-
Notifications
You must be signed in to change notification settings - Fork 0
/
tsne.py
167 lines (138 loc) · 4.69 KB
/
tsne.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
# -*- coding: utf-8 -*-
"""
[Martinez-Gil2024] Augmenting the Interpretability of GraphCodeBERT for Code Similarity Tasks, arXiv preprint arXiv:2410.05275, 2024
@author: Jorge Martinez-Gil
"""
import os
from transformers import RobertaTokenizer, RobertaModel
from sklearn.manifold import TSNE
import matplotlib.pyplot as plt
import numpy as np
import itertools
# Initialize GraphCodeBERT
tokenizer = RobertaTokenizer.from_pretrained("microsoft/graphcodebert-base")
model = RobertaModel.from_pretrained("microsoft/graphcodebert-base")
# Define the classical sorting algorithms
sorting_algorithms = {
"Bubble_Sort": """
def bubble_sort(arr):
n = len(arr)
for i in range(n):
for j in range(0, n-i-1):
if arr[j] > arr[j+1]:
arr[j], arr[j+1] = arr[j+1], arr[j]
return arr
""",
"Selection_Sort": """
def selection_sort(arr):
for i in range(len(arr)):
min_idx = i
for j in range(i+1, len(arr)):
if arr[j] < arr[min_idx]:
min_idx = j
arr[i], arr[min_idx] = arr[min_idx], arr[i]
return arr
""",
"Insertion_Sort": """
def insertion_sort(arr):
for i in range(1, len(arr)):
key = arr[i]
j = i-1
while j >=0 and key < arr[j]:
arr[j + 1] = arr[j]
j -= 1
arr[j + 1] = key
return arr
""",
"Merge_Sort": """
def merge_sort(arr):
if len(arr) > 1:
mid = len(arr)//2
L = arr[:mid]
R = arr[mid:]
merge_sort(L)
merge_sort(R)
i = j = k = 0
while i < len(L) and j < len(R):
if L[i] < R[j]:
arr[k] = L[i]
i += 1
else:
arr[k] = R[j]
j += 1
k += 1
while i < len(L):
arr[k] = L[i]
i += 1
k += 1
while j < len(R):
arr[k] = R[j]
j += 1
k += 1
return arr
""",
"Quick_Sort": """
def partition(arr, low, high):
i = (low-1)
pivot = arr[high]
for j in range(low, high):
if arr[j] <= pivot:
i = i+1
arr[i], arr[j] = arr[j], arr[i]
arr[i+1], arr[high] = arr[high], arr[i+1]
return (i+1)
def quick_sort(arr, low, high):
if low < high:
pi = partition(arr, low, high)
quick_sort(arr, low, pi-1)
quick_sort(arr, pi+1, high)
return arr
"""
}
# Function to get token embeddings for a code snippet
def get_token_embeddings(code):
inputs = tokenizer(code, return_tensors="pt", max_length=512, truncation=True, padding=True)
outputs = model(**inputs)
token_embeddings = outputs.last_hidden_state.squeeze().detach().numpy()
tokens = tokenizer.convert_ids_to_tokens(inputs['input_ids'].squeeze())
return token_embeddings, tokens
# Directory to save images
output_dir = "tsne_pairwise_comparisons"
os.makedirs(output_dir, exist_ok=True)
# Generate all possible pairs of sorting algorithms
algorithm_pairs = list(itertools.combinations(sorting_algorithms.keys(), 2))
# Loop over each pair and generate the visualizations using t-SNE
for (algo1_name, algo2_name) in algorithm_pairs:
algo1_code = sorting_algorithms[algo1_name]
algo2_code = sorting_algorithms[algo2_name]
# Get token embeddings for both algorithms
algo1_embeddings, algo1_tokens = get_token_embeddings(algo1_code)
algo2_embeddings, algo2_tokens = get_token_embeddings(algo2_code)
# Combine embeddings
all_embeddings = np.concatenate((algo1_embeddings, algo2_embeddings), axis=0)
# Reduce dimensionality to 2D using t-SNE
tsne = TSNE(n_components=2, random_state=42)
embeddings_2d = tsne.fit_transform(all_embeddings)
# Plotting the token embeddings in 2D
plt.figure(figsize=(10, 8), dpi=300)
# Scatter plot for the first algorithm tokens
plt.scatter(embeddings_2d[:len(algo1_tokens), 0],
embeddings_2d[:len(algo1_tokens), 1],
color='red', s=50, label=algo1_name, alpha=0.8)
# Scatter plot for the second algorithm tokens
plt.scatter(embeddings_2d[len(algo1_tokens):, 0],
embeddings_2d[len(algo1_tokens):, 1],
color='blue', s=50, label=algo2_name, alpha=0.8)
# Make the visualization more professional
plt.xticks([])
plt.yticks([])
plt.xlabel('')
plt.ylabel('')
plt.grid(False)
plt.legend()
# Save the figure as a high-quality PNG file
output_file = os.path.join(output_dir, f"{algo1_name}_vs_{algo2_name}_tokens_2d_tsne.png")
plt.savefig(output_file, format='png', dpi=300, bbox_inches='tight')
# Show the plot
plt.close()
print("All pairwise comparison images using t-SNE have been generated.")