-
Notifications
You must be signed in to change notification settings - Fork 20
/
eval.py
246 lines (203 loc) · 10.5 KB
/
eval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
import math
import torch
import os
import argparse
import numpy as np
import itertools
from tqdm import tqdm
from utils import move_to
from utils.data_utils import save_dataset
from torch.utils.data import DataLoader
import time
from datetime import timedelta
from utils.functions import parse_softmax_temperature, torch_load_cpu, _load_model_file
from problems.pdp.problem_pdp import PDP
from nets.attention_model import AttentionModel
mp = torch.multiprocessing.get_context('spawn')
def load_model(path):
model_filename = path
problem = PDP()
model = AttentionModel(
embedding_dim=128,
hidden_dim=128,
problem=problem,
n_encode_layers=3,
mask_inner=True,
mask_logits=True,
normalization='batch',
tanh_clipping=8,
checkpoint_encoder=False,
shrink_size=None
)
# Overwrite model parameters by parameters to load
load_data = torch_load_cpu(model_filename)
model.load_state_dict({**model.state_dict(), **load_data.get('model', {})})
model, *_ = _load_model_file(model_filename, model)
model.eval() # Put in eval mode
return model, None
def get_best(sequences, cost, ids=None, batch_size=None):
"""
Ids contains [0, 0, 0, 1, 1, 2, ..., n, n, n] if 3 solutions found for 0th instance, 2 for 1st, etc
:param sequences:
:param lengths:
:param ids:
:return: list with n sequences and list with n lengths of solutions
"""
if ids is None:
idx = cost.argmin()
return sequences[idx:idx+1, ...], cost[idx:idx+1, ...]
splits = np.hstack([0, np.where(ids[:-1] != ids[1:])[0] + 1])
mincosts = np.minimum.reduceat(cost, splits)
group_lengths = np.diff(np.hstack([splits, len(ids)]))
all_argmin = np.flatnonzero(np.repeat(mincosts, group_lengths) == cost)
result = np.full(len(group_lengths) if batch_size is None else batch_size, -1, dtype=int)
result[ids[all_argmin[::-1]]] = all_argmin[::-1]
return [sequences[i] if i >= 0 else None for i in result], [cost[i] if i >= 0 else math.inf for i in result]
def eval_dataset_mp(args):
(dataset_path, width, softmax_temp, opts, i, num_processes) = args
model, _ = load_model(opts.model)
val_size = opts.val_size // num_processes
dataset = model.problem.make_dataset(filename=dataset_path, num_samples=val_size, offset=opts.offset + val_size * i)
device = torch.device("cuda:{}".format(i))
return _eval_dataset(model, dataset, width, softmax_temp, opts, device)
def eval_dataset(dataset_path, width, softmax_temp, opts):
# Even with multiprocessing, we load the model here since it contains the name where to write results
model, _ = load_model(opts.model)
use_cuda = torch.cuda.is_available() and not opts.no_cuda
if opts.multiprocessing:
assert use_cuda, "Can only do multiprocessing with cuda"
num_processes = torch.cuda.device_count()
assert opts.val_size % num_processes == 0
with mp.Pool(num_processes) as pool:
results = list(itertools.chain.from_iterable(pool.map(
eval_dataset_mp,
[(dataset_path, width, softmax_temp, opts, i, num_processes) for i in range(num_processes)]
)))
else:
device = torch.device("cuda:0" if use_cuda else "cpu")
dataset = model.problem.make_dataset(filename=dataset_path, num_samples=opts.val_size, offset=opts.offset)
results = _eval_dataset(model, dataset, width, softmax_temp, opts, device)
# This is parallelism, even if we use multiprocessing (we report as if we did not use multiprocessing, e.g. 1 GPU)
parallelism = opts.eval_batch_size
costs, tours, durations = zip(*results) # Not really costs since they should be negative
print("Average cost: {} +- {}".format(np.mean(costs), 2 * np.std(costs) / np.sqrt(len(costs))))
print("Average serial duration: {} +- {}".format(
np.mean(durations), 2 * np.std(durations) / np.sqrt(len(durations))))
print("Average parallel duration: {}".format(np.mean(durations) / parallelism))
print("Calculated total duration: {}".format(timedelta(seconds=int(np.sum(durations) / parallelism))))
dataset_basename, ext = os.path.splitext(os.path.split(dataset_path)[-1])
model_name = "_".join(os.path.normpath(os.path.splitext(opts.model)[0]).split(os.sep)[-2:])
if opts.o is None:
results_dir = os.path.join(opts.results_dir, model.problem.NAME, dataset_basename)
os.makedirs(results_dir, exist_ok=True)
out_file = os.path.join(results_dir, "{}-{}-{}{}-t{}-{}-{}{}".format(
dataset_basename, model_name,
opts.decode_strategy,
width if opts.decode_strategy != 'greedy' else '',
softmax_temp, opts.offset, opts.offset + len(costs), ext
))
else:
out_file = opts.o
assert opts.f or not os.path.isfile(
out_file), "File already exists! Try running with -f option to overwrite."
save_dataset((results, parallelism), out_file)
return costs, tours, durations
def _eval_dataset(model, dataset, width, softmax_temp, opts, device):
model.to(device)
model.eval()
model.set_decode_type(
"greedy" if opts.decode_strategy in ('bs', 'greedy') else "sampling",
temp=softmax_temp)
dataloader = DataLoader(dataset, batch_size=opts.eval_batch_size)
results = []
for batch in tqdm(dataloader, disable=opts.no_progress_bar):
batch = move_to(batch, device)
start = time.time()
with torch.no_grad():
if opts.decode_strategy in ('sample', 'greedy'):
if opts.decode_strategy == 'greedy':
assert width == 0, "Do not set width when using greedy"
assert opts.eval_batch_size <= opts.max_calc_batch_size, \
"eval_batch_size should be smaller than calc batch size"
batch_rep = 1
iter_rep = 1
elif width * opts.eval_batch_size > opts.max_calc_batch_size:
assert opts.eval_batch_size == 1
assert width % opts.max_calc_batch_size == 0
batch_rep = opts.max_calc_batch_size
iter_rep = width // opts.max_calc_batch_size
else:
batch_rep = width
iter_rep = 1
assert batch_rep > 0
# This returns (batch_size, iter_rep shape)
sequences, costs = model.sample_many(batch, batch_rep=batch_rep, iter_rep=iter_rep)
batch_size = len(costs)
ids = torch.arange(batch_size, dtype=torch.int64, device=costs.device)
else:
assert opts.decode_strategy == 'bs'
cum_log_p, sequences, costs, ids, batch_size = model.beam_search(
batch, beam_size=width,
compress_mask=opts.compress_mask,
max_calc_batch_size=opts.max_calc_batch_size
)
if sequences is None:
sequences = [None] * batch_size
costs = [math.inf] * batch_size
else:
sequences, costs = get_best(
sequences.cpu().numpy(), costs.cpu().numpy(),
ids.cpu().numpy() if ids is not None else None,
batch_size
)
duration = time.time() - start
for seq, cost in zip(sequences, costs):
if model.problem.NAME == "tsp":
seq = seq.tolist() # No need to trim as all are same length
elif model.problem.NAME in ("cvrp", "sdvrp"):
seq = np.trim_zeros(seq).tolist() + [0] # Add depot
elif model.problem.NAME in ("op", "pctsp"):
seq = np.trim_zeros(seq) # We have the convention to exclude the depot
elif model.problem.NAME == "pdp":
seq = np.trim_zeros(seq).tolist() + [0]
else:
seq = None
# assert False, "Unkown problem: {}".format(model.problem.NAME)
# Note VRP only
results.append((cost, seq, duration))
return results
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("datasets", nargs='+', help="Filename of the dataset(s) to evaluate")
parser.add_argument("-f", action='store_true', help="Set true to overwrite")
parser.add_argument("-o", default=None, help="Name of the results file to write")
parser.add_argument('--val_size', type=int, default=10000,
help='Number of instances used for reporting validation performance')
parser.add_argument('--offset', type=int, default=0,
help='Offset where to start in dataset (default 0)')
parser.add_argument('--eval_batch_size', type=int, default=1024,
help="Batch size to use during (baseline) evaluation")
# parser.add_argument('--decode_type', type=str, default='greedy',
# help='Decode type, greedy or sampling')
parser.add_argument('--width', type=int, nargs='+',
help='Sizes of beam to use for beam search (or number of samples for sampling), '
'0 to disable (default), -1 for infinite')
parser.add_argument('--decode_strategy', type=str,
help='Beam search (bs), Sampling (sample) or Greedy (greedy)')
parser.add_argument('--softmax_temperature', type=parse_softmax_temperature, default=1,
help="Softmax temperature (sampling or bs)")
parser.add_argument('--model', type=str)
parser.add_argument('--no_cuda', action='store_true', help='Disable CUDA')
parser.add_argument('--no_progress_bar', action='store_true', help='Disable progress bar')
parser.add_argument('--compress_mask', action='store_true', help='Compress mask into long')
parser.add_argument('--max_calc_batch_size', type=int, default=10000, help='Size for subbatches')
parser.add_argument('--results_dir', default='results', help="Name of results directory")
parser.add_argument('--multiprocessing', action='store_true',
help='Use multiprocessing to parallelize over multiple GPUs')
opts = parser.parse_args()
assert opts.o is None or (len(opts.datasets) == 1 and len(opts.width) <= 1), \
"Cannot specify result filename with more than one dataset or more than one width"
widths = opts.width if opts.width is not None else [0]
for width in widths:
for dataset_path in opts.datasets:
eval_dataset(dataset_path, width, opts.softmax_temperature, opts)