forked from hcai-mms/ProtoMF
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathexperiment_helper.py
160 lines (123 loc) · 5.02 KB
/
experiment_helper.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
import argparse
import os
from typing import List
import wandb
from ray import tune
from ray.tune.integration.wandb import WandbLoggerCallback
from ray.tune.schedulers import ASHAScheduler
from ray.tune.suggest.hyperopt import HyperOptSearch
from rec_sys.protomf_dataset import get_protorecdataset_dataloader
from rec_sys.tester import Tester
from rec_sys.trainer import Trainer
from utilities.consts import NEG_VAL, OPTIMIZING_METRIC, SEED_LIST, SINGLE_SEED, NUM_SAMPLES, WANDB_API_KEY, \
PROJECT_NAME, DATA_PATH, NUM_WORKERS, CPU_PER_TRIAL, GPU_PER_TRIAL
from utilities.utils import reproducible, generate_id
def load_data(conf: argparse.Namespace, is_train: bool = True):
if is_train:
train_loader = get_protorecdataset_dataloader(
data_path=conf.data_path,
split_set='train',
n_neg=conf.neg_train,
neg_strategy=conf.train_neg_strategy,
batch_size=conf.batch_size,
shuffle=True,
num_workers=NUM_WORKERS,
prefetch_factor=5
)
val_loader = get_protorecdataset_dataloader(
data_path=conf.data_path,
split_set='val',
n_neg=NEG_VAL,
neg_strategy=conf.eval_neg_strategy,
batch_size=conf.val_batch_size,
num_workers=NUM_WORKERS
)
return {'train_loader': train_loader, 'val_loader': val_loader}
else:
test_loader = get_protorecdataset_dataloader(
data_path=conf.data_path,
split_set='test',
n_neg=NEG_VAL,
neg_strategy=conf.eval_neg_strategy,
batch_size=conf.val_batch_size,
num_workers=NUM_WORKERS
)
return {'test_loader': test_loader}
def start_training(config, checkpoint_dir=None):
config = argparse.Namespace(**config)
print(config)
data_loaders_dict = load_data(config)
reproducible(config.seed)
trainer = Trainer(data_loaders_dict['train_loader'], data_loaders_dict['val_loader'], config)
trainer.run()
wandb.finish()
def start_testing(config, model_load_path: str):
config = argparse.Namespace(**config)
print(config)
data_loaders_dict = load_data(config, is_train=False)
reproducible(config.seed)
tester = Tester(data_loaders_dict['test_loader'], config, model_load_path)
metric_values = tester.test()
return metric_values
def start_hyper(conf: dict, model: str, dataset: str, seed: int = SINGLE_SEED):
print('Starting Hyperparameter Optimization')
print(f'Seed is {seed}')
# Search Algorithm
search_alg = HyperOptSearch(random_state_seed=seed)
if dataset == 'lfm2b-1mon':
scheduler = ASHAScheduler(grace_period=4)
else:
scheduler = None
# Logger
callback = WandbLoggerCallback(project=PROJECT_NAME, log_config=True, api_key=WANDB_API_KEY,
reinit=True, force=True, job_type='train/val', tags=[model, str(seed), dataset])
# Hostname
host_name = os.uname()[1][:2]
# Dataset
data_path = DATA_PATH
conf['data_path'] = os.path.join(data_path, dataset)
# Seed
conf['seed'] = seed
group_name = f'{model}_{dataset}_{host_name}_{seed}'
tune.register_trainable(group_name, start_training)
analysis = tune.run(
group_name,
config=conf,
name=generate_id(prefix=group_name),
resources_per_trial={'gpu': GPU_PER_TRIAL, 'cpu': CPU_PER_TRIAL},
scheduler=scheduler,
search_alg=search_alg,
num_samples=NUM_SAMPLES,
callbacks=[callback],
metric='_metric/' + OPTIMIZING_METRIC,
mode='max'
)
metric_name = '_metric/' + OPTIMIZING_METRIC
best_trial = analysis.get_best_trial(metric_name, 'max', scope='all')
best_trial_config = best_trial.config
best_trial_checkpoint = os.path.join(analysis.get_best_checkpoint(best_trial, metric_name, 'max'), 'best_model.pth')
wandb.login(key=WANDB_API_KEY)
wandb.init(project=PROJECT_NAME, group='test_results', config=best_trial_config, name=group_name, force=True,
job_type='test', tags=[model, str(seed), dataset])
metric_values = start_testing(best_trial_config, best_trial_checkpoint)
wandb.finish()
return metric_values
def start_multiple_hyper(conf: dict, model: str, dataset: str, seed_list: List = SEED_LIST):
print('Starting Multi-Hyperparameter Optimization')
print('seed_list is ', seed_list)
metric_values_list = []
mean_values = dict()
for seed in seed_list:
metric_values_list.append(start_hyper(conf, model, dataset, seed))
for key in metric_values_list[0].keys():
_sum = 0
for metric_values in metric_values_list:
_sum += metric_values[key]
_mean = _sum / len(metric_values_list)
mean_values[key] = _mean
group_name = f'{model}_{dataset}'
wandb.login(key=WANDB_API_KEY)
wandb.init(project=PROJECT_NAME, group='aggr_results', name=group_name, force=True, job_type='test',
tags=[model, dataset])
wandb.log(mean_values)
wandb.finish()