-
Notifications
You must be signed in to change notification settings - Fork 260
/
Copy pathdemo_8bitart.py
117 lines (89 loc) · 5.29 KB
/
demo_8bitart.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
import argparse
import torch
import torch.optim as optim
from painter import *
# settings
parser = argparse.ArgumentParser(description='STYLIZED NEURAL PAINTING')
parser.add_argument('--img_path', type=str, default='./test_images/sunflowers.jpg', metavar='str',
help='path to test image (default: ./test_images/sunflowers.jpg)')
parser.add_argument('--renderer', type=str, default='rectangle', metavar='str',
help='renderer: [watercolor, markerpen, oilpaintbrush, rectangle (default oilpaintbrush)')
parser.add_argument('--canvas_color', type=str, default='black', metavar='str',
help='canvas_color: [black, white] (default black)')
parser.add_argument('--canvas_size', type=int, default=512, metavar='str',
help='size of the canvas for stroke rendering')
parser.add_argument('--keep_aspect_ratio', action='store_true', default=False,
help='keep input aspect ratio when saving outputs')
parser.add_argument('--max_m_strokes', type=int, default=500, metavar='str',
help='max number of strokes (default 500)')
parser.add_argument('--max_divide', type=int, default=5, metavar='N',
help='divide an image up-to max_divide x max_divide patches (default 5)')
parser.add_argument('--beta_L1', type=float, default=1.0,
help='weight for L1 loss (default: 1.0)')
parser.add_argument('--with_ot_loss', action='store_true', default=False,
help='imporve the convergence by using optimal transportation loss')
parser.add_argument('--beta_ot', type=float, default=0.1,
help='weight for optimal transportation loss (default: 0.1)')
parser.add_argument('--net_G', type=str, default='zou-fusion-net-light', metavar='str',
help='net_G: plain-dcgan, plain-unet, huang-net, zou-fusion-net, '
'or zou-fusion-net-light (default: zou-fusion-net-light)')
parser.add_argument('--renderer_checkpoint_dir', type=str, default=r'./checkpoints_G_rectangle_light', metavar='str',
help='dir to load neu-renderer (default: ./checkpoints_G_rectangle_light)')
parser.add_argument('--lr', type=float, default=0.002,
help='learning rate for stroke searching (default: 0.005)')
parser.add_argument('--output_dir', type=str, default=r'./output', metavar='str',
help='dir to save painting results (default: ./output)')
parser.add_argument('--disable_preview', action='store_true', default=False,
help='disable cv2.imshow, for running remotely without x-display')
args = parser.parse_args()
# Decide which device we want to run on
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
def optimize_x(pt):
pt._load_checkpoint()
pt.net_G.eval()
print('begin drawing...')
PARAMS = np.zeros([1, 0, pt.rderr.d], np.float32)
if pt.rderr.canvas_color == 'white':
CANVAS_tmp = torch.ones([1, 3, pt.net_G.out_size, pt.net_G.out_size]).to(device)
else:
CANVAS_tmp = torch.zeros([1, 3, pt.net_G.out_size, pt.net_G.out_size]).to(device)
for pt.m_grid in range(1, pt.max_divide + 1):
pt.img_batch = utils.img2patches(pt.img_, pt.m_grid, pt.net_G.out_size).to(device)
pt.G_final_pred_canvas = CANVAS_tmp
pt.initialize_params()
pt.x_ctt.requires_grad = True
pt.x_color.requires_grad = True
pt.x_alpha.requires_grad = True
utils.set_requires_grad(pt.net_G, False)
pt.optimizer_x = optim.RMSprop([pt.x_ctt, pt.x_color, pt.x_alpha], lr=pt.lr, centered=True)
pt.step_id = 0
for pt.anchor_id in range(0, pt.m_strokes_per_block):
pt.stroke_sampler(pt.anchor_id)
iters_per_stroke = int(500 / pt.m_strokes_per_block)
for i in range(iters_per_stroke):
pt.G_pred_canvas = CANVAS_tmp
# update x
pt.optimizer_x.zero_grad()
pt.x_ctt.data = torch.clamp(pt.x_ctt.data, 0, 1)
pt.x_ctt.data[:, :, -1] = torch.clamp(pt.x_ctt.data[:, :, -1], 0, 0)
pt.x_color.data = torch.clamp(pt.x_color.data, 0, 1)
pt.x_alpha.data = torch.clamp(pt.x_alpha.data, 1, 1)
pt._forward_pass()
pt._backward_x()
pt.x_ctt.data = torch.clamp(pt.x_ctt.data, 0, 1)
pt.x_ctt.data[:, :, -1] = torch.clamp(pt.x_ctt.data[:, :, -1], 0, 0)
pt.x_color.data = torch.clamp(pt.x_color.data, 0, 1)
pt.x_alpha.data = torch.clamp(pt.x_alpha.data, 1, 1)
pt._drawing_step_states()
pt.optimizer_x.step()
pt.step_id += 1
v = pt._normalize_strokes(pt.x)
v = pt._shuffle_strokes_and_reshape(v)
PARAMS = np.concatenate([PARAMS, v], axis=1)
CANVAS_tmp = pt._render(PARAMS, save_jpgs=False, save_video=False)
CANVAS_tmp = utils.img2patches(CANVAS_tmp, pt.m_grid + 1, pt.net_G.out_size).to(device)
pt._save_stroke_params(PARAMS)
final_rendered_image = pt._render(PARAMS, save_jpgs=True, save_video=True)
if __name__ == '__main__':
pt = ProgressivePainter(args=args)
optimize_x(pt)