-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathforest_fire.py
478 lines (361 loc) · 15.4 KB
/
forest_fire.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
# -*- coding: utf-8 -*-
import matplotlib.pyplot as plt
from matplotlib import animation, rc
from matplotlib.colors import LinearSegmentedColormap
import numpy as np
import pandas as pd
def forest_fire_simulation(
number_time_steps, n, prob_tree, prob_burning, prob_immune, prob_lightning, number_burning_trees=0,
):
"""Run temperature diffusion simulation.
Parameters
----------
number_time_steps : int
Sets the number of time steps over which to run a simulation.
n : int
Number of rows and columns in the grid
prob_tree : float
Probability to initialize a cell with a tree
prob_burning : float
Probability that a tree starts on fire
prob_immune : float
Probability that a tree will not catch fire from a neighboring cell
prob_lightning : flaot
Probability that lightning will strike a tree during each simulation
step.
number_burning_trees : int
Number of trees to randomly set on fire at start of simulation.
Returns
-------
simulation_history : list
The forest grid as a function of time during the forest fire simulation.
"""
# Initialize forest according to parameters
forest = init_forest(n, prob_tree, prob_burning, number_burning_trees)
# Initialize record keeper for the simulation history
simulation_history = [[0, forest.copy()]]
# Run simulation for specified number of time steps
for nstep in np.arange(number_time_steps):
sweep(forest, prob_immune, prob_lightning, nstep, simulation_history)
return simulation_history
def init_forest(n, prob_tree, prob_burning, number_burning_trees=0):
"""Initialize an n ⨉ n grid of trees in a forest.
Parameters
----------
n : int
Number of rows and columns in the grid
prob_tree : float
Probability to initialize a cell with a tree
prob_burning : float
Probability that a tree starts on fire
number_burning_trees : int
Number of trees to randomly set on fire at start of simulation.
Returns
-------
forest : np.array
Grid of integers defining the forest
"""
forest = np.zeros(shape=(n, n), dtype=np.int)
tree_cells = np.random.uniform(low=0, high=1, size=(n, n)) < prob_tree
number_trees = np.prod(forest[tree_cells].shape)
is_burning = np.random.uniform(low=0, high=1, size=number_trees) < prob_burning
burning_cells = tree_cells.copy()
np.place(burning_cells, tree_cells, is_burning)
forest[tree_cells] = 1
forest[burning_cells] = 2
if number_burning_trees > 0:
forest = burn_random_tree(forest, number_burning_trees)
return forest
def visualize_grid(grid, fig_width=6, fig_height=6, dpi=120):
"""Visualize a 2D numpy array using a heatmap.
Parameters
----------
grid : np.array
A two-dimensional array representing the cellular automata grid
fig_width : float
Figure width in inches
fig_height : float
Figure height in inches
Returns
-------
fig, ax : tuple of plt.figure and plt.subplot
Matplotlib figure and subplot axis objects
.. _colormaps: https://matplotlib.org/examples/color/colormaps_reference.html
"""
# grid dimensions
m, n = grid.shape
# create matplotlib figure and subplot objects
fig, ax = plt.subplots(figsize=(fig_width, fig_height), dpi=dpi)
# Define a custom color map, with 0 being black, 1 being tab:blue, and
# 2 being tab:orange
cmap = LinearSegmentedColormap.from_list(
"forestfire", ["black", "tab:blue", "tab:orange"]
)
# imshow visualizes array as a two-dimensionl uniform grid
im = ax.imshow(grid, cmap=cmap, interpolation="nearest", vmin=0, vmax=2)
# find the starting and ending coordinates for heatmap for creating
# grid lines
xticks_start, xticks_end = ax.get_xlim()
yticks_start, yticks_end = ax.get_ylim()
# separate grid cells by white lines
ax.xaxis.set_ticks(np.linspace(xticks_start, xticks_end, n + 1), minor=False)
ax.yaxis.set_ticks(np.linspace(yticks_start, yticks_end, m + 1), minor=False)
ax.axes.grid(True, linestyle="-", linewidth=1, color="white", which="major")
# we don't need ticks and tick labels because we have grid lines
ax.tick_params(labelbottom=False, labelleft=False, bottom=False, left=False)
# Return matplotlib figure and subplot objects
return fig, ax
def boundary_condition(forest, condition="periodic"):
"""Setup ghost cells for boundary condition.
Parameters
----------
forest : np.array
Grid of integers defining the forest
condition : str, optional
The boundary condition to use when creating ghost cells.
"""
if condition == "periodic":
extended_forest = np.pad(array=forest, pad_width=(1, 1), mode="wrap")
else:
raise ValueError("{0} is not a valid boundary condition".format(condition))
return extended_forest
def get_neighbors(extended_forest, ghost_width=(1, 1), neighborhood="von_neumann"):
"""Get the cellular state of each site's neighbors in a single sweep.
Paramters
---------
extended_forest : np.array
Grid of integers defining the forest with ghost cells
ghost_width : array-like
A number pair that specifies how many rows and columns make up the
ghost cell region
neighborhood : str, optional
Determines which cells will be counted as neighbors
Returns
-------
forest_with_neighbors : np.array
Grid of integers of the state of each cell's neighbors in the forest
"""
m_extended, n_extended = extended_forest.shape
m, n = (m_extended - ghost_width[0], n_extended - ghost_width[1])
if neighborhood == "von_neumann":
forest_with_neighbors = np.array(
[
np.roll(extended_forest, shift=(0, 1), axis=(1, 0))[
ghost_width[0] : m, ghost_width[1] : n
],
np.roll(extended_forest, shift=(1, 0), axis=(1, 0))[
ghost_width[0] : m, ghost_width[1] : n
],
np.roll(extended_forest, shift=(-1, 0), axis=(1, 0))[
ghost_width[0] : m, ghost_width[1] : n
],
np.roll(extended_forest, shift=(0, -1), axis=(1, 0))[
ghost_width[0] : m, ghost_width[1] : n
],
]
)
else:
raise ValueError("{0} is not a valid type of neighborhood".format(condition))
return forest_with_neighbors
def spread(forest, forest_neighbors, prob_immune, prob_lightning):
"""Update cell states using random number generator and transition rules.
Parameters
----------
forest : np.array
Grid of integers defining the forest
forest_neighbors : np.array
Grid of integers of the state of each cell's neighbors in the forest
prob_immune : float
Probability that a tree will not catch fire from a neighboring cell
prob_lightning : flaot
Probability that lightning will strike a tree during each simulation
step.
Returns
-------
forest_update : np.array
Grid of integers that specifies the updated forest after the latest
time step.
"""
# Get number of neighbors per cell and x,y dimensions
num_neighbors, m, n = forest_neighbors.shape
# Use copy of forest to help prevent premature updating of cellular states.
forest_update = forest.copy()
# Find the tree cells and burning cells
tree_cells = forest_update == 1
old_burning_cells = forest_update == 2
# Compute the probability that a lightning strike causes a fire.
prob_lightning_fire = prob_lightning * (1 - prob_immune)
# Boolean condition: which cells have a burning neighbor?
cells_with_burning_neighbors = np.any(forest_neighbors == 2, axis=0)
# Boolean condition: Which of the cells with burning neighbors has a tree
# state
trees_with_burning_neighbors = np.logical_and(
tree_cells, cells_with_burning_neighbors
)
number_trees_with_burning_neighbors = np.sum(trees_with_burning_neighbors)
# Generate a random number to determine how the fire spreads:
is_burning = (
np.random.uniform(low=0, high=1, size=number_trees_with_burning_neighbors)
>= prob_immune
)
# Create an array and fill it with the False boolean, then use np.place()
# with trees_with_burning_neighbors to label the sites that will burn
trees_catching_fire = np.full(fill_value=False, shape=(m, n), dtype=np.bool)
np.place(trees_catching_fire, trees_with_burning_neighbors, is_burning)
# Next, we test if lightning strikes and causes a fire.
# Remove the trees from our list that will already catch fire this round
tree_cells[trees_catching_fire] = False
number_remaining_trees = np.sum(tree_cells)
# Check if each tree cell gets hit by lightning AND starts a fire
is_burning = (
np.random.uniform(low=0, high=1, size=number_remaining_trees)
< prob_lightning_fire
)
trees_burned_by_lightning = np.full(fill_value=False, shape=(m, n), dtype=np.bool)
# Use np.place() to mark the cells with trees burned by lightning for
# update
np.place(trees_burned_by_lightning, tree_cells, is_burning)
# Combine burning trees from spreading and lightning into one list
new_burning_cells = np.logical_or(trees_catching_fire, trees_burned_by_lightning)
# Update states
# Replace trees that burned in the previous round with an empty square
forest_update[old_burning_cells] = 0
# Use combined list of trees to burn during the next time step to update
# their state:
forest_update[new_burning_cells] = 2
return forest_update
def sweep(forest, prob_immune, prob_lightning, nstep, simulation_history):
"""Sweep over grid and update state of forest.
Parameters
----------
forest : np.array
Grid of integers defining the forest
prob_immune : float
Probability that a tree will not catch fire from a neighboring cell
prob_lightning : flaot
Probability that lightning will strike a tree during each simulation
step.
nstep : int
Sets the number of time steps over which to run a simulation.
simulation_history : list
Time-step history for the simulation's run.
"""
extended_forest = boundary_condition(forest)
forest_neighbors = get_neighbors(extended_forest)
forest_update = spread(forest, forest_neighbors, prob_immune, prob_lightning)
forest[:, :] = forest_update
simulation_history.append([nstep, forest_update])
def ca_animation(simulation_history, fig_width=6, fig_height=6, dpi=120):
"""Animate the cellular automata simulation using Matplotlib.
Parameters
----------
simulation_history : list
Time-step history for the simulation's run.
cmap : str, optional
Color scheme for the heatmap scale, see colormaps_ reference.
fig_width : float, optional
Figure width in inches
fig_height : float, optional
Figure height in inches
Returns
-------
anim : matplotlib.animation.FuncAnimation
Animated object for the simulation run.
.. _colormaps: https://matplotlib.org/examples/color/colormaps_reference.html
"""
# grid dimensions
m, n = simulation_history[0][1].shape
# create matplotlib figure and subplot objects
fig, ax = plt.subplots(figsize=(fig_width, fig_height), dpi=dpi)
# imshow visualizes array as a two-dimensionl uniform grid
cmap = LinearSegmentedColormap.from_list(
"forestfire", ["black", "tab:blue", "tab:orange"]
)
im = ax.imshow(
simulation_history[0][1], cmap=cmap, interpolation="nearest", vmin=0, vmax=2
)
# find the starting and ending coordinates for heatmap for creating
# grid lines
xticks_start, xticks_end = ax.get_xlim()
yticks_start, yticks_end = ax.get_ylim()
# separate grid cells by white lines
ax.xaxis.set_ticks(np.linspace(xticks_start, xticks_end, n + 1), minor=False)
ax.yaxis.set_ticks(np.linspace(yticks_start, yticks_end, m + 1), minor=False)
ax.axes.grid(True, linestyle="-", linewidth=1, color="white", which="major")
# we don't need ticks and tick labels because we have grid lines
ax.tick_params(labelbottom=False, labelleft=False, bottom=False, left=False)
# Initialization function, clears out the data on the im object
def init():
im.set_array(np.array([[]]))
return (im,)
# Animation function. Input i is the frame number of the animation, and is
# to be used for referencing how the data changes over time
def animate(i):
# Get the simulation history at time step i and set as the underlying
# data for the im object
forest_i = simulation_history[i][1]
im.set_array(forest_i)
return (im,)
# Suppress static matplotlib window
plt.close()
# Use animation.FuncAnimation to put the animation together.
# frames controls the number of frames in the movie.
# interval controls the delay in milliseconds inbetween each frame
# blit optimizes the animation size by only storing the changes between
# frames instead of as a series of full plots
anim = animation.FuncAnimation(
fig=fig,
func=animate,
frames=len(simulation_history),
init_func=init,
interval=100,
blit=True,
)
return anim
def burn_random_tree(forest, number_burning_trees):
"""Randomly set a number of trees on fire.
Parameters
----------
forest : np.array
Grid of integers defining the forest
number_burning_trees : int
Number of trees to randomly set on fire.
Returns
-------
forest_update : np.array
Updated forest grid.
"""
# Get x,y dimensions of forest
m, n = forest.shape
# Use copy of forest to help prevent premature updating of cellular states.
forest_update = forest.copy()
# Find and count the tree cells
tree_cells = forest == 1
number_trees = tree_cells.sum()
# Randomly set trees on fire
tree_selector = np.array(number_burning_trees * [True] + (number_trees - number_burning_trees) * [False])
np.random.shuffle(tree_selector)
# Set chosen trees on fire
trees_to_burn = np.zeros(shape=(m, n), dtype=np.bool)
np.place(trees_to_burn, tree_cells, tree_selector)
forest_update[trees_to_burn] = 2
return forest_update
def make_trace_data_frame(trace):
trace_array = np.array([simarray[1] for simarray in trace])
nsteps_idx, grid_x_idx, grid_y_idx = np.indices(trace_array.shape)
trace_df = pd.DataFrame({
"nstep": nsteps_idx.flatten(),
"x": grid_x_idx.flatten(),
"y": grid_y_idx.flatten(),
"state": trace_array.flatten(),
})
return trace_df
def count_states_over_time(trace_df, n):
return trace_df \
.groupby("nstep") \
.apply(
func=lambda x: pd.Series([len(x[x["state"] == 0]), len(x[x["state"] == 1]), len(x[x["state"] == 2])],
index=["nempty", "ntrees", "nburning"])) \
.reset_index() \
.melt(id_vars=["nstep"], var_name="state", value_name="count") \
.assign(fraction=lambda x: x["count"] / (n * n))