This is the repository for the EDAN95 - Tillämpad maskininlärning (Applied Machine Learning) course given at Lunds Tekniska Högskola (LTH) during the Fall 2019 term.
The following topics are covered in the lab assignments:
- Decision trees
- ID3 algorithm
- Multi-class image classification
- Convolutional Neural Networks (CNN)
- Recurrent Neural Networks (RNN)
- Long-Short Term Memory (LSTM)
- Named Entity Recognition (NER)
- N-grams
- Language models
- Word embeddings
- Naive Bayes Classifier (NBC)
- Nearest Centroid Classifier (NCC)
- Gaussian Naive Bayes Classifier (GNBC)
- Gaussian Mixture Models (GMM)
- Expectation-Maximization algorithm (EM)
- k-Means clustering
- k-Nearest Neighbors (KNN)
- Reinforcement Learning (RL)
- Markov Decision Process (MDP)
- Monte Carlo Methods for On-policy Prediction and Control
Other topics covered in the course lectures and reading material:
- Python and linear algebra fundamentals
- Probability and information theory
- Machine learning fundamentals (linear and logistic regression, perceptron)
- Machine learning concepts (loss, regularisation, evaluation, overfitting)
- Neural network fundamentals (feed forward networks, backpropagation)
Course literature:
- Kevin P. Murphy: Machine Learning, A Probabilistic Perspective. MIT Press, 2012, ISBN: 9780262018029.
- Ian Goodfellow, Yoshua Bengio, Aaron Courville: Deep Learning. MIT Press, 2016, ISBN: 9780262035613.
- François Chollet: Deep Learning with Python. Manning, 2018, ISBN: 9781617294433.
Other related literature:
- Aurélien Géron: Hands-On Machine Learning with Scikit-Learn and TensorFlow. Concepts, Tools, and Techniques to Build Intelligent Systems. O'Reilly Media, 2017, ISBN: 9781491962299.
- Tom Mitchell: Machine Learning. McGraw Hill, 1997, ISBN: 0070428077.
- David L. Poole, Alan K. Mackworth: Artificial Intelligence - Foundations of Computational Agents (2e). Cambridge University Press, 2017, ISBN: 9781107195394.
- Richard S. Sutton and Andrew G. Barto: Reinforcement Learning - An Introduction. MIT Press, 2018, ISBN: 9780262039246.
Lectures:
- P. Nugues' slides, available here.
- V. Krueger's slides, available here.
- E.A. Topp's slides are archived and available via web.archive.org.
Companion Jupyter notebook and Python code: