-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathlz4_ssparse.h
265 lines (226 loc) · 7.13 KB
/
lz4_ssparse.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
//
// blz4 - Example of LZ4 compression with BriefLZ algorithms
//
// Backwards dynamic programming parse
//
// Copyright (c) 2018-2020 Joergen Ibsen
//
// This software is provided 'as-is', without any express or implied
// warranty. In no event will the authors be held liable for any damages
// arising from the use of this software.
//
// Permission is granted to anyone to use this software for any purpose,
// including commercial applications, and to alter it and redistribute it
// freely, subject to the following restrictions:
//
// 1. The origin of this software must not be misrepresented; you must
// not claim that you wrote the original software. If you use this
// software in a product, an acknowledgment in the product
// documentation would be appreciated but is not required.
//
// 2. Altered source versions must be plainly marked as such, and must
// not be misrepresented as being the original software.
//
// 3. This notice may not be removed or altered from any source
// distribution.
//
#ifndef LZ4_SSPARSE_H_INCLUDED
#define LZ4_SSPARSE_H_INCLUDED
static size_t
lz4_ssparse_workmem_size(size_t src_size)
{
return (LOOKUP_SIZE < 2 * src_size ? 3 * src_size : src_size + LOOKUP_SIZE)
* sizeof(uint32_t);
}
static unsigned long
lz4_pack_ssparse(const void *src, void *dst, unsigned long src_size, void *workmem,
const unsigned long max_depth, const unsigned long accept_len)
{
const unsigned char *const in = (const unsigned char *) src;
const unsigned long last_match_pos = src_size > 12 ? src_size - 12 : 0;
// Check for empty input
if (src_size == 0) {
unsigned char *out = (unsigned char *) dst;
*out++ = 0;
return 1;
}
// Check for input without room for match
if (src_size < 13) {
unsigned char *out = (unsigned char *) dst;
*out++ = src_size << 4;
for (unsigned long i = 0; i < src_size; ++i) {
*out++ = in[i];
}
return 1 + src_size;
}
// With a bit of careful ordering we can fit in 3 * src_size words.
//
// The idea is that the lookup is only used in the first phase to
// build the hash chains, so we overlap it with mpos and mlen.
// Also, since we are using prev from right to left in phase two,
// and that is the order we fill in cost, we can overlap these.
//
// One detail is that we actually use src_size + 1 elements of cost,
// but we put mpos after it, where we do not need the first element.
//
uint32_t *const prev = (uint32_t *) workmem;
uint32_t *const mpos = prev + src_size;
uint32_t *const mlen = mpos + src_size;
uint32_t *const cost = prev;
uint32_t *const lookup = mpos;
// Phase 1: Build hash chains
const int bits = 2 * src_size < LOOKUP_SIZE ? LZ4_HASH_BITS : lz4_log2(src_size);
// Initialize lookup
for (unsigned long i = 0; i < (1UL << bits); ++i) {
lookup[i] = NO_MATCH_POS;
}
// Build hash chains in prev
if (last_match_pos > 0) {
for (unsigned long i = 0; i <= last_match_pos; ++i) {
const unsigned long hash = lz4_hash4_bits(&in[i], bits);
prev[i] = lookup[hash];
lookup[hash] = i;
}
}
// Initialize last eleven positions as literals
for (unsigned long i = 1; i < 12; ++i) {
mlen[src_size - i] = 1;
mpos[src_size - i] = i;
cost[src_size - i] = i;
}
cost[src_size] = 0;
// Phase 2: Find lowest cost path from each position to end
for (unsigned long cur = last_match_pos; cur > 0; --cur) {
// Since we updated prev to the end in the first phase, we
// do not need to hash, but can simply look up the previous
// position directly.
unsigned long pos = prev[cur];
assert(pos == NO_MATCH_POS || pos < cur);
// Start with a literal
//
// We store the number of literals from the current position
// up to the next match in mpos. This is used to update the
// cost from the current position with the additional cost of
// encoding the length of this run of literals in the next
// match.
//
if (mlen[cur + 1] == 1) {
cost[cur] = 1 + cost[cur + 1] - lz4_literal_cost(mpos[cur + 1]) + lz4_literal_cost(mpos[cur + 1] + 1);
mlen[cur] = 1;
mpos[cur] = mpos[cur + 1] + 1;
}
else {
cost[cur] = 1 + cost[cur + 1];
mlen[cur] = 1;
mpos[cur] = 1;
}
unsigned long max_len = 3;
const unsigned long len_limit = src_size - cur - 5;
unsigned long num_chain = max_depth;
// Go through the chain of prev matches
for (; pos != NO_MATCH_POS && num_chain--; pos = prev[pos]) {
if (cur - pos > 65535) {
break;
}
unsigned long len = 0;
// If next byte matches, so this has a chance to be a longer match
if (max_len < len_limit && in[pos + max_len] == in[cur + max_len]) {
// Find match len
while (len < len_limit && in[pos + len] == in[cur + len]) {
++len;
}
}
// Extend current match if possible
//
// Note that we are checking matches in order from the
// closest and back. This means for a match further
// away, the encoding of all lengths up to the current
// max length will always be longer or equal, so we need
// only consider the extension.
if (len > max_len) {
unsigned long min_cost = UINT32_MAX;
unsigned long min_cost_len = 3;
// Find lowest cost match length
for (unsigned long i = max_len + 1; i <= len; ++i) {
unsigned long match_cost = lz4_match_cost(i);
assert(match_cost < UINT32_MAX - cost[cur + i]);
unsigned long cost_here = match_cost + cost[cur + i];
if (cost_here < min_cost) {
min_cost = cost_here;
min_cost_len = i;
}
}
max_len = len;
// Update cost if cheaper
//
// If the choice is between a literal and a match
// with the same cost, choose the match. This is
// because the match is able to encode any literals
// preceding it.
//
if (min_cost < cost[cur]
|| (mlen[cur] == 1 && min_cost == cost[cur])) {
cost[cur] = min_cost;
mpos[cur] = pos;
mlen[cur] = min_cost_len;
}
}
if (len >= accept_len || len == len_limit) {
break;
}
}
}
mpos[0] = 0;
mlen[0] = 1;
unsigned char *out = (unsigned char *) dst;
// Phase 3: Output compressed data, following lowest cost path
for (unsigned long i = 0; i < src_size; i += mlen[i]) {
unsigned long next_lit = i;
unsigned long nlit = 0;
// Move over literals, counting them
while (i < src_size && mlen[i] == 1) {
++nlit;
++i;
}
// Make room for token
unsigned char *token_out = out++;
// Output extra literal length bytes
while (nlit >= 15 + 255) {
*out++ = 255;
nlit -= 255;
}
if (nlit >= 15) {
*out++ = nlit - 15;
nlit = 15;
}
// Output literals
while (next_lit < i) {
*out++ = in[next_lit++];
}
// Handle last incomplete sequence
if (i == src_size) {
// Write token
*token_out = nlit << 4;
break;
}
// Output offset
unsigned long offs = mlen[i] == 1 ? 1 : i - mpos[i];
*out++ = offs & 0xFF;
*out++ = (offs >> 8) & 0xFF;
// Output extra length bytes
unsigned long len = mlen[i];
while (len >= 19 + 255) {
*out++ = 255;
len -= 255;
}
if (len >= 19) {
*out++ = len - 19;
len = 19;
}
// Write token
*token_out = (nlit << 4) | (len - 4);
}
// Return compressed size
return (unsigned long) (out - (unsigned char *) dst);
}
#endif /* LZ4_SSPARSE_H_INCLUDED */