Ascend Community.

Installation

From Binary

Provide users with wheel package to quickly install torch_npu. Before installing torch_npu, complete the installation of CANN according to Ascend Auxiliary Software. To obtain the CANN installation package, refer to the CANN Installation.

  1. Install PyTorch

Install PyTorch through pip.

For Aarch64:

pip3 install torch==2.1.0

For x86:

pip3 install torch==2.1.0+cpu  --index-url https://download.pytorch.org/whl/cpu
  1. Install torch-npu dependencies

Run the following command to install dependencies.

pip3 install pyyaml
pip3 install setuptools

If the installation fails, use the download link or visit the PyTorch official website to download the installation package of the corresponding version.

OS arch Python version link
x86 Python3.8 link
x86 Python3.9 link
x86 Python3.10 link
aarch64 Python3.8 link
aarch64 Python3.9 link
aarch64 Python3.10 link
  1. Install torch-npu
pip3 install torch-npu==2.1.0rc1

From Source

In some special scenarios, users may need to compile torch-npu by themselves.Select a branch in table Ascend Auxiliary Software and a Python version in table PyTorch and Python Version Matching Table first. The docker image is recommended for compiling torch-npu through the following steps:

  1. Clone torch-npu

    git clone https://github.com/ascend/pytorch.git -b v2.1.0-5.0.rc3 --depth 1
    
  2. Build Docker Image

    cd pytorch/ci/docker/{arch} # {arch} for X86 or ARM
    docker build -t manylinux-builder:v1 .
    
  3. Enter Docker Container

    docker run -it -v /{code_path}/pytorch:/home/pytorch manylinux-builder:v1 bash
    # {code_path} is the torch_npu source code path
    
  4. Compile torch-npu

    Take Python 3.8 as an example.

    cd /home/pytorch
    bash ci/build.sh --python=3.8
    

Getting Started

Prerequisites

Initialize CANN environment variable by running the command as shown below.

# Default path, change it if needed.
source /usr/local/Ascend/ascend-toolkit/set_env.sh

Quick Verification

You can quickly experience Ascend NPU by the following simple examples.

import torch
import torch_npu

x = torch.randn(2, 2).npu()
y = torch.randn(2, 2).npu()
z = x.mm(y)

print(z)

PyTorch and Python Version Matching Table

PyTorch Version Python Version
PyTorch1.11.0 Python3.7.x(>=3.7.5),Python3.8.x,Python3.9.x,Python3.10.x
PyTorch2.0.1 Python3.8.x,Python3.9.x,Python3.10.x
PyTorch2.1.0 Python3.8.x,Python3.9.x,Python3.10.x

Ascend Auxiliary Software

CANN Version

Supported PyTorch Version

Supported Adapter Version

Github Branch

AscendHub Image Version/Name(Link)

7.0.RC1.alpha003

2.1.0

2.1.0.rc1

v2.1.0-5.0.rc3

-

2.0.1

2.0.1

v2.0.1-5.0.rc3

-

1.11.0

1.11.0.post4

v1.11.0-5.0.rc3

-

CANN 6.3.RC3.1

1.11.0

1.11.0.post3

v1.11.0-5.0.rc2.2

-

CANN 6.3.RC3

1.11.0

1.11.0.post2

v1.11.0-5.0.rc2.1

-

CANN 6.3.RC2

2.0.1

2.0.1.rc1

v2.0.1-5.0.rc2

-

1.11.0

1.8.1.post2

v1.8.1-5.0.rc2

23.0.RC1-1.8.1

1.8.1

1.11.0.post1

v1.11.0-5.0.rc2

23.0.RC1-1.11.0

CANN 6.3.RC1

1.11.0

1.8.1.post1

v1.8.1-5.0.rc1

-

1.8.1

1.11.0

v1.11.0-5.0.rc1

-

CANN 6.0.1

1.5.0

1.5.0.post8

v1.5.0-3.0.0

22.0.0

1.8.1

1.8.1

v1.8.1-3.0.0

22.0.0-1.8.1

1.11.0

1.11.0.rc2(beta)

v1.11.0-3.0.0

-

CANN 6.0.RC1

1.5.0

1.5.0.post7

v1.5.0-3.0.rc3

22.0.RC3

1.8.1

1.8.1.rc3

v1.8.1-3.0.rc3

22.0.RC3-1.8.1

1.11.0

1.11.0.rc1(beta)

v1.11.0-3.0.rc3

-

CANN 5.1.RC2

1.5.0

1.5.0.post6

v1.5.0-3.0.rc2

22.0.RC2

1.8.1

1.8.1.rc2

v1.8.1-3.0.rc2

22.0.RC2-1.8.1

CANN 5.1.RC1

1.5.0

1.5.0.post5

v1.5.0-3.0.rc1

22.0.RC1

1.8.1

1.8.1.rc1

v1.8.1-3.0.rc1

-

CANN 5.0.4

1.5.0

1.5.0.post4

2.0.4.tr5

21.0.4

CANN 5.0.3

1.8.1

1.5.0.post3

2.0.3.tr5

21.0.3

CANN 5.0.2

1.5.0

1.5.0.post2

2.0.2.tr5

21.0.2

Suggestions and Communication

Everyone is welcome to contribute to the community. If you have any questions or suggestions, you can submit Github Issues. We will reply to you as soon as possible. Thank you very much.

Branch Maintenance Policies

The version branches of AscendPyTorch have the following maintenance phases:

Status Duration Description
Planning 1-3 months Plan features.
Development 3 months Develop features.
Maintained 6-12 months Allow the incorporation of all resolved issues and release the version.
Unmaintained 0-3 months Allow the incorporation of all resolved issues. No dedicated maintenance personnel are available. No version will be released.
End Of Life (EOL) N/A Do not accept any modification to a branch.

Maintenance Status of Existing Branches

Branch Name Status Launch Date Subsequent Status EOL Date
v2.0.2 EOL 2021/7/29 N/A
v2.0.3 EOL 2021/10/15 N/A
v2.0.4 EOL 2022/1/15 N/A
v3.0.rc1 EOL 2022/4/10 N/A
v3.0.rc2 EOL 2022/7/15 N/A
v3.0.rc3 Maintained 2022/10/20 Unmaintained
2023-10-20 estimated
v3.0.0 Maintained 2023/1/18 Unmaintained
2024-1-18 estimated
v5.0.rc1 Maintained 2023/4/19 Unmaintained
2024-4-19 estimated
v5.0.rc2 Maintained 2023/7/19 Unmaintained
2024-7-19 estimated
v5.0.rc3 Maintained 2023/10/15 Unmaintained
2024-10-15 estimated

License

PyTorch Ascend Adapter has a BSD-style license, as found in the LICENSE file.

About

Ascend PyTorch adapter (torch_npu). Mirror of https://gitee.com/ascend/pytorch

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 74.5%
  • C++ 24.9%
  • Other 0.6%