-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathoptimize.py
244 lines (232 loc) · 11.2 KB
/
optimize.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
"""
file: optimize.py
module used to launch various algorithms to solve optimization problems
supported algorithms:
- asgf
- dgs
- cma
- powell
- nelder-mead
- bfgs
"""
import argparse
import numpy as np
from tools.function import target_function, initial_guess
from algorithms.asgf import asgf
from algorithms.dgs import dgs
import cma
from scipy.optimize import minimize
if __name__ == "__main__":
# get arguements
parser = argparse.ArgumentParser(description='Get problem set up variables.')
# function name
parser.add_argument('--fun',\
default='ackley',\
help='name of the benchmark function')
# function dimensionality
parser.add_argument('--dim',\
default='2',\
help='dimensionality of the benchmark function')
# algorihtm
parser.add_argument('--algo',\
default='asgf',\
help='name of algorithm to use (asgf / dgs / cma / powell / nelder-mead / bfgs)')
# number of simulations
parser.add_argument('--sim',\
default='1',\
help='number of simulations (i.e. optimization tests)')
# parse arguements
args = parser.parse_args()
''' run optimization tests '''
if args.algo == 'asgf':
# display the problem setup
dim = int(args.dim)
sim_num = int(args.sim)
print('Optimizing {:d}d-{:s} using {:s} ({:d} simulations)'.\
format(dim, args.fun, args.algo, sim_num))
# setup optimization problem
conv_sim, itr_num, fev_num = 0, 0, 0
fun, x_min, x_dom = target_function(args.fun, dim)
s0 = np.linalg.norm(x_dom[1] - x_dom[0]) / 10
# run optimization tests
for k in range(sim_num):
np.random.seed(k)
x0 = initial_guess(x_dom)
x, itr_k, fev_k = asgf(fun, x0, s0)
print('{:d}/{:d} {:d}d-{:s}: '.format(k+1, sim_num, dim, args.fun), end='')
print(f'f = {fun(x):1.5e}, {itr_k:d} iterations, {fev_k:d} evaluations')
# record stats on successful simulations
f_delta = np.abs((fun(x) - fun(x_min)) / (fun(x0) - fun(x)))
if f_delta < 1e-04:
conv_sim += 1
itr_num += itr_k
fev_num += fev_k
conv_num = np.nan if conv_sim == 0 else conv_sim
# report statistics
print('\naverage number of iterations / evaluations / convergence rate for {:s}:'.format(args.algo))
print('{:d}d-{:s} --- {:.0f} / {:.0f} / {:6.2f}%'.\
format(dim, args.fun, itr_num/conv_num, fev_num/conv_num, 100*conv_sim/sim_num))
elif args.algo == 'dgs':
# display the problem setup
dim = int(args.dim)
sim_num = int(args.sim)
print('Optimizing {:d}d-{:s} using {:s} ({:d} simulations)'.\
format(dim, args.fun, args.algo, sim_num))
# setup optimization problem
conv_sim, itr_num, fev_num = 0, 0, 0
fun, x_min, x_dom = target_function(args.fun, dim)
dgs_params = {'ackley': {'lr': .1, 'M': 5, 'r': 5, 'beta': 1, 'gamma': .1},\
'levy': {'lr': .03, 'M': 17, 'r': 4, 'beta': .8, 'gamma': .001},\
'rastrigin': {'lr': .003, 'M': 21, 'r': 5, 'beta': 1, 'gamma': .001},\
'branin': {'lr': .03, 'M': 5, 'r': 1, 'beta': .2, 'gamma': .001},\
'cross-in-tray': {'lr': .03, 'M': 13, 'r': 2, 'beta': .4, 'gamma': .1},\
'dropwave': {'lr': .1, 'M': 17, 'r': 2, 'beta': .4, 'gamma': .1},\
# #'sphere': {'lr': .1, 'M': 5, 'r': 1, 'beta': .2, 'gamma': .01}}
'sphere': {'lr': 1/16, 'M': 7, 'r': 2**.5, 'beta': 2**.5/5, 'gamma': .01}}
# run optimization tests
for k in range(sim_num):
np.random.seed(k)
x0 = initial_guess(x_dom)
x, itr_k, fev_k = dgs(fun, x0, **dgs_params[args.fun])
print('{:d}/{:d} {:d}d-{:s}: '.format(k+1, sim_num, dim, args.fun), end='')
print('f = {:.2e}, {:d} iterations, {:d} evaluations'.format(fun(x), itr_k, fev_k))
# record stats on successful simulations
f_delta = np.abs((fun(x) - fun(x_min)) / (fun(x0) - fun(x)))
if f_delta < 1e-04:
conv_sim += 1
itr_num += itr_k
fev_num += fev_k
conv_num = np.nan if conv_sim == 0 else conv_sim
# report statistics
print('\naverage number of iterations / evaluations / convergence rate for {:s}:'.format(args.algo))
print('{:d}d-{:s} --- {:.0f} / {:.0f} / {:6.2f}%'.\
format(dim, args.fun, itr_num/conv_num, fev_num/conv_num, 100*conv_sim/sim_num))
elif args.algo == 'cma':
# display the problem setup
dim = int(args.dim)
sim_num = int(args.sim)
print('Optimizing {:d}d-{:s} using {:s} ({:d} simulations)'.\
format(dim, args.fun, args.algo, sim_num))
# setup optimization problem
conv_sim, itr_num, fev_num = 0, 0, 0
fun, x_min, x_dom = target_function(args.fun, dim)
cma_sigma = {'ackley': 5, 'levy': 4, 'rastrigin': 5, 'branin': 1,\
'cross-in-tray': 2, 'dropwave': 2, 'sphere': 1}
# run optimization tests
for k in range(sim_num):
np.random.seed(k)
x0 = initial_guess(x_dom)
cma_result = cma.fmin2(fun, x0, cma_sigma[args.fun], \
{'tolx': 1e-06, 'maxiter': 10000, 'verb_disp': 0})[1].result
x = cma_result[0]
itr_k = cma_result[4]
fev_k = cma_result[3]
print('{:d}/{:d} {:d}d-{:s}: '.format(k+1, sim_num, dim, args.fun), end='')
print('f = {:.2e}, {:d} iterations, {:d} evaluations'.format(fun(x), itr_k, fev_k))
# record stats on successful simulations
f_delta = np.abs((fun(x) - fun(x_min)) / (fun(x0) - fun(x)))
if f_delta < 1e-04:
conv_sim += 1
itr_num += itr_k
fev_num += fev_k
conv_num = np.nan if conv_sim == 0 else conv_sim
# report statistics
print('\naverage number of iterations / evaluations / convergence rate for {:s}:'.format(args.algo))
print('{:d}d-{:s} --- {:.0f} / {:.0f} / {:6.2f}%'.\
format(dim, args.fun, itr_num/conv_num, fev_num/conv_num, 100*conv_sim/sim_num))
elif args.algo == 'powell':
# display the problem setup
dim = int(args.dim)
sim_num = int(args.sim)
print('Optimizing {:d}d-{:s} using {:s} ({:d} simulations)'.\
format(dim, args.fun, args.algo, sim_num))
# setup optimization problem
conv_sim, itr_num, fev_num = 0, 0, 0
fun, x_min, x_dom = target_function(args.fun, dim)
# run optimization tests
for k in range(sim_num):
np.random.seed(k)
x0 = initial_guess(x_dom)
opt_result = minimize(fun, x0, method='Powell',\
tol=1e-06, options={'gtol': 1e-06, 'norm': 2, 'maxiter': 10000})
x = opt_result.x
itr_k = opt_result.nit
fev_k = opt_result.nfev
print('{:d}/{:d} {:d}d-{:s}: '.format(k+1, sim_num, dim, args.fun), end='')
print('f = {:.2e}, {:d} iterations, {:d} evaluations'.format(fun(x), itr_k, fev_k))
# record stats on successful simulations
f_delta = np.abs((fun(x) - fun(x_min)) / (fun(x0) - fun(x)))
if f_delta < 1e-04:
conv_sim += 1
itr_num += itr_k
fev_num += fev_k
conv_num = np.nan if conv_sim == 0 else conv_sim
# report statistics
print('\naverage number of iterations / evaluations / convergence rate for {:s}:'.format(args.algo))
print('{:d}d-{:s} --- {:.0f} / {:.0f} / {:6.2f}%'.\
format(dim, args.fun, itr_num/conv_num, fev_num/conv_num, 100*conv_sim/sim_num))
elif args.algo == 'nelder-mead':
# display the problem setup
dim = int(args.dim)
sim_num = int(args.sim)
print('Optimizing {:d}d-{:s} using {:s} ({:d} simulations)'.\
format(dim, args.fun, args.algo, sim_num))
# setup optimization problem
conv_sim, itr_num, fev_num = 0, 0, 0
fun, x_min, x_dom = target_function(args.fun, dim)
# run optimization tests
for k in range(sim_num):
np.random.seed(k)
x0 = initial_guess(x_dom)
opt_result = minimize(fun, x0, method='Nelder-Mead',\
tol=1e-06, options={'gtol': 1e-06, 'norm': 2, 'maxiter': 10000})
x = opt_result.x
itr_k = opt_result.nit
fev_k = opt_result.nfev
print('{:d}/{:d} {:d}d-{:s}: '.format(k+1, sim_num, dim, args.fun), end='')
print('f = {:.2e}, {:d} iterations, {:d} evaluations'.format(fun(x), itr_k, fev_k))
# record stats on successful simulations
f_delta = np.abs((fun(x) - fun(x_min)) / (fun(x0) - fun(x)))
if f_delta < 1e-04:
conv_sim += 1
itr_num += itr_k
fev_num += fev_k
conv_num = np.nan if conv_sim == 0 else conv_sim
# report statistics
print('\naverage number of iterations / evaluations / convergence rate for {:s}:'.format(args.algo))
print('{:d}d-{:s} --- {:.0f} / {:.0f} / {:6.2f}%'.\
format(dim, args.fun, itr_num/conv_num, fev_num/conv_num, 100*conv_sim/sim_num))
elif args.algo == 'bfgs':
# display the problem setup
dim = int(args.dim)
sim_num = int(args.sim)
print('Optimizing {:d}d-{:s} using {:s} ({:d} simulations)'.\
format(dim, args.fun, args.algo, sim_num))
# setup optimization problem
conv_sim, itr_num, fev_num = 0, 0, 0
fun, x_min, x_dom = target_function(args.fun, dim)
# run optimization tests
for k in range(sim_num):
np.random.seed(k)
x0 = initial_guess(x_dom)
opt_result = minimize(fun, x0, method='BFGS',\
tol=1e-06, options={'gtol': 1e-06, 'norm': 2, 'maxiter': 10000})
x = opt_result.x
itr_k = opt_result.nit
fev_k = opt_result.nfev
print('{:d}/{:d} {:d}d-{:s}: '.format(k+1, sim_num, dim, args.fun), end='')
print('f = {:.2e}, {:d} iterations, {:d} evaluations'.format(fun(x), itr_k, fev_k))
# record stats on successful simulations
f_delta = np.abs((fun(x) - fun(x_min)) / (fun(x0) - fun(x)))
if f_delta < 1e-04:
conv_sim += 1
itr_num += itr_k
fev_num += fev_k
conv_num = np.nan if conv_sim == 0 else conv_sim
# report statistics
print('\naverage number of iterations / evaluations / convergence rate for {:s}:'.format(args.algo))
print('{:d}d-{:s} --- {:.0f} / {:.0f} / {:6.2f}%'.\
format(dim, args.fun, itr_num/conv_num, fev_num/conv_num, 100*conv_sim/sim_num))
else:
raise SystemExit('algorithm {:s} is not recognized, supported algorithms are:'\
' asgf, dgs, cma, powell, nelder-mead, bfgs'.format(args.algo))