SOTA Discrete Codec Models With Forty Tokens Per Second for Audio Language Modeling
🎉🎉 WavTokenizer owns rich semantic information and is build for audio language models such as GPT4-o.
- 2024.10.22: We update WavTokenizer on arxiv and release WavTokenizer-Large checkpoint.
- 2024.09.09: We release WavTokenizer-medium checkpoint on huggingface.
- 2024.08.31: We release WavTokenizer on arxiv.
To use WavTokenizer, install it using:
conda create -n wavtokenizer python=3.9
conda activate wavtokenizer
pip install -r requirements.txt
from encoder.utils import convert_audio
import torchaudio
import torch
from decoder.pretrained import WavTokenizer
device=torch.device('cpu')
config_path = "./configs/xxx.yaml"
model_path = "./xxx.ckpt"
audio_outpath = "xxx"
wavtokenizer = WavTokenizer.from_pretrained0802(config_path, model_path)
wavtokenizer = wavtokenizer.to(device)
wav, sr = torchaudio.load(audio_path)
wav = convert_audio(wav, sr, 24000, 1)
bandwidth_id = torch.tensor([0])
wav=wav.to(device)
features,discrete_code= wavtokenizer.encode_infer(wav, bandwidth_id=bandwidth_id)
audio_out = wavtokenizer.decode(features, bandwidth_id=bandwidth_id)
torchaudio.save(audio_outpath, audio_out, sample_rate=24000, encoding='PCM_S', bits_per_sample=16)
from encoder.utils import convert_audio
import torchaudio
import torch
from decoder.pretrained import WavTokenizer
device=torch.device('cpu')
config_path = "./configs/xxx.yaml"
model_path = "./xxx.ckpt"
wavtokenizer = WavTokenizer.from_pretrained0802(config_path, model_path)
wavtokenizer = wavtokenizer.to(device)
wav, sr = torchaudio.load(audio_path)
wav = convert_audio(wav, sr, 24000, 1)
bandwidth_id = torch.tensor([0])
wav=wav.to(device)
_,discrete_code= wavtokenizer.encode_infer(wav, bandwidth_id=bandwidth_id)
print(discrete_code)
# audio_tokens [n_q,1,t]/[n_q,t]
features = wavtokenizer.codes_to_features(audio_tokens)
bandwidth_id = torch.tensor([0])
audio_out = wavtokenizer.decode(features, bandwidth_id=bandwidth_id)
🤗 links to the Huggingface model hub.
Model name | HuggingFace | Corpus | Token/s | Domain | Open-Source |
---|---|---|---|---|---|
WavTokenizer-small-600-24k-4096 | 🤗 | LibriTTS | 40 | Speech | √ |
WavTokenizer-small-320-24k-4096 | 🤗 | LibriTTS | 75 | Speech | √ |
WavTokenizer-medium-320-24k-4096 | 🤗 | 10000 Hours | 75 | Speech, Audio, Music | √ |
WavTokenizer-large-600-24k-4096 | 🤗 | 80000 Hours | 40 | Speech, Audio, Music | √ |
WavTokenizer-large-320-24k-4096 | 🤗 | 80000 Hours | 75 | Speech, Audio, Music | √ |
# Process the data into a form similar to ./data/demo.txt
# ./configs/xxx.yaml
# Modify the values of parameters such as batch_size, filelist_path, save_dir, device
Refer to Pytorch Lightning documentation for details about customizing the training pipeline.
cd ./WavTokenizer
python train.py fit --config ./configs/xxx.yaml
If this code contributes to your research, please cite our work, Language-Codec and WavTokenizer:
@article{ji2024wavtokenizer,
title={WavTokenizer: an Efficient Acoustic Discrete Codec Tokenizer for Audio Language Modeling},
author={Ji, Shengpeng and Jiang, Ziyue and Cheng, Xize and Chen, Yifu and Fang, Minghui and Zuo, Jialong and Yang, Qian and Li, Ruiqi and Zhang, Ziang and Yang, Xiaoda and others},
journal={arXiv preprint arXiv:2408.16532},
year={2024}
}
@article{ji2024language,
title={Language-codec: Reducing the gaps between discrete codec representation and speech language models},
author={Ji, Shengpeng and Fang, Minghui and Jiang, Ziyue and Huang, Rongjie and Zuo, Jialung and Wang, Shulei and Zhao, Zhou},
journal={arXiv preprint arXiv:2402.12208},
year={2024}
}