forked from aditya1503/Siamese-LSTM
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain_entailment.py
49 lines (37 loc) · 1.5 KB
/
train_entailment.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
import pickle
import numpy as np
from sklearn.svm import SVC
from lstm import lstm
from util_files.Constants import data_folder, use_noise, models_folder
from util_files.data_utils import get_discrete_accuracy
def prepare_entailment_data(data):
return map(lambda entry: [entry[0], entry[1], entry[3]], data)
def prepare_svm_data(mydata, lst):
# type: (list, lstm) -> tuple
num = len(mydata)
features = []
ys = []
use_noise.set_value(0.)
for idx in range(0, num): # I don't use batches to make calculating each feature vector easier
[sent1, sent2, y] = mydata[idx]
emb1 = lst.get_sentence_embedding(sent1)
emb2 = lst.get_sentence_embedding(sent2)
feat_vect = np.append(np.fabs(emb1-emb2), [emb1*emb2]) # as described in the orig paper
ys.append(y)
features.append(feat_vect)
features = np.array(features)
ys = np.array(ys)
return features, ys
model_name = "bestsem.p"
print model_name
lst=lstm(model_path=models_folder + model_name, load=True)
train = pickle.load(open(data_folder + "semtrain.p", 'rb'))
train = prepare_entailment_data(train)
test = pickle.load(open(data_folder + "semtest.p", 'rb'))
test = prepare_entailment_data(test)
x_train, y_train = prepare_svm_data(train, lst)
x_test, y_test = prepare_svm_data(test, lst)
clf = SVC(C=100, gamma=3.1, kernel='rbf')
clf.fit(x_train, y_train)
print "Training accuracy:", get_discrete_accuracy(clf, x_train, y_train)
print "Test accuracy:", get_discrete_accuracy(clf, x_test, y_test)