-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathfind_marg_rr_covid.R
116 lines (97 loc) · 4.62 KB
/
find_marg_rr_covid.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
### COVID Trial - CER = 0.07
pacman::p_load(tidyr, rstanarm, foreach, doParallel, tibble, purrr, dplyr)
r_age <- function(max_ss){
age <- tibble(age = ceiling(rnorm(250*max_ss, mean = 62, sd = 40))) %>%
filter(age >= 18, age <= 90)
int_1 <- age %>% filter(age < 39) %>% slice_sample(n = max_ss/4) %>% flatten_dbl()
int_2 <- age %>% filter(age >= 39, age < 55) %>% slice_sample(n = max_ss/4) %>% flatten_dbl()
int_3 <- age %>% filter(age >= 55, age < 70) %>% slice_sample(n = max_ss/4) %>% flatten_dbl()
int_4 <- age %>% filter(age >= 70) %>% slice_sample(n = max_ss/4) %>% flatten_dbl()
collection <- c(int_1, int_2, int_3, int_4)
sample(collection, length(collection))
}
r_resp_rate <- function(max_ss){
rr <- tibble(rr = ceiling(rnorm(250*max_ss, mean = 30, sd = 6))) %>%
filter(rr >= 12, rr <= 40)
int_1 <- rr %>% filter(rr < 18) %>% slice_sample(n = max_ss/4) %>% flatten_dbl()
int_2 <- rr %>% filter(rr >= 18, rr < 20) %>% slice_sample(n = max_ss/4) %>% flatten_dbl()
int_3 <- rr %>% filter(rr >= 20, rr < 22) %>% slice_sample(n = max_ss/4) %>% flatten_dbl()
int_4 <- rr %>% filter(rr >= 22) %>% slice_sample(n = max_ss/4) %>% flatten_dbl()
collection <- c(int_1, int_2, int_3, int_4)
sample(collection, length(collection))
}
generate_data <- function(iteration, max_ss){
tibble(treatment = rbinom(max_ss, 1, 0.5),
x1 = r_age(max_ss), #age
x2 = r_resp_rate(max_ss), #rr
x3 = rbinom(n = max_ss, size = 1, prob = 0.478), #female
x4 = rbinom(n = max_ss, size = 1, prob = 0.216), #chest pain,
x5 = rbinom(n = max_ss, size = 1, prob = 0.403)) # arrival police/ambulance
}
logit <- function(p){
log(p/(1-p))
}
logit_inverse <- function(eta){
exp(eta)/(1+exp(eta))
}
generate_outcomes <- function(data, effect_treatment, b_0_c, beta_1, beta_2, beta_3, beta_4, beta_5, control_risk, max_ss){
data %>%
mutate(eta = b_0_c + effect_treatment*treatment + beta_1*x1 + beta_2*x2 + beta_3*x3 + beta_4*x4 + beta_5*x5,
p = logit_inverse(eta),
y = rbinom(n = max_ss, size = 1, p))
}
## Raw estimates of marginal relative risk
get_marginal_rr <- function(iteration, b_0_c, lo_c){
data_y <- generate_outcomes(generate_data(1, 5000),
effect_treatment = lo_c,
b_0_c = b_0_c,
beta_1 = 0.09193548,
beta_2 = 0.09666667,
beta_3 = -0.61,
beta_4 = -0.8,
beta_5 = 0.63,
max_ss = 5000)
res <- data_y %>%
group_by(treatment) %>%
summarize(mean_y = mean(y, na.rm = TRUE))
risk_ctr <- res %>% filter(treatment == 0) %>% pull(mean_y)
risk_trt <- res %>% filter(treatment == 1) %>% pull(mean_y)
risk_trt / risk_ctr
exp(log(risk_trt) - log(risk_ctr))
}
cores <- detectCores()
# N=1000, CER = 0.07
registerDoParallel(cores = cores)
rr_20ev_50p <- foreach(i = 1:5000, .combine = 'c', .errorhandling = 'remove') %dopar% {
get_marginal_rr(i, b_0_c = -10.76457, lo_c = -0.80086207)
}
rr_20ev_80p <- foreach(i = 1:5000, .combine = 'c', .errorhandling = 'remove') %dopar% {
get_marginal_rr(i, b_0_c = -10.76457, lo_c = -1.18965517)
}
rr_30ev_50p <- foreach(i = 1:5000, .combine = 'c', .errorhandling = 'remove') %dopar% {
get_marginal_rr(i, b_0_c = -10.76457, lo_c = -0.790)
}
rr_30ev_80p <- foreach(i = 1:5000, .combine = 'c', .errorhandling = 'remove') %dopar% {
get_marginal_rr(i, b_0_c = -10.76457, lo_c = -1.180)
}
rr_40ev_50p <- foreach(i = 1:5000, .combine = 'c', .errorhandling = 'remove') %dopar% {
get_marginal_rr(i, b_0_c = -10.76457, lo_c = -0.79586207)
}
rr_40ev_80p <- foreach(i = 1:5000, .combine = 'c', .errorhandling = 'remove') %dopar% {
get_marginal_rr(i, b_0_c = -10.76457, lo_c = -1.20)
}
rr_50ev_50p <- foreach(i = 1:5000, .combine = 'c', .errorhandling = 'remove') %dopar% {
get_marginal_rr(i, b_0_c = -10.76457, lo_c = -0.82758621)
}
rr_50ev_80p <- foreach(i = 1:5000, .combine = 'c', .errorhandling = 'remove') %dopar% {
get_marginal_rr(i, b_0_c = -10.76457, lo_c = -1.204655)
}
stopImplicitCluster()
res <- tibble(max_ss = 1000,
events = c(20, 20, 30, 30, 40, 40, 50, 50),
lo_c = c(-0.80086207, -1.18965517, -0.790, -1.180, -0.79586207, -1.20,
-0.82758621, -1.204655),
approx_power = c(50, 80, 50, 80, 50, 80, 50, 80),
rr = c(mean(rr_20ev_50p), mean(rr_20ev_80p), mean(rr_30ev_50p), mean(rr_30ev_80p),
mean(rr_40ev_50p), mean(rr_40ev_80p), mean(rr_50ev_50p), mean(rr_50ev_80p)))
saveRDS(res, "PATH/FILENAME.RDS")