-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathvqvae1_withPixelCNNprior_cifar10.py
267 lines (209 loc) · 10.4 KB
/
vqvae1_withPixelCNNprior_cifar10.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
import numpy as np
import tensorflow as tf
import matplotlib.pyplot as plt
import os
from six.moves import cPickle
import networks_vqvae1 as vqvae_nets
import vector_quantizer as vq
import networks_pixelcnn as pixelcnn_nets
#--------------------------------------------------------------------------
# Set hyper-parameters
local_data_dir = "/home/jzhaoaz/jiazhao/DataSets/cifar10/cifar-10-python/cifar-10-batches-py" # gpu3
# local_data_dir = "/home/share/Dataset/cifar10/cifar-10-batches-py" # gpu4
save_res_dir = "res_vqvae1_PixelCNN_cifar10_K8_D64_gradclip_n20000_lr1e_3_batch100"
if not os.path.exists(save_res_dir):
os.makedirs(save_res_dir)
# for vqvae1
num_training_updates = 20000
image_size = 32
num_channel = 3
batch_size = 100
num_hiddens = 128
num_residual_hiddens = 32
num_residual_layers = 2
embedding_dim = 64 # D
num_embeddings = 8 # K
commitment_cost = 0.25
learning_rate = 3e-4
# for PixelCNN
num_training_updates_pixelcnn = 30000
num_layers_pixelcnn = 12
fmaps_pixelcnn = 32
code_size = 8
learning_rate_pixelcnn = 1e-3
grad_clip_pixelcnn = 1.0
#--------------------------------------------------------------------------
# Placeholder
x = tf.placeholder(tf.float32, shape=(None, image_size, image_size, num_channel))
data_pixelcnn = tf.placeholder(tf.int32, shape=(None, code_size, code_size)) # Train
sampled_code_pixelcnn = tf.placeholder(tf.int32, shape=(None, code_size, code_size)) # Plot
#--------------------------------------------------------------------------
# Data
# Tools to convert images to floating point with the range [-0.5, 0.5]
def cast_and_normalise_images(images):
images = (tf.cast(images, tf.float32) / 255.0) - 0.5
return images
# Tools to reconstruct data
def convert_batch_to_image_grid(images, image_size=image_size, num_channel=num_channel):
reshaped = (images.reshape(10, 10, image_size, image_size, num_channel)
.transpose(0, 2, 1, 3, 4)
.reshape(10 * image_size, 10 * image_size, num_channel))
return reshaped + 0.5
# Tools to load data
def unpickle(filename):
with open(filename, 'rb') as fo:
return cPickle.load(fo, encoding='latin1')
def reshape_flattened_image_batch(flat_image_batch):
return flat_image_batch.reshape(-1, 3, 32, 32).transpose([0, 2, 3, 1]) # convert from NCHW to NHWC
def combine_batches(batch_list):
images = np.vstack([reshape_flattened_image_batch(batch['data'])
for batch in batch_list])
labels = np.vstack([np.array(batch['labels']) for batch in batch_list]).reshape(-1, 1)
return {'images': images, 'labels': labels}
# Load data
train_data_dict = combine_batches([
unpickle(os.path.join(local_data_dir, 'data_batch_%d' % i))
for i in range(1,6)
])
test_data_dict = combine_batches([unpickle(os.path.join(local_data_dir, 'test_batch'))])
data_variance = np.var(train_data_dict['images'] / 255.0)
train_dataset = (tf.data.Dataset.from_tensor_slices(train_data_dict['images'])
.map(cast_and_normalise_images)
.shuffle(10000)
.repeat()
.batch(batch_size))
test_dataset = (tf.data.Dataset.from_tensor_slices(test_data_dict['images'])
.map(cast_and_normalise_images)
.repeat()
.batch(batch_size))
train_iterator = train_dataset.make_one_shot_iterator()
test_iterator = test_dataset.make_one_shot_iterator()
train_dataset_batch_tf = train_iterator.get_next()
test_dataset_batch_tf = test_iterator.get_next()
print("Data loading is finished...")
#--------------------------------------------------------------------------
# Training process
#--- Train process - vqvae1
z = vqvae_nets.encoder(x, num_hiddens, num_residual_layers, num_residual_hiddens)
with tf.variable_scope('to_vq'):
z = vqvae_nets.conv2d(z, fmaps=embedding_dim, kernel=1, strides=1)
vq_output = vq.vector_quantizer(z, embedding_dim, num_embeddings, commitment_cost)
x_recon = vqvae_nets.decoder(vq_output["quantized"], num_hiddens, num_residual_layers, num_residual_hiddens, image_size, num_channel)
recon_error = tf.reduce_mean((x_recon - x)**2) / data_variance # Normalized MSE
loss = recon_error + vq_output["loss"]
perplexity = vq_output["perplexity"]
optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate)
train_op = optimizer.minimize(loss)
#--- Train process - PixelCNN for priors
train_databatch_pixelcnn = vq_output["encoding_indices"]
pixelcnn_output = pixelcnn_nets.pixelcnn(data_pixelcnn, num_layers_pixelcnn, fmaps_pixelcnn, num_embeddings, code_size)
loss_pixelcnn = pixelcnn_output["loss_pixelcnn"]
sampled_pixelcnn_train = pixelcnn_output["sampled_pixelcnn"]
# optimizer_pixelcnn = tf.train.RMSPropOptimizer(learning_rate_pixelcnn).minimize(loss_pixelcnn)
trainer_pixelcnn = tf.train.RMSPropOptimizer(learning_rate=learning_rate_pixelcnn)
gradients_pixelcnn = trainer_pixelcnn.compute_gradients(loss_pixelcnn)
clipped_gradients_pixelcnn = map(lambda gv: gv if gv[0] is None else [tf.clip_by_value(gv[0], -grad_clip_pixelcnn, grad_clip_pixelcnn), gv[1]], gradients_pixelcnn)
# clipped_gradients_pixelcnn = [(tf.clip_by_value(_[0], -grad_clip_pixelcnn, grad_clip_pixelcnn), _[1]) for _ in gradients_pixelcnn]
optimizer_pixelcnn = trainer_pixelcnn.apply_gradients(clipped_gradients_pixelcnn)
#--- For plots
vq_output_pixelcnn = vq.vector_quantizer(z, embedding_dim, num_embeddings, commitment_cost, only_lookup=True, inputs_indices=sampled_code_pixelcnn)
x_recon_pixelcnn = vqvae_nets.decoder(vq_output_pixelcnn["quantized"], num_hiddens, num_residual_layers, num_residual_hiddens, image_size, num_channel)
test_vq_output = vq.vector_quantizer(z, embedding_dim, num_embeddings, commitment_cost, random_gen=True)
test_recon = vqvae_nets.decoder(test_vq_output["quantized"], num_hiddens, num_residual_layers, num_residual_hiddens, image_size, num_channel)
test_recon_rand = vqvae_nets.decoder(test_vq_output["rand_quantized"], num_hiddens, num_residual_layers, num_residual_hiddens, image_size, num_channel)
test_recon_near = vqvae_nets.decoder(test_vq_output["near_quantized"], num_hiddens, num_residual_layers, num_residual_hiddens, image_size, num_channel)
#--------------------------------------------------------------------------
# Train
init = tf.global_variables_initializer()
sess = tf.Session()
sess.run(init)
#--- Train vqvae1
train_res_recon_error = []
train_res_perplexity = []
train_res_loss = []
for i in range(num_training_updates):
train_data_batch = sess.run(train_dataset_batch_tf)
train_feed_dict = {x: train_data_batch}
train_res = sess.run([train_op, x_recon, recon_error, loss, perplexity], feed_dict=train_feed_dict)
train_res_recon_error.append(train_res[2])
train_res_loss.append(train_res[3])
train_res_perplexity.append(train_res[4])
if i == 0 or (i+1) % 100 == 0:
print('%d iterations | loss: %.3f | recon_error: %.3f | perplexity: %.3f ' % (i+1, np.mean(train_res_loss[-100:]), np.mean(train_res_recon_error[-100:]), np.mean(train_res_perplexity[-100:])))
x_recon_img = train_res[1]
test_data_batch = sess.run(test_dataset_batch_tf)
test_feed_dict = {x: test_data_batch}
[test_recon_img, test_recon_img_rand, test_recon_img_near] = sess.run([test_recon, test_recon_rand, test_recon_near], feed_dict=test_feed_dict)
f = plt.figure(figsize=(16,24))
ax = f.add_subplot(3,2,1)
ax.imshow(convert_batch_to_image_grid(train_data_batch), interpolation='nearest', cmap ='gray')
ax.set_title('training data originals')
plt.axis('off')
ax = f.add_subplot(3,2,2)
ax.imshow(convert_batch_to_image_grid(x_recon_img), interpolation='nearest', cmap ='gray')
ax.set_title('training data reconstructions')
plt.axis('off')
ax = f.add_subplot(3,2,3)
ax.imshow(convert_batch_to_image_grid(test_data_batch), interpolation='nearest', cmap ='gray')
ax.set_title('test data originals')
plt.axis('off')
ax = f.add_subplot(3,2,4)
ax.imshow(convert_batch_to_image_grid(test_recon_img), interpolation='nearest', cmap ='gray')
ax.set_title('test data reconstructions')
plt.axis('off')
ax = f.add_subplot(3,2,5)
ax.imshow(convert_batch_to_image_grid(test_recon_img_near), interpolation='nearest', cmap ='gray')
ax.set_title('test data recon by near encoder')
plt.axis('off')
ax = f.add_subplot(3,2,6)
ax.imshow(convert_batch_to_image_grid(test_recon_img_rand), interpolation='nearest', cmap ='gray')
ax.set_title('data recon by random encoder')
plt.axis('off')
plt.savefig(save_res_dir+'/reconstructions_iter_'+str(i+1)+'.png')
plt.close()
f = plt.figure(figsize=(24,8))
ax = f.add_subplot(1,3,1)
ax.plot(train_res_recon_error)
ax.set_yscale('log')
ax.set_title('train recon_error.')
ax = f.add_subplot(1,3,2)
ax.plot(train_res_loss)
ax.set_yscale('log')
ax.set_title('loss.')
ax = f.add_subplot(1,3,3)
ax.plot(train_res_perplexity)
ax.set_title('Average codebook usage (perplexity).')
plt.savefig(save_res_dir+"/loss.png")
plt.close()
#--- Train pixelcnn
train_loss_pixelcnn = []
for i in range(num_training_updates_pixelcnn):
train_data_batch = sess.run(train_dataset_batch_tf)
train_databatch_pixelcnn_np = sess.run(train_databatch_pixelcnn, feed_dict={x: train_data_batch})
train_feed_dict = {x: train_data_batch, data_pixelcnn: train_databatch_pixelcnn_np}
train_res_pixelcnn = sess.run([loss_pixelcnn, optimizer_pixelcnn], feed_dict=train_feed_dict)
train_loss_pixelcnn.append(train_res_pixelcnn[0])
if i == 0 or (i+1) % 100 == 0:
print('%d iter_pixelcnn | loss: %.3f ' % (i+1, train_res_pixelcnn[0]))
n_row = 10
n_col = 10
samples = np.zeros(shape=(n_row*n_col, code_size, code_size), dtype=np.int32)
for j in range(code_size):
for k in range(code_size):
data_dict = {data_pixelcnn: samples}
next_sample = sess.run(sampled_pixelcnn_train, feed_dict=data_dict)
samples[:, j, k] = next_sample[:, j, k]
samples.astype(np.int32)
feed_dict = {x: train_data_batch, sampled_code_pixelcnn: samples}
x_recon_pixelcnn_res = sess.run(x_recon_pixelcnn, feed_dict=feed_dict)
f = plt.figure(figsize=(6,16))
ax = f.add_subplot(2,1,1)
ax.imshow(convert_batch_to_image_grid(train_data_batch), interpolation='nearest', cmap ='gray')
ax.set_title('training data originals')
plt.axis('off')
ax = f.add_subplot(2,1,2)
ax.imshow(convert_batch_to_image_grid(x_recon_pixelcnn_res), interpolation='nearest', cmap ='gray')
ax.set_title('samples')
plt.axis('off')
plt.savefig(save_res_dir+'/sampled_iter_'+str(i+1)+'.png')
plt.close()