-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathpicojax.py
425 lines (293 loc) · 10.1 KB
/
picojax.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
# even small version hope its helps (^^)
from __future__ import annotations
from contextlib import contextmanager
from typing import Any, Callable
class OPS:
ADD = "add"
MUL = "mul"
def add(*args):
return bind_single(OPS.ADD, *args)
def mul(*args):
return bind_single(OPS.MUL, *args)
class Interpreter:
def __init__(self, level: int = 0, *args, **kwargs):
self.level = level
def process_primitive(self, prim, boxes, params):
raise NotImplementedError
# =========================================================
# this is global stack that have level and interpreter type
STACK: list[Interpreter] = []
def push_interpreter(interpreter: Interpreter):
STACK.append(interpreter)
return STACK
def pop_interpreter() -> Interpreter:
return STACK.pop()
@contextmanager
def interpreter_context(interpreter_type: Interpreter):
stack_item = interpreter_type(level=len(STACK))
push_interpreter(stack_item)
try:
yield stack_item
finally:
pop_interpreter()
# =========================================================
class Box:
_interpreter: Interpreter
def aval(self):
raise NotImplementedError
def full_lower(self):
return self
def __add__(self, other):
return add(self, other)
def __radd__(self, other):
return add(other, self)
def __mul__(self, other):
return mul(self, other)
def __rmul__(self, other):
return mul(other, self)
class EvalRules:
def __init__(self):
self.rules = {
OPS.ADD: self.add,
OPS.MUL: self.mul,
}
def __getitem__(self, op):
return self.rules[op]
def add(self, primals, *args):
x, y = primals
return [x + y]
def mul(self, primals, *args):
x, y = primals
return [x * y]
class EvalInterpreter(Interpreter):
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
self.rules = EvalRules()
def process_primitive(self, prim, boxes, params):
return self.rules[prim](boxes, *params)
def find_top_interpreter(args):
interpreters = []
for item in args:
if isinstance(item, Box):
interpreters.append(item._interpreter)
if interpreters:
return max(interpreters, key=lambda x: x.level)
# if no interpreters are found, return the default EvalInterpreter
return STACK[0]
def full_raise(interpreter: Interpreter | Any, out) -> Box | JVPBox:
"""
if interpreter need values boxed
if out is not boxed, box it (using interpreter.pure)
ie. raise out to the box level
"""
if not isinstance(out, Box):
return interpreter.pure(out)
return out
def bind(prim, *args, **params):
interpreter = find_top_interpreter(args)
# this will raise the boxes to the top level
# eg converts primitive values to Boxes if interpreter is not the top level
boxes = [full_raise(interpreter, arg) for arg in args]
outs = interpreter.process_primitive(prim, boxes, params)
return [out for out in outs]
def bind_single(prim, *args, **params):
(out,) = bind(prim, *args, **params)
return out
### Push EvalInterpreter at bottom of the stack
push_interpreter(EvalInterpreter())
# =========================================================
# Jacobian Vector Product (JVP)
# forward mode Automatic Differentiation
# =========================================================
class JVPBox(Box):
def __init__(self, interpretor: Interpreter, primal, tangent) -> None:
super().__init__()
self._interpreter = interpretor
self.primal = primal
self.tangent = tangent
def __repr__(self):
return f"JVPBox (primal={self.primal}, tangent={self.tangent})"
@property
def aval(self):
return self.primal.aval
class JVPRules:
def __init__(self):
self.rules = {
OPS.ADD: self.add,
OPS.MUL: self.mul,
}
# dont forget to return tuple(primals),tuple(tangents)
def __getitem__(self, op):
return self.rules[op]
@staticmethod
def add(primals, tangents):
(x, y), (x_dot, y_dot) = primals, tangents
return (x + y,), (x_dot + y_dot,)
@staticmethod
def mul(primals, tangents):
(x, y), (x_dot, y_dot) = primals, tangents
return (x * y,), (x_dot * y + x * y_dot,)
class JVPInterpreter(Interpreter):
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
self.rules = JVPRules()
def pure(self, val):
return JVPBox(self, val, 0.0)
def process_primitive(self, prim, boxes, params):
primals = [box.primal for box in boxes]
tangents = [box.tangent for box in boxes]
op = self.rules[prim]
primals_out, tangents_out = op(primals, tangents, **params)
result = []
for p, t in zip(primals_out, tangents_out):
result.append(JVPBox(self, p, t))
return result
def jvp_simple(func, primals, tangents):
with interpreter_context(JVPInterpreter) as iptr:
box_in = [JVPBox(iptr, x, t) for x, t in zip(primals, tangents)]
out = func(*box_in)
box_out = full_raise(iptr, out)
primal_out, tangent_out = box_out.primal, box_out.tangent
return primal_out, tangent_out
def deriv(function):
def jvp_forward(input_value):
_, gradient = jvp_simple(function, (input_value,), (1.0,))
return gradient
return jvp_forward
# =========================================================
if __name__ == "__main__":
print("## Forward Mode Automatic Differentiation (JVP) ##")
def func(x):
return 3 * x * x * x + 2 * x * x + 2 * x
x = 3.14
f = func
print(f"f(x) = {f(x)}")
f = deriv(func)
print(f"f'(x) = {f(x)}")
f = deriv(deriv(func))
print(f"f''(x) = {f(x)}")
f = deriv(deriv(deriv(func)))
print(f"f'''(x) = {f(x)}")
print("-" * 100)
# =========================================================
# Vector Jacobian Product (VJP)
# reverse mode Automatic Differentiation
# =========================================================
class Node:
def __init__(self, vjp: Callable, parents: list[Node]) -> None:
self.vjp = vjp
self.parents = parents
@property
def is_leaf(self):
return len(self.parents) == 0
def get_leaf_nodes() -> Node:
return Node(None, [])
class VJPRules:
def __init__(self):
self.rules = {
OPS.ADD: self.add,
OPS.MUL: self.mul,
}
"""
Jax define one of vjp or jvp rules
it derives one from the other
but this is much more simple to understand
"""
def __getitem__(self, op):
return self.rules[op]
def add(self, primals):
x, y = primals
def vjp_add(grad):
return grad, grad
return (x + y,), vjp_add
def mul(self, primals):
x, y = primals
def vjp_mul(grad):
return grad * y, grad * x
return (x * y,), vjp_mul
class VJPInterpreter(Interpreter):
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
self.rules = VJPRules()
def pure(self, val):
return VJPBox(self, val, get_leaf_nodes())
def process_primitive(self, prim, boxes, params):
primals_in = [box.primal for box in boxes]
nodes_in = [box.node for box in boxes]
op = self.rules[prim]
primals_out, vjp_out = op(primals_in, **params)
nodes_out = [Node(vjp_out, nodes_in)]
result = []
for p, n in zip(primals_out, nodes_out):
result.append(VJPBox(self, p, n))
return result
class VJPBox(Box):
def __init__(self, interpreter: VJPInterpreter, primal, node: Node) -> None:
super().__init__()
self._interpreter = interpreter
self.primal = primal
self.node = node
def __repr__(self):
return f"VJPBox (primal={self.primal}, node={self.node})"
def full_lower(self):
return self
def aval(self):
return self.primal.aval
def vjp(f, *args):
with interpreter_context(VJPInterpreter) as iptr:
box_in = [VJPBox(iptr, x, get_leaf_nodes()) for x in args]
out = f(*box_in)
box_out = full_raise(iptr, out)
in_nodes = [box.node for box in box_in]
out_node = box_out.node
primal_out = box_out.primal
def func_vjp(grad):
return backward_pass(in_nodes, out_node, grad)
return primal_out, func_vjp
def backward_pass(in_nodes, out_node, gradient):
node_map = {id(out_node): gradient}
topo_sorted = toposort(out_node)
for node in topo_sorted:
node_grad = node_map.pop(id(node))
input_grads = node.vjp(node_grad)
for input_grad, parent in zip(input_grads, node.parents):
parent_id = id(parent)
node_map[parent_id] = add_grads(node_map.get(parent_id), input_grad)
return [node_map.get(id(node)) for node in in_nodes]
def add_grads(grad1, grad2):
if grad1 is None:
return grad2
return grad1 + grad2
def toposort(end_node):
def _toposort(seen, node):
result = []
if id(node) not in seen:
seen.add(id(node))
for p in node.parents:
result.extend(_toposort(seen, p))
result.append(node)
return result
return reversed([n for n in _toposort(set(), end_node) if n.parents])
def grad(func):
def grad_func(*args):
_, backward = vjp(func, *args)
return backward(1)[0]
return grad_func
def func(x):
# return x*x
return 3 * x * x * x + 2 * x * x + 2 * x
if __name__ == "__main__":
x = 3.14
print("## Reverse Mode Automatic Differentiation (VJP) ##\n")
f = func
print(f"f(x) = {f(x)}")
f = grad(func)
print(f"f'(x) = {f(x)}")
f = grad(grad(func))
print(f"f''(x) = {f(x)}")
f = grad(grad(grad(func)))
print(f"f'''(x) = {f(x)}")
print("-" * 100, "\n")
print("Composition of Forward and Backward\n")
print(f"Forward on Backward {grad(deriv(func))(x)}")
print(f"Backward on Forward {deriv(grad(func))(x)}")