-
Notifications
You must be signed in to change notification settings - Fork 7
Depreciated! Please switch to use meta-secure-core https://github.com/jiazhang0/meta-secure-core
jiazhang0/meta-secure-env
Folders and files
Name | Name | Last commit message | Last commit date | |
---|---|---|---|---|
Repository files navigation
meta-secure-env =============== This layer provides the following common and platform-specific security features: UEFI Secure Boot ---------------- For x86 platform, UEFI secure boot is the industry standard defined in the UEFI spec, allowing images loaded by UEFI BIOS to be verified with the trusted key. Whenever this feature is enabled, the bootloader and kernel will be signed automatically during the build, implying the signed binaries are contained by the resulting RPM and rootfs image. Refer to feature/efi-secure-boot/README for more details. Mok Secure Boot --------------- For x86 platform, Mok secure boot is based on the UEFI secure boot, adding the shim loader to chainloader the second-stage bootloader. Meanwhile, the shim will also install a protocol which permits the second-stage bootloader to perform similar binary validation, e.g, for linux kernel. Refer to feature/mok-secure-boot/README for more details. User key store -------------- By default, the signing key used by UEFI/Mok secure boot is the sample key for the purposes of development and demonstration. It is not recommended that this sample key be used for a production device and should be replaced by a secret key owned by the user. Refer to README.user-key-store for more details about how to construct an user key store. TPM 1.2 ------- This feature enables Trusted Platform Module 1.2 support, including kernel option changes to enable tpm drivers, and picking up TPM 1.2 packages. Refer to feature/tpm/README for more details. TPM 2.0 ------- This feature enables Trusted Platform Module 2.0 support, including kernel option changes to enable tpm drivers, and picking up TPM 2.0 packages. Trusted Platform Module (TPM 2.0) is a microcontroller that stores keys, passwords, and digital certificates. A discrete TPM 2.0 offers the capabilities as part of the overall platform security requirements. Refer to feature/tpm2/README for more details. Storage encryption ------------------ This feature gives 2 types of granularity for storage encryption. Data volume encryption allows the user to create encryption partition with a passphrase typed by the end user. Root filesystem encryption enables the data encryption on the entire rootfs except the boot partition. Both types of storage encryption are based on device-mapper crypt target, which provides transparent encryption of block devices using the kernel crypto API. Additionally, the utility cryptsetup is used to conveniently setup disk encryption based on device-mapper crypt target. Refer to feature/encrypted-storage/README for more details. IMA --- The Linux IMA subsystem introduces hooks within the Linux kernel to support measuring the integrity of files that are loaded (including application code) before it is executed or mmap()ed to memory. The measured value (hash) is then registered in a log that can be consulted by administrators. To support proven integrity of the files, the IMA subsystem can interact with the TPM chip within the system to protect the registered hashes from tampering by a rogue administrator or application. The IMA subsystem, as already supported by the Linux kernel, supports reporting on the hashes of files and commands ran by privileged accounts (and more if you create your own measurement policies). In addition, IMA appraisal can even register the measured value as an extended attribute, and after subsequent measurement(s) validate this extended attribute against the measured value and refuse to load the file (or execute the application) if the hash does not match. In that case, the IMA subsystem allows files and applications to be loaded if the hashes match (and will save the updated hash if the file is modified) but refuse to load it if it doesn't. This provides some protection against offline tampering of the files. Refer to feature/ima/README for more details. Maintenance =========== This layer is maintained in Wind River Open Source Labs at github. * source https://github.com/WindRiver-OpenSourceLabs/meta-secure-env Building the meta-secure-env layer ================================== This layer should be added to the bblayers.conf file. To enable certain feature provided by this layer, add the feature to the local.conf file.
About
Depreciated! Please switch to use meta-secure-core https://github.com/jiazhang0/meta-secure-core
Topics
Resources
Stars
Watchers
Forks
Releases
No releases published
Packages 0
No packages published