-
Notifications
You must be signed in to change notification settings - Fork 0
/
pumap.py
169 lines (138 loc) · 4.78 KB
/
pumap.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
# -*- coding: utf-8 -*-
"""
[Martinez-Gil2024] Augmenting the Interpretability of GraphCodeBERT for Code Similarity Tasks, arXiv preprint arXiv:2410.05275, 2024
@author: Jorge Martinez-Gil
"""
import os
from transformers import RobertaTokenizer, RobertaModel
import umap.umap_ as umap
import matplotlib.pyplot as plt
import numpy as np
import itertools # Import itertools module
# Initialize GraphCodeBERT
tokenizer = RobertaTokenizer.from_pretrained("microsoft/graphcodebert-base")
model = RobertaModel.from_pretrained("microsoft/graphcodebert-base")
# Define the classical sorting algorithms
sorting_algorithms = {
"Bubble Sort": """
def bubble_sort(arr):
n = len(arr)
for i in range(n):
for j in range(0, n-i-1):
if arr[j] > arr[j+1]:
arr[j], arr[j+1] = arr[j+1], arr[j]
return arr
""",
"Selection Sort": """
def selection_sort(arr):
for i in range(len(arr)):
min_idx = i
for j in range(i+1, len(arr)):
if arr[j] < arr[min_idx]:
min_idx = j
arr[i], arr[min_idx] = arr[min_idx], arr[i]
return arr
""",
"Insertion Sort": """
def insertion_sort(arr):
for i in range(1, len(arr)):
key = arr[i]
j = i-1
while j >=0 and key < arr[j]:
arr[j + 1] = arr[j]
j -= 1
arr[j + 1] = key
return arr
""",
"Merge Sort": """
def merge_sort(arr):
if len(arr) > 1:
mid = len(arr)//2
L = arr[:mid]
R = arr[mid:]
merge_sort(L)
merge_sort(R)
i = j = k = 0
while i < len(L) and j < len(R):
if L[i] < R[j]:
arr[k] = L[i]
i += 1
else:
arr[k] = R[j]
j += 1
k += 1
while i < len(L):
arr[k] = L[i]
i += 1
k += 1
while j < len(R):
arr[k] = R[j]
j += 1
k += 1
return arr
""",
"Quick Sort": """
def partition(arr, low, high):
i = (low-1)
pivot = arr[high]
for j in range(low, high):
if arr[j] <= pivot:
i = i+1
arr[i], arr[j] = arr[j], arr[i]
arr[i+1], arr[high] = arr[high], arr[i+1]
return (i+1)
def quick_sort(arr, low, high):
if low < high:
pi = partition(arr, low, high)
quick_sort(arr, low, pi-1)
quick_sort(arr, pi+1, high)
return arr
"""
}
# Function to get token embeddings for a code snippet
def get_token_embeddings(code):
inputs = tokenizer(code, return_tensors="pt", max_length=512, truncation=True, padding=True)
outputs = model(**inputs)
token_embeddings = outputs.last_hidden_state.squeeze().detach().numpy()
tokens = tokenizer.convert_ids_to_tokens(inputs['input_ids'].squeeze())
return token_embeddings, tokens
# Directory to save images
output_dir = "umap_pairwise_comparisons"
os.makedirs(output_dir, exist_ok=True)
# Generate all possible pairs of sorting algorithms
algorithm_pairs = list(itertools.combinations(sorting_algorithms.keys(), 2))
# Loop over each pair and generate the UMAP visualizations
for (algo1_name, algo2_name) in algorithm_pairs:
algo1_code = sorting_algorithms[algo1_name]
algo2_code = sorting_algorithms[algo2_name]
# Get token embeddings for both algorithms
algo1_embeddings, algo1_tokens = get_token_embeddings(algo1_code)
algo2_embeddings, algo2_tokens = get_token_embeddings(algo2_code)
# Combine embeddings
all_embeddings = np.concatenate((algo1_embeddings, algo2_embeddings), axis=0)
# Perform UMAP dimensionality reduction to 2D
umap_reducer = umap.UMAP(n_neighbors=5, min_dist=0.3, n_components=2, random_state=42)
embeddings_2d = umap_reducer.fit_transform(all_embeddings)
# Plotting the UMAP results for tokens
plt.figure(figsize=(10, 8), dpi=300)
# Scatter plot for the first algorithm tokens
plt.scatter(embeddings_2d[:len(algo1_tokens), 0],
embeddings_2d[:len(algo1_tokens), 1],
color='red', s=50, label=algo1_name, alpha=0.8)
# Scatter plot for the second algorithm tokens
plt.scatter(embeddings_2d[len(algo1_tokens):, 0],
embeddings_2d[len(algo1_tokens):, 1],
color='blue', s=50, label=algo2_name, alpha=0.8)
# Make the visualization more professional
plt.xticks([])
plt.yticks([])
plt.xlabel('')
plt.ylabel('')
plt.grid(False)
plt.legend()
# Save the figure as a high-quality PNG file
output_file = os.path.join(output_dir, f"{algo1_name}_vs_{algo2_name}_tokens_2d_umap.png")
plt.savefig(output_file, format='png', dpi=300, bbox_inches='tight')
# Close the plot
plt.close()
print("UMAP pairwise comparison visualizations for token-level embeddings have been generated.")