-
Notifications
You must be signed in to change notification settings - Fork 34
/
main_granI_cifar10.py
223 lines (162 loc) · 8.86 KB
/
main_granI_cifar10.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
''' Version 1.000
Code provided by Daniel Jiwoong Im and Chris Dongjoo Kim
Permission is granted for anyone to copy, use, modify, or distribute this
program and accompanying programs and documents for any purpose, provided
this copyright notice is retained and prominently displayed, along with
a note saying that the original programs are available from our
web page.
The programs and documents are distributed without any warranty, express or
implied. As the programs were written for research purposes only, they have
not been tested to the degree that would be advisable in any important
application. All use of these programs is entirely at the user's own risk.'''
'''Demo of Generating images with recurrent adversarial networks.
For more information, see: http://arxiv.org/abs/1602.05110
'''
import os, sys, time, timeit, gzip
import numpy as np
import scipy as sp
import matplotlib
matplotlib.use('Agg')
import matplotlib.pyplot as plt
import theano
import theano.sandbox.rng_mrg as RNG_MRG
rng = np.random.RandomState()
MRG = RNG_MRG.MRG_RandomStreams(rng.randint(2 ** 30))
from optimize_gan import *
from gran import *
from utils import *
from util_cifar10 import *
#datapath='/groups/branson/home/imd/Documents/machine_learning_uofg/data/cifar10/cifar-10-batches-py/'
#datapath='/export/mlrg/imj/machine_learning/data/cifar10/cifar-10-batches-py/'
#datapath='/data/lisa/data/cifar10/cifar-10-batches-py/'
#datapath='/eecs/research/asr/chris/DG_project/dataset/cifar-10-batches-py/'
#datapath='/home/imj/data/cifair10/cifar-10-batches-py/'
datapath='/home/daniel/Documents/data/cifar10/cifar-10-batches-py/'
if not os.path.exists(os.path.dirname(os.path.realpath(__file__)) + "/figs/"):
os.makedirs(os.path.dirname(os.path.realpath(__file__)) + "/figs/")
if not os.path.exists(os.path.dirname(os.path.realpath(__file__)) + "/figs/cifar10"):
os.makedirs(os.path.dirname(os.path.realpath(__file__)) + "/figs/cifar10")
if not os.path.exists(os.path.dirname(os.path.realpath(__file__)) + "/params/"):
os.makedirs(os.path.dirname(os.path.realpath(__file__)) + "/params/")
def lets_train(model, train_params, num_batchs, theano_fns, opt_params, model_params):
ganI_params, conv_params = model_params
batch_sz, epsilon_gen, epsilon_dis, momentum, num_epoch, N, Nv, Nt, lam = opt_params
batch_sz, D, num_hids, rng, num_z, nkerns, ckern, num_channel, num_steps= ganI_params
num_epoch, epoch_start, contF = train_params
num_batch_train, num_batch_valid, num_batch_test = num_batchs
get_samples, discriminator_update, generator_update, get_valid_cost, get_test_cost = theano_fns
print '...Start Training'
findex= str(num_hids[0])+'_'
best_vl = np.infty
K=1 #FIXED
for epoch in xrange(num_epoch+1):
costs=[[],[], []]
exec_start = timeit.default_timer()
eps_gen = get_epsilon(epsilon_gen, 50, epoch)
eps_dis = get_epsilon(epsilon_dis, 50, epoch)
for batch_i in xrange(num_batch_train):
cost_disc_i = discriminator_update(batch_i, lr=eps_dis)
costs[0].append(cost_disc_i)
if batch_i % K == 0:
cost_gen_i = generator_update(lr=eps_gen)
costs[1].append(cost_gen_i)
exec_finish = timeit.default_timer()
if epoch==0: print 'Exec Time %f ' % ( exec_finish - exec_start)
if epoch % 5 == 0 or epoch < 4 or epoch == (num_epoch-1):
costs_vl = [[],[],[]]
for batch_j in xrange(num_batch_valid):
cost_dis_vl_j, cost_gan_vl_j = get_valid_cost(batch_j)
costs_vl[0].append(cost_dis_vl_j)
costs_vl[1].append(cost_gan_vl_j)
cost_dis_vl = np.mean(np.asarray(costs_vl[0]))
cost_gan_vl = np.mean(np.asarray(costs_vl[1]))
cost_dis_tr = np.mean(np.asarray(costs[0]))
cost_gan_tr = np.mean(np.asarray(costs[1]))
print 'Epoch %d, epsilon_dis %f5, epsilon_gen %f5, tr disc gen %g, %g | vl disc gen %g, %g '\
% (epoch, eps_dis, eps_gen, cost_dis_tr, cost_gan_tr, cost_dis_vl, cost_gan_vl)
num_samples=100
samples = get_samples(num_samples).reshape((num_samples, 32*32*3))
display_images(np.asarray(samples * 255, dtype='int32'), (10,10), fname='./figs/cifar10/granI_samples_'+str(epoch) +"_"+ 'ns'+str(num_steps))
# change the name to save to when new model is found.
save_the_weight(model, './params/'+ model_param_save )
num_samples=100
samples = get_samples(num_samples).reshape((num_samples, 3*32*32))
display_images(np.asarray(samples * 255, dtype='int32'), (10,10), fname='./figs/cifar10/gran_samples_'+ '_'+ findex + 'ns'+str(num_steps))
return model
def load_model(model_params, contF=True):
if not contF:
print '...Starting from the beginning'''
model = GRAN(model_params)
else:
print '...Continuing from Last time'''
model = unpickle(os.path.dirname(os.path.realpath(__file__)) + '/params/'+'recgan_batch100.eps_dis4e-05.eps_gen7e-05.num_z150.num_epoch70.lam2e-05_cifar103.save')
return model
def set_up_train(model, train_set, valid_set, test_set, opt_params):
batch_sz, epsilon_gen, epsilon_dis, momentum, num_epoch, N, Nv, Nt, lam = opt_params
opt_params = batch_sz, epsilon_gen, epsilon_dis, momentum, num_epoch, N, Nv, Nt
compile_start = timeit.default_timer()
opt = Optimize(opt_params)
discriminator_update, generator_update, get_valid_cost, get_test_cost\
= opt.optimize_gan(model, train_set, valid_set, test_set, lam1=lam)
get_samples = opt.get_samples(model)
compile_finish = timeit.default_timer()
print 'Compile Time %f ' % ( compile_finish - compile_start)
return opt, get_samples, discriminator_update, generator_update, get_valid_cost, get_test_cost
def main(train_set, valid_set, test_set, opt_params, ganI_params, train_params, conv_params):
batch_sz, epsilon_gen, epsilon_dis, momentum, num_epoch, N, Nv, Nt, lam = opt_params
batch_sz, D, num_hids, rng, num_z, nkerns, ckern, num_channel, num_steps = ganI_params
conv_num_hid, D, num_class, batch_sz, num_channel = conv_params
num_epoch, epoch_start, contF = train_params
# compute number of minibatches for training, validation and testing
num_batch_train = N / batch_sz
num_batch_valid = Nv / batch_sz
num_batch_test = Nt / batch_sz
model_params = [ganI_params, conv_params]
ganI = load_model(model_params, contF)
opt, get_samples, discriminator_update, generator_update, get_valid_cost, get_test_cost\
= set_up_train(ganI, train_set, valid_set, test_set, opt_params)
theano_fns = [get_samples, discriminator_update, generator_update, get_valid_cost, get_test_cost]
num_batchs = [num_batch_train, num_batch_valid, num_batch_test]
lets_train(ganI, train_params, num_batchs, theano_fns, opt_params, model_params)
### MODEL PARAMS
# CONV (DISC)
conv_num_hid= 100
num_channel = 3 # FIXED
num_class = 1 # FIXED
# ganI (GEN)
filter_sz = 4 #FIXED
nkerns = [8,4,2,1]
ckern = 128
num_hid1 = nkerns[0]*ckern*filter_sz*filter_sz # FIXED.
num_steps = 5 # time steps
num_z = 100 #/ num_steps # To match random noise of GAN's.
### OPT PARAMS
batch_sz = 100
epsilon_dis = 0.00004
epsilon_gen = 0.0001
momentum = 0.0 #Not Used
lam = 0.000005
### TRAIN PARAMS
num_epoch = 20#23
epoch_start = 0
contF = False #Continue flag. usually FIXED
### SAVE PARAM
model_param_save = 'gran_param_cifar10_ts%d_2' % num_steps
if __name__ == '__main__':
train_set, valid_set, test_set = load_cifar10(path=datapath)
train_set[0] = train_set[0] / 255.
valid_set[0] = valid_set[0] / 255.
test_set[0] = test_set[0] / 255.
N ,D = train_set[0].shape; Nv,D = valid_set[0].shape; Nt,D = test_set[0].shape
N_test, D_test = train_set[0][100:200].shape
train_set = shared_dataset(train_set)
valid_set = shared_dataset(valid_set)
test_set = shared_dataset(test_set )
print 'batch sz %d, epsilon gen %g, epsilon dis %g, hnum_z %d, num_conv_hid %g, num_epoch %di, lam %g, num_steps %d' % \
(batch_sz, epsilon_gen, epsilon_dis, num_z, conv_num_hid, num_epoch, lam, num_steps)
num_hids = [num_hid1]
train_params = [num_epoch, epoch_start, contF]
opt_params = [batch_sz, epsilon_gen, epsilon_dis, momentum, num_epoch, N, Nv, Nt, lam]
ganI_params = [batch_sz, D, num_hids, rng, num_z, nkerns, ckern, num_channel, num_steps]
conv_params = [conv_num_hid, D, num_class, batch_sz, num_channel]
book_keeping = main(train_set, valid_set, test_set, opt_params, ganI_params, train_params, conv_params)