Skip to content

Code for the paper "Reconstructuring Sparse Multiplex Networks With Application to Covert Networks"

License

Notifications You must be signed in to change notification settings

jinzhuyu/multiplex_recon

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Multiplex Network Reconstruction

This is the implementation of numerical experiments in our paper titled Reconstructing Sparse Multiplex Networks with Application to Covert Networks. If you find our paper or code useful, we kindly ask you to cite our work

@article{yu2023reconstructing,
  title={Reconstructing sparse multiplex networks with application to covert networks},
  author={Yu, Jin-Zhu and Wu, Mincheng and Bichler, Gisela and Aros-Vera, Felipe and Gao, Jianxi},
  journal={Entropy},
  volume={25},
  number={1},
  pages={142},
  year={2023},
  publisher={MDPI}
}

Requirements

Software

Python 3.8.3

Packages

numpy 1.19.2

pandas 1.4.4

numba 0.55.1

sklearn 1.1.1

imblearn 0.7.0

networkx 2.8.4

Usage

To reproduce the plots for reconstructuring each multiplex network, run multi_net.py and then plot_metrics.py with the respective net_name, n_layer, and n_node_total.

Parellel processing is used to reduce the runtime. If necessary, Cython can be used to decrease the runtime a bit more.

About

Code for the paper "Reconstructuring Sparse Multiplex Networks With Application to Covert Networks"

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published