Skip to content

Latest commit

 

History

History
65 lines (52 loc) · 2.24 KB

README.md

File metadata and controls

65 lines (52 loc) · 2.24 KB

Manga-recommendation

It is a recommendation model for recommend mangas by using query(user requirement).

Get start

First, you have to pip install the necessary library.

!pip install sentence-transformers==2.2.2
!pip install torch==2.0.1
!pip install bing-image-urls==0.1.5
!pip install streamlit==1.10.0
!pip install numpy==1.21.6

or you can create requirements.txt and copy my requirements.txt in your file.

Then run this command in terminal or command prompt.

pip install -r requirements.txt

Finetune

I just generate query by using Alpaca-LoRA and finetune it.

This is a code for generate querys.

I provided 2 scripts of finetuning code.

--fine_tune_eng.ipynb
--fine_tune_multi.ipynb

The first script used "all-MiniLM-L6-v" for being a pretrain model.
The second script used "paraphrase-multilingual-mpnet-base-v2" for being a pretrain model.

Usage

There are 2 finetuned models for encode the word to vector.

  1. Madnesss/fine-tune-all-MiniLM-L6-v2 : It is for English only.
  2. Madnesss/fine-tune-paraphrase-multilingual-mpnet-base-v2 : It is multilingual model.

Finding cosine similarity score

from sentence_transformers import SentenceTransformer, util

path = "Madnesss/fine-tune-all-MiniLM-L6-v2" # or path = "Madnesss/fine-tune-paraphrase-multilingual-mpnet-base-v2"
model = SentenceTransformer(path)

#encode
embedding1 = model.encode(["example sentence1", "example sentence2", "example sentence3"], convert_to_tensor=True)
embedding2 = model.encode(["example sentence4", "example sentence5", "example sentence6"], convert_to_tensor=True)

#compute cosine sim scores
cosine_scores = util.cos_sim(embeddings1, embeddings2)

#Output the scores
print(cosine_scores) #tensor([0.1, 0,2, 0.3, ....])

Deployment

Just clone my respository and use this command in terminal.

streamlit run Welcome.py

It will open in your browser.

Blog

I have written a blog for giving more details. You can find out here.