diff --git a/README.md b/README.md index 7f8efcd..3c852e8 100644 --- a/README.md +++ b/README.md @@ -3,8 +3,6 @@ [![DOI](https://zenodo.org/badge/453954432.svg)](https://zenodo.org/badge/latestdoi/453954432) -[![DOI](https://zenodo.org/badge/453954432.svg)](https://zenodo.org/badge/latestdoi/453954432) - # Tensor Networks with PyTorch **TensorKrowch** is a Python library built on top of **PyTorch** that simplifies diff --git a/docs/_build/doctest/output.txt b/docs/_build/doctest/output.txt index f227ac3..3a24cc5 100644 --- a/docs/_build/doctest/output.txt +++ b/docs/_build/doctest/output.txt @@ -1,20 +1,28 @@ -Results of doctest builder run on 2024-03-06 17:52:48 +Results of doctest builder run on 2024-04-14 01:59:36 ===================================================== -Document: operations +Document: embeddings -------------------- 1 items passed all tests: - 139 tests in default -139 tests in 1 items. -139 passed and 0 failed. + 35 tests in default +35 tests in 1 items. +35 passed and 0 failed. Test passed. -Document: embeddings +Document: models +---------------- +1 items passed all tests: + 115 tests in default +115 tests in 1 items. +115 passed and 0 failed. +Test passed. + +Document: operations -------------------- 1 items passed all tests: - 21 tests in default -21 tests in 1 items. -21 passed and 0 failed. + 186 tests in default +186 tests in 1 items. +186 passed and 0 failed. Test passed. Document: components @@ -27,8 +35,8 @@ Expected: tensor([[-0.2799, -0.4383, -0.8387], [ 1.6225, -0.3370, -1.2316]]) Got: - tensor([[-0.8089, 0.4628, -0.6844], - [ 1.1108, 0.0188, -0.8615]]) + tensor([[ 0.2628, -0.6672, -0.9051], + [-0.6796, -0.4245, -0.5780]]) ********************************************************************** File "../tensorkrowch/components.py", line ?, in default Failed example: @@ -36,7 +44,7 @@ Failed example: Expected: tensor(-1.5029) Got: - tensor(-0.7625) + tensor(-2.9916) ********************************************************************** File "../tensorkrowch/components.py", line ?, in default Failed example: @@ -44,7 +52,7 @@ Failed example: Expected: tensor([ 1.3427, -0.7752, -2.0704]) Got: - tensor([ 0.3019, 0.4816, -1.5459]) + tensor([-0.4168, -1.0916, -1.4831]) ********************************************************************** File "../tensorkrowch/components.py", line ?, in default Failed example: @@ -53,8 +61,8 @@ Expected: tensor([[ 1.4005, -0.0521, -1.2091], [ 1.9844, 0.3513, -0.5920]]) Got: - tensor([[-1.9150, -1.1032, -0.0561], - [ 0.3190, 2.6678, -0.5485]]) + tensor([[-0.5314, -0.7805, -0.6475], + [-0.1279, 0.7409, 0.5816]]) ********************************************************************** File "../tensorkrowch/components.py", line ?, in default Failed example: @@ -62,7 +70,7 @@ Failed example: Expected: tensor(0.3139) Got: - tensor(-0.1060) + tensor(-0.1275) ********************************************************************** File "../tensorkrowch/components.py", line ?, in default Failed example: @@ -70,7 +78,7 @@ Failed example: Expected: tensor([ 1.6925, 0.1496, -0.9006]) Got: - tensor([-0.7980, 0.7823, -0.3023]) + tensor([-0.3296, -0.0198, -0.0330]) ********************************************************************** File "../tensorkrowch/components.py", line ?, in default Failed example: @@ -79,8 +87,8 @@ Expected: tensor([[ 0.2111, -0.9551, -0.7812], [ 0.2254, 0.3381, -0.2461]]) Got: - tensor([[ 0.4271, -1.1628, 0.4584], - [-0.5092, 0.3150, -0.8473]]) + tensor([[-1.8500, -0.4944, 0.5940], + [-0.9353, -0.6008, -0.4320]]) ********************************************************************** File "../tensorkrowch/components.py", line ?, in default Failed example: @@ -88,7 +96,7 @@ Failed example: Expected: tensor(0.5567) Got: - tensor(0.7115) + tensor(0.7922) ********************************************************************** File "../tensorkrowch/components.py", line ?, in default Failed example: @@ -96,7 +104,7 @@ Failed example: Expected: tensor([0.0101, 0.9145, 0.3784]) Got: - tensor([0.6621, 1.0450, 0.9232]) + tensor([0.6468, 0.0752, 0.7255]) ********************************************************************** File "../tensorkrowch/components.py", line ?, in default Failed example: @@ -105,8 +113,8 @@ Expected: tensor([[ 1.5570, 1.8441, -0.0743], [ 0.4572, 0.7592, 0.6356]]) Got: - tensor([[ 1.2801, 1.3139, 0.4513], - [ 0.7149, 0.3856, -1.2216]]) + tensor([[ 1.5611, -0.1317, -1.2049], + [-0.8746, 0.7130, -1.7564]]) ********************************************************************** File "../tensorkrowch/components.py", line ?, in default Failed example: @@ -114,7 +122,7 @@ Failed example: Expected: tensor(2.6495) Got: - tensor(2.3918) + tensor(2.8748) ********************************************************************** File "../tensorkrowch/components.py", line ?, in default Failed example: @@ -122,7 +130,7 @@ Failed example: Expected: tensor([1.6227, 1.9942, 0.6399]) Got: - tensor([1.4662, 1.3693, 1.3023]) + tensor([1.7894, 0.7251, 2.1299]) ********************************************************************** File "../tensorkrowch/components.py", line ?, in default Failed example: @@ -153,17 +161,17 @@ Got: Node( name: my_node tensor: - tensor([[[-1.3330, 0.4759], - [ 0.1422, 0.4853], - [-0.9378, -1.1041], - [-0.2748, 1.0936], - [ 1.6150, 0.6636]], + tensor([[[-0.2232, -0.0576], + [-2.0650, -1.6126], + [ 0.3369, -0.6012], + [-1.5875, -0.0953], + [-0.3129, 0.5625]], - [[ 0.8413, -0.3186], - [ 1.4379, -1.1616], - [ 0.1578, 1.1674], - [ 1.0078, 0.3449], - [ 0.2533, -0.1433]]]) + [[ 2.0660, -0.9154], + [ 0.0753, 0.9608], + [ 0.7278, -0.2497], + [ 0.9090, -0.5242], + [ 1.4432, 2.6149]]]) axes: [left input @@ -202,17 +210,17 @@ Got: Node( name: node tensor: - tensor([[[-1.6599, 0.1489], - [ 0.4144, -0.8230], - [ 0.3594, 0.3989], - [ 0.1742, -0.0642], - [-0.5957, 0.0385]], + tensor([[[-0.0399, 0.5602], + [-1.3402, 1.1127], + [ 0.0795, -1.6100], + [ 2.3359, 1.8294], + [-0.2258, -0.2929]], - [[ 0.8239, 2.0281], - [ 0.4090, 0.4273], - [-1.3040, -0.6414], - [ 0.4434, -0.3271], - [-1.3868, -0.5528]]]) + [[ 0.2125, -1.1086], + [-0.6906, -0.8028], + [-1.4547, 0.0981], + [-1.5869, 0.2020], + [-0.5355, -0.1357]]]) axes: [axis_0 axis_1 @@ -264,17 +272,17 @@ Got: name: my_paramnode tensor: Parameter containing: - tensor([[[-2.1667, 0.3339], - [ 0.2398, 1.6009], - [ 0.8668, 1.3801], - [ 0.3775, 0.4095], - [ 0.0437, -2.8639]], + tensor([[[ 1.0837, 1.7036], + [-0.8799, -0.1600], + [-0.5867, -1.7778], + [ 0.1615, 1.0249], + [ 0.1880, 1.1234]], - [[ 0.8918, -1.7026], - [-1.5665, -1.6178], - [-0.9658, -1.6948], - [-0.2714, -0.3207], - [-0.9412, 1.4940]]], requires_grad=True) + [[ 0.7499, -0.7739], + [-0.5278, 1.1947], + [-0.7586, -1.4460], + [-0.1016, -0.1954], + [ 0.1579, 0.0572]]], requires_grad=True) axes: [left input @@ -315,17 +323,17 @@ Got: name: paramnode tensor: Parameter containing: - tensor([[[-0.6358, -0.9761], - [ 0.4152, 0.1067], - [ 0.5606, 0.1967], - [-1.8301, -0.3721], - [ 0.3054, -2.2257]], + tensor([[[-0.7419, 0.3802], + [ 0.4183, 0.2084], + [-0.4384, -0.6852], + [-0.2616, -0.4692], + [ 0.4573, 2.0465]], - [[ 0.7897, 0.4629], - [ 0.2941, 0.5066], - [-0.4783, -0.5192], - [-0.2632, -0.8084], - [-0.5428, 0.5740]]], requires_grad=True) + [[ 0.5333, 0.6722], + [-0.9125, 0.1184], + [ 0.1689, -0.0498], + [-1.2576, 0.5516], + [-0.0805, -0.2896]]], requires_grad=True) axes: [axis_0 axis_1 @@ -344,8 +352,8 @@ Expected: [ 1.3371, 1.4761, 0.6551]], requires_grad=True) Got: Parameter containing: - tensor([[-0.4497, -0.0874, 1.3775], - [-0.0598, -0.6410, 0.0374]], requires_grad=True) + tensor([[-1.4491, 0.7555, -1.2827], + [ 1.3534, -1.0071, 0.1320]], requires_grad=True) ********************************************************************** File "../tensorkrowch/components.py", line ?, in default Failed example: @@ -396,22 +404,14 @@ Got: data_0[feature] <-> nodeA[input]]) ********************************************************************** 1 items had failures: - 21 of 322 in default -322 tests in 1 items. -301 passed and 21 failed. + 21 of 395 in default +395 tests in 1 items. +374 passed and 21 failed. ***Test Failed*** 21 failures. -Document: models ----------------- -1 items passed all tests: - 89 tests in default -89 tests in 1 items. -89 passed and 0 failed. -Test passed. - Doctest summary =============== - 571 tests + 731 tests 21 failures in tests 0 failures in setup code 0 failures in cleanup code diff --git a/docs/_build/doctrees/api.doctree b/docs/_build/doctrees/api.doctree index e4b3a4d..65fbae0 100644 Binary files a/docs/_build/doctrees/api.doctree and b/docs/_build/doctrees/api.doctree differ diff --git a/docs/_build/doctrees/components.doctree b/docs/_build/doctrees/components.doctree index 0b93126..eecbe5a 100644 Binary files a/docs/_build/doctrees/components.doctree and b/docs/_build/doctrees/components.doctree differ diff --git a/docs/_build/doctrees/decompositions.doctree b/docs/_build/doctrees/decompositions.doctree new file mode 100644 index 0000000..949a341 Binary files /dev/null and b/docs/_build/doctrees/decompositions.doctree differ diff --git a/docs/_build/doctrees/embeddings.doctree b/docs/_build/doctrees/embeddings.doctree index 7366c85..280fc43 100644 Binary files a/docs/_build/doctrees/embeddings.doctree and b/docs/_build/doctrees/embeddings.doctree differ diff --git a/docs/_build/doctrees/environment.pickle b/docs/_build/doctrees/environment.pickle index 1511bb6..505278e 100644 Binary files a/docs/_build/doctrees/environment.pickle and b/docs/_build/doctrees/environment.pickle differ diff --git a/docs/_build/doctrees/models.doctree b/docs/_build/doctrees/models.doctree index 9aed425..507e800 100644 Binary files a/docs/_build/doctrees/models.doctree and b/docs/_build/doctrees/models.doctree differ diff --git a/docs/_build/doctrees/operations.doctree b/docs/_build/doctrees/operations.doctree index a44d959..214d178 100644 Binary files a/docs/_build/doctrees/operations.doctree and b/docs/_build/doctrees/operations.doctree differ diff --git a/docs/_build/doctrees/tutorials/0_first_steps.doctree b/docs/_build/doctrees/tutorials/0_first_steps.doctree index cce92ea..2e5844a 100644 Binary files a/docs/_build/doctrees/tutorials/0_first_steps.doctree and b/docs/_build/doctrees/tutorials/0_first_steps.doctree differ diff --git a/docs/_build/doctrees/tutorials/2_contracting_tensor_network.doctree b/docs/_build/doctrees/tutorials/2_contracting_tensor_network.doctree index a70e416..db06df8 100644 Binary files a/docs/_build/doctrees/tutorials/2_contracting_tensor_network.doctree and b/docs/_build/doctrees/tutorials/2_contracting_tensor_network.doctree differ diff --git a/docs/_build/doctrees/tutorials/3_memory_management.doctree b/docs/_build/doctrees/tutorials/3_memory_management.doctree index 26f2bfc..92905d8 100644 Binary files a/docs/_build/doctrees/tutorials/3_memory_management.doctree and b/docs/_build/doctrees/tutorials/3_memory_management.doctree differ diff --git a/docs/_build/doctrees/tutorials/4_types_of_nodes.doctree b/docs/_build/doctrees/tutorials/4_types_of_nodes.doctree index 77c9f7a..30fab7e 100644 Binary files a/docs/_build/doctrees/tutorials/4_types_of_nodes.doctree and b/docs/_build/doctrees/tutorials/4_types_of_nodes.doctree differ diff --git a/docs/_build/doctrees/tutorials/5_subclass_tensor_network.doctree b/docs/_build/doctrees/tutorials/5_subclass_tensor_network.doctree index efb777e..cd66ae0 100644 Binary files a/docs/_build/doctrees/tutorials/5_subclass_tensor_network.doctree and b/docs/_build/doctrees/tutorials/5_subclass_tensor_network.doctree differ diff --git a/docs/_build/doctrees/tutorials/6_mix_with_pytorch.doctree b/docs/_build/doctrees/tutorials/6_mix_with_pytorch.doctree index 6ab15bb..f18526c 100644 Binary files a/docs/_build/doctrees/tutorials/6_mix_with_pytorch.doctree and b/docs/_build/doctrees/tutorials/6_mix_with_pytorch.doctree differ diff --git a/docs/_build/html/_modules/index.html b/docs/_build/html/_modules/index.html index 81370ca..16b667a 100644 --- a/docs/_build/html/_modules/index.html +++ b/docs/_build/html/_modules/index.html @@ -178,6 +178,11 @@ Embeddings +
  • + + Decompositions + +
  • @@ -283,10 +288,12 @@

    All modules for which code is available

    @@ -328,7 +331,7 @@

    Source code for tensorkrowch.components

     ###############################################################################
     #                                     AXIS                                    #
     ###############################################################################
    -
    [docs]class Axis: +
    [docs]class Axis: # MARK: Axis """ Axes are the objects that stick edges to nodes. Each instance of the :class:`AbstractNode` class has a list of :math:`N` axes, each corresponding @@ -572,7 +575,7 @@

    Source code for tensorkrowch.components

     Shape = Union[Sequence[int], Size]
     
     
    -
    [docs]class AbstractNode(ABC): +
    [docs]class AbstractNode(ABC): # MARK: AbstractNode """ Abstract class for all types of nodes. Defines what a node is and most of its properties and methods. Since it is an abstract class, cannot be instantiated. @@ -670,18 +673,22 @@

    Source code for tensorkrowch.components

           To learn more about this, see :meth:`~TensorNetwork.set_data_nodes` and
           :meth:`~TensorNetwork.add_data`.
         
    -    * **"virtual_stack"**: Name of the ``virtual`` :class:`ParamStackNode` that
    +    * **"virtual_result"**: Name of ``virtual`` nodes that are not explicitly
    +      part of the network, but are required for some situations during
    +      contraction. For instance, the :class:`ParamStackNode` that
           results from stacking :class:`ParamNodes <ParamNode>` as the first
           operation in the network contraction, if ``auto_stack`` mode is set to
    -      ``True``. There might be as much ``"virtual_stack"`` nodes as stacks are
    -      created from ``ParamNodes``. To learn more about this, see
    -      :class:`ParamStackNode`.
    +      ``True``. To learn more about this, see :class:`ParamStackNode`.
         
         * **"virtual_uniform"**: Name of the ``virtual`` :class:`Node` or
           :class:`ParamNode` that is used in uniform (translationally invariant)
           tensor networks to store the tensor that will be shared by all ``leaf``
           nodes. There might be as much ``"virtual_uniform"`` nodes as shared
           memories are used for the ``leaf`` nodes in the network (usually just one).
    +    
    +    For ``"virtual_result"`` and ``"virtual_uniform"``, these special
    +    behaviours are not restricted to nodes having those names, but also nodes
    +    whose names contain those strings.
           
         Although these names can in principle be used for other nodes, this can lead
         to undesired behaviour.
    @@ -751,10 +758,9 @@ 

    Source code for tensorkrowch.components

                 if not isinstance(shape, (tuple, list, Size)):
                     raise TypeError(
                         '`shape` should be tuple[int], list[int] or torch.Size type')
    -            if isinstance(shape, (tuple, list)):
    -                for i in shape:
    -                    if not isinstance(i, int):
    -                        raise TypeError('`shape` elements should be int type')
    +            if isinstance(shape, Sequence):
    +                if any([not isinstance(i, int) for i in shape]):
    +                    raise TypeError('`shape` elements should be int type')
                 aux_shape = Size(shape)
             else:
                 aux_shape = tensor.shape
    @@ -769,7 +775,7 @@ 

    Source code for tensorkrowch.components

                 axes = [Axis(num=i, name=f'axis_{i}', node=self)
                         for i, _ in enumerate(aux_shape)]
             else:
    -            if not isinstance(axes_names, (tuple, list)):
    +            if not isinstance(axes_names, Sequence):
                     raise TypeError(
                         '`axes_names` should be tuple[str] or list[str] type')
                 if len(axes_names) != len(aux_shape):
    @@ -999,6 +1005,13 @@ 

    Source code for tensorkrowch.components

         @abstractmethod
         def copy(self, share_tensor: bool = False) -> 'AbstractNode':
             pass
    +    
    +    @abstractmethod
    +    def change_type(self,
    +                    leaf: bool = False,
    +                    data: bool = False,
    +                    virtual: bool = False,) -> None:
    +        pass
     
         # -------
         # Methods
    @@ -1131,6 +1144,17 @@ 

    Source code for tensorkrowch.components

                     node2 = edge._nodes[node1_list[i]]
                     neighbours.add(node2)
             return list(neighbours)
    + +
    [docs] def is_connected_to(self, other: 'AbstractNode') -> List[Tuple[Axis]]: + """Returns list of tuples of axes where the node is connected to ``other``""" + connected_axes = [] + for i1, edge1 in enumerate(self._edges): + for i2, edge2 in enumerate(other._edges): + if (edge1 == edge2) and not edge1.is_dangling(): + if self.is_node1(i1) != other.is_node1(i2): + connected_axes.append((self._axes[i1], + other._axes[i2])) + return connected_axes
    def _change_axis_name(self, axis: Axis, name: Text) -> None: """ @@ -1237,17 +1261,17 @@

    Source code for tensorkrowch.components

                 for ax in self._axes:
                     if axis == ax._num:
                         return ax._num
    -            raise IndexError(f'Node {self!s} has no axis with index {axis}')
    +            raise IndexError(f'Node "{self!s}" has no axis with index {axis}')
             elif isinstance(axis, str):
                 for ax in self._axes:
                     if axis == ax._name:
                         return ax._num
    -            raise IndexError(f'Node {self!s} has no axis with name {axis}')
    +            raise IndexError(f'Node "{self!s}" has no axis with name "{axis}"')
             elif isinstance(axis, Axis):
                 for ax in self._axes:
                     if axis == ax:
                         return ax._num
    -            raise IndexError(f'Node {self!s} has no axis {axis!r}')
    +            raise IndexError(f'Node "{self!s}" has no axis "{axis!r}"')
             else:
                 raise TypeError('`axis` should be int, str or Axis type')
    @@ -1280,7 +1304,7 @@

    Source code for tensorkrowch.components

             axis_num = self.get_axis_num(axis)
             return self._edges[axis_num]
    -
    [docs] def in_which_axis(self, edge: 'Edge') -> Union[Axis, List[Axis]]: +
    [docs] def in_which_axis(self, edge: 'Edge') -> Union[Axis, Tuple[Axis]]: """ Returns :class:`Axis` given the :class:`Edge` that is attached to the node through it. @@ -1296,9 +1320,11 @@

    Source code for tensorkrowch.components

                 return lst[0]
             else:
                 # Case of trace edges (attached to the node in two axes)
    -            return lst
    + return tuple(lst)
    -
    [docs] def reattach_edges(self, override: bool = False) -> None: +
    [docs] def reattach_edges(self, + axes: Optional[Sequence[Ax]] = None, + override: bool = False) -> None: """ Substitutes current edges by copies of them that are attached to the node. It can happen that an edge is not attached to the node if it is the result @@ -1312,7 +1338,10 @@

    Source code for tensorkrowch.components

     
             Parameters
             ----------
    -        override: bool
    +        axis : list[int, str or Axis] or tuple[int, str or Axis], optional
    +            The edge attached to these axes will be reattached. If ``None``,
    +            all edges will be reattached.
    +        override : bool
                 Boolean indicating if the new, reattached edges should also replace
                 the corresponding edges in the node's neighbours (``True``). Otherwise,
                 the neighbours' edges will be pointing to the original nodes from which
    @@ -1348,7 +1377,20 @@ 

    Source code for tensorkrowch.components

             If ``override`` is ``True``, ``nodeB['right']`` would be replaced by the
             new ``result['right']``.
             """
    -        for i, (edge, node1) in enumerate(zip(self._edges, self.is_node1())):
    +        if axes is None:
    +            edges = list(enumerate(self._edges))
    +        else:
    +            edges = []
    +            for axis in axes:
    +                axis_num = self.get_axis_num(axis)
    +                edges.append((axis_num, self._edges[axis_num]))
    +        
    +        skip_edges = []
    +        for i, edge in edges:
    +            if i in skip_edges:
    +                continue
    +            
    +            node1 = self._axes[i]._node1
                 node = edge._nodes[1 - node1]
                 if node != self:
                     # New edges are always a copy, so that the original
    @@ -1361,17 +1403,20 @@ 

    Source code for tensorkrowch.components

     
                     # Case of trace edges (attached to the node in two axes)
                     neighbour = new_edge._nodes[node1]
    -                if neighbour == node:
    -                    for j, other_edge in enumerate(self._edges):
    -                        if (other_edge == edge) and (i != j):
    -                            self._edges[j] = new_edge
    -                            new_edge._nodes[node1] = self
    -                            new_edge._axes[node1] = self._axes[j]
    +                if not new_edge.is_dangling():
    +                    if neighbour != self:
    +                        for j, other_edge in edges[(i + 1):]:
    +                            if other_edge == edge:
    +                                new_edge._nodes[node1] = self
    +                                new_edge._axes[node1] = self._axes[j]
    +                                self._edges[j] = new_edge
    +                                skip_edges.append(j)
     
                     if override:
    -                    if not new_edge.is_dangling() and (neighbour != node):
    -                        neighbour._add_edge(
    -                            new_edge, new_edge._axes[node1], not node1)
    + if not new_edge.is_dangling(): + if new_edge._nodes[0] != new_edge._nodes[1]: + new_edge._nodes[node1]._add_edge( + new_edge, new_edge._axes[node1], not node1)
    [docs] def disconnect(self, axis: Optional[Ax] = None) -> None: """ @@ -1413,7 +1458,10 @@

    Source code for tensorkrowch.components

             """Returns copy tensor (ones in the "diagonal", zeros elsewhere)."""
             copy_tensor = torch.zeros(shape, device=device)
             rank = len(shape)
    -        i = torch.arange(min(shape), device=device)
    +        if rank <= 1:
    +            i = 0
    +        else:
    +            i = torch.arange(min(shape), device=device)
             copy_tensor[(i,) * rank] = 1.
             return copy_tensor
     
    @@ -1683,6 +1731,9 @@ 

    Source code for tensorkrowch.components

             """
             # If node stores its own tensor
             if not self.is_resultant() and (self._tensor_info['address'] is not None):
    +            if (tensor is not None) and not self._compatible_shape(tensor):
    +                warnings.warn(f'`tensor` is being cropped to fit the shape of '
    +                              f'node "{self!s}" at non-batch edges')
                 self._unrestricted_set_tensor(tensor=tensor,
                                               init_method=init_method,
                                               device=device,
    @@ -2135,6 +2186,24 @@ 

    Source code for tensorkrowch.components

                     axis_num.append(self.get_axis_num(axis))
             return self.tensor.norm(p=p, dim=axis_num)
    +
    [docs] def numel(self) -> Tensor: + """ + Returns the total number of elements in the node's tensor. + + See also `torch.numel() <https://pytorch.org/docs/stable/generated/torch.numel.html>`_. + + Returns + ------- + int + + Examples + -------- + >>> node = tk.randn(shape=(2, 3), axes_names=('left', 'right')) + >>> node.numel() + 6 + """ + return self.tensor.numel()
    + def __str__(self) -> Text: return self._name @@ -2146,7 +2215,7 @@

    Source code for tensorkrowch.components

                    f'\tedges:\n{tab_string(print_list(self._edges), 2)})'
    -
    [docs]class Node(AbstractNode): +
    [docs]class Node(AbstractNode): # MARK: Node """ Base class for non-trainable nodes. Should be subclassed by any class of nodes that are not intended to be trained (e.g. :class:`StackNode`). @@ -2413,10 +2482,58 @@

    Source code for tensorkrowch.components

                                 tensor=self.tensor,
                                 edges=self._edges,
                                 node1_list=self.is_node1())
    -        return new_node
    - - -
    [docs]class ParamNode(AbstractNode): + return new_node
    + +
    [docs] def change_type(self, + leaf: bool = False, + data: bool = False, + virtual: bool = False,) -> None: + """ + Changes node type, only if node is not a resultant node. + + Parameters + ---------- + leaf : bool + Boolean indicating if the new node type is ``leaf``. + data : bool + Boolean indicating if the new node type is ``data``. + virtual : bool + Boolean indicating if the new node type is ``virtual``. + """ + if self.is_resultant(): + raise ValueError('Only non-resultant nodes\' types can be changed') + + if (leaf + data + virtual) != 1: + raise ValueError('One, and only one, of `leaf`, `data` and `virtual`' + ' can be set to True') + + # Unset current type + if self._leaf and not leaf: + node_dict = self._network._leaf_nodes + self._leaf = False + del node_dict[self._name] + elif self._data and not data: + node_dict = self._network._data_nodes + self._data = False + del node_dict[self._name] + elif self._virtual and not virtual: + node_dict = self._network._virtual_nodes + self._virtual = False + del node_dict[self._name] + + # Set new type + if leaf: + self._leaf = True + self._network._leaf_nodes[self._name] = self + elif data: + self._data = True + self._network._data_nodes[self._name] = self + elif virtual: + self._virtual = True + self._network._virtual_nodes[self._name] = self
    + + +
    [docs]class ParamNode(AbstractNode): # MARK: ParamNode """ Class for trainable nodes. Should be subclassed by any class of nodes that are intended to be trained (e.g. :class:`ParamStackNode`). @@ -2633,7 +2750,7 @@

    Source code for tensorkrowch.components

             if aux_grad is None:
                 return aux_grad
             else:
    -            if self._tensor_info['index'] is None: #self._tensor_info['full']:
    +            if self._tensor_info['index'] is None:
                     return aux_grad
                 return aux_grad[self._tensor_info['index']]
     
    @@ -2777,13 +2894,48 @@ 

    Source code for tensorkrowch.components

                                      tensor=self.tensor,
                                      edges=self._edges,
                                      node1_list=self.is_node1())
    -        return new_node
    + return new_node
    + +
    [docs] def change_type(self, + leaf: bool = False, + virtual: bool = False,) -> None: + """ + Changes node type, only if node is not a resultant node. + + Parameters + ---------- + leaf : bool + Boolean indicating if the new node type is ``leaf``. + virtual : bool + Boolean indicating if the new node type is ``virtual``. + """ + if (leaf + virtual) != 1: + raise ValueError('One, and only one, of `leaf`, and `virtual`' + ' can be set to True') + + # Unset current type + if self._leaf and not leaf: + node_dict = self._network._leaf_nodes + self._leaf = False + del node_dict[self._name] + elif self._virtual and not virtual: + node_dict = self._network._virtual_nodes + self._virtual = False + del node_dict[self._name] + + # Set new type + if leaf: + self._leaf = True + self._network._leaf_nodes[self._name] = self + elif virtual: + self._virtual = True + self._network._virtual_nodes[self._name] = self
    ############################################################################### # STACK NODES # ############################################################################### -
    [docs]class StackNode(Node): +
    [docs]class StackNode(Node): # MARK: StackNode """ Class for stacked nodes. ``StackNodes`` are nodes that store the information of a list of nodes that are stacked via :func:`stack`, although they can also @@ -2893,12 +3045,10 @@

    Source code for tensorkrowch.components

                      node1_list: Optional[List[bool]] = None) -> None:
     
             if nodes is not None:
    -            if not isinstance(nodes, (list, tuple)):
    +            if not isinstance(nodes, Sequence):
                     raise TypeError('`nodes` should be a list or tuple of nodes')
    -            for node in nodes:
    -                if isinstance(node, (StackNode, ParamStackNode)):
    -                    raise TypeError(
    -                        'Cannot create a stack using (Param)StackNode\'s')
    +            if any([isinstance(node, (StackNode, ParamStackNode)) for node in nodes]):
    +                raise TypeError('Cannot create a stack using (Param)StackNode\'s')
                 if tensor is not None:
                     raise ValueError(
                         'If `nodes` are provided, `tensor` must not be given')
    @@ -3012,10 +3162,23 @@ 

    Source code for tensorkrowch.components

             else:
                 return StackEdge(edges=self._edges_dict[axis._name],
                                  node1_list=self._node1_lists_dict[axis._name],
    -                             node1=self, axis1=axis)
    + node1=self, axis1=axis) + +
    [docs] def reconnect(self, other: Union['StackNode', 'ParamStackNode']) -> None: + """ + Re-connects the ``StackNode`` to another ``(Param)StackNode``, in the + axes where the original stacked nodes were already connected. + """ + for axis1 in self._edges_dict: + for axis2 in other._edges_dict: + if self._edges_dict[axis1][0] == other._edges_dict[axis2][0]: + connect_stack(self.get_edge(axis1), other.get_edge(axis2))
    + + def __xor__(self, other: Union['StackNode', 'ParamStackNode']) -> None: + self.reconnect(other)
    -
    [docs]class ParamStackNode(ParamNode): +
    [docs]class ParamStackNode(ParamNode): # MARK: ParamStackNode """ Class for parametric stacked nodes. They are essentially the same as :class:`StackNodes <StackNode>` but they are :class:`ParamNodes <ParamNode>`. @@ -3028,8 +3191,9 @@

    Source code for tensorkrowch.components

         attribute of the :class:`TensorNetwork` is set to ``True``). Hence, that
         first :func:`stack` is never actually computed.
         
    -    The ``ParamStackNode`` that results from this process uses the reserved name
    -    ``"virtual_stack"``, as explained :class:`here <AbstractNode>`. This node
    +    The ``ParamStackNode`` that results from this process has the name
    +    ``"virtual_result_stack"``, which contains the reserved name
    +    ``"virtual_result"``, as explained :class:`here <AbstractNode>`. This node
         stores the tensor from which all the stacked :class:`ParamNodes <ParamNode>`
         just take one `slice`.
         
    @@ -3109,13 +3273,10 @@ 

    Source code for tensorkrowch.components

                      virtual: bool = False,
                      override_node: bool = False) -> None:
     
    -        if not isinstance(nodes, (list, tuple)):
    +        if not isinstance(nodes, Sequence):
                 raise TypeError('`nodes` should be a list or tuple of nodes')
    -
    -        for node in nodes:
    -            if isinstance(node, (StackNode, ParamStackNode)):
    -                raise TypeError(
    -                    'Cannot create a stack using (Param)StackNode\'s')
    +        if any([isinstance(node, (StackNode, ParamStackNode)) for node in nodes]):
    +                raise TypeError('Cannot create a stack using (Param)StackNode\'s')
     
             for i in range(len(nodes[:-1])):
                 if not isinstance(nodes[i], type(nodes[i + 1])):
    @@ -3191,13 +3352,26 @@ 

    Source code for tensorkrowch.components

             else:
                 return StackEdge(edges=self._edges_dict[axis._name],
                                  node1_list=self._node1_lists_dict[axis._name],
    -                             node1=self, axis1=axis)
    + node1=self, axis1=axis) + +
    [docs] def reconnect(self, other: Union['StackNode', 'ParamStackNode']) -> None: + """ + Re-connects the ``StackNode`` to another ``(Param)StackNode``, in the + axes where the original stacked nodes were already connected. + """ + for axis1 in self._edges_dict: + for axis2 in other._edges_dict: + if self._edges_dict[axis1][0] == other._edges_dict[axis2][0]: + connect_stack(self.get_edge(axis1), other.get_edge(axis2))
    + + def __xor__(self, other: Union['StackNode', 'ParamStackNode']) -> None: + self.reconnect(other)
    ############################################################################### # EDGES # ############################################################################### -
    [docs]class Edge: +
    [docs]class Edge: # MARK: Edge """ Base class for edges. Should be subclassed by any new class of edges. @@ -3212,9 +3386,10 @@

    Source code for tensorkrowch.components

         
         |
     
    -    Furthermore, edges have specific operations like :meth:`contract_` or
    -    :meth:`svd_` (and its variations) that allow in-place modification of the
    -    :class:`TensorNetwork`.
    +    Furthermore, edges have specific operations like :meth:`contract` or
    +    :meth:`svd` (and its variations), as well as in-place versions of them 
    +    (:meth:`contract_`, :meth:`svd_`, etc.) that allow in-place modification
    +    of the :class:`TensorNetwork`.
         
         |
     
    @@ -3360,7 +3535,7 @@ 

    Source code for tensorkrowch.components

     
     
    [docs] def is_batch(self) -> bool: """Returns boolean indicating whether the edge is a batch edge.""" - return self.axis1._batch
    + return self._axes[0]._batch
    [docs] def is_attached_to(self, node: AbstractNode) -> bool: """Returns boolean indicating whether the edge is attached to ``node``.""" @@ -3456,7 +3631,7 @@

    Source code for tensorkrowch.components

             Note that this connectes edges from ``leaf`` (or ``data``, ``virtual``)
             nodes, but never from ``resultant`` nodes. If one tries to connect
             one of the inherited edges of a ``resultant`` node, the new connected
    -        edge will be attached to the original ``leaf` nodes from which the
    +        edge will be attached to the original ``leaf`` nodes from which the
             ``resultant`` node inherited its edges. Hence, the ``resultant`` node
             will not "see" the connection until the :class:`TensorNetwork` is
             :meth:`~TensorNetwork.reset`.
    @@ -3547,7 +3722,7 @@ 

    Source code for tensorkrowch.components

     AbstractStackNode = Union[StackNode, ParamStackNode]
     
     
    -
    [docs]class StackEdge(Edge): +
    [docs]class StackEdge(Edge): # MARK: StackEdge """ Class for stacked edges. They are just like :class:`Edges <Edge>` but used when stacking a collection of nodes into a :class:`StackNode`. When doing @@ -3660,7 +3835,7 @@

    Source code for tensorkrowch.components

         Note that this connectes edges from ``leaf`` (or ``data``, ``virtual``)
         nodes, but never from ``resultant`` nodes. If one tries to connect one of
         the inherited edges of a ``resultant`` node, the new connected edge will be
    -    attached to the original ``leaf` nodes from which the ``resultant`` node
    +    attached to the original ``leaf`` nodes from which the ``resultant`` node
         inherited its edges. Hence, the ``resultant`` node will not "see" the
         connection until the :class:`TensorNetwork` is :meth:`~TensorNetwork.reset`.
         
    @@ -3707,17 +3882,17 @@ 

    Source code for tensorkrowch.components

     
         for edge in [edge1, edge2]:
             if not edge.is_dangling():
    -            raise ValueError(f'Edge {edge!s} is not a dangling edge. '
    -                             f'This edge points to nodes: {edge.node1!s} and '
    -                             f'{edge.node2!s}')
    +            raise ValueError(f'Edge "{edge!s}" is not a dangling edge. '
    +                             f'This edge points to nodes: "{edge.node1!s}" and '
    +                             f'"{edge.node2!s}"')
             if edge.is_batch():
    -            raise ValueError(f'Edge {edge!s} is a batch edge. Batch edges '
    +            raise ValueError(f'Edge "{edge!s}" is a batch edge. Batch edges '
                                  'cannot be connected')
     
         if edge1.size() != edge2.size():
             raise ValueError(f'Cannot connect edges of unequal size. '
    -                         f'Size of edge {edge1!s}: {edge1.size()}. '
    -                         f'Size of edge {edge2!s}: {edge2.size()}')
    +                         f'Size of edge "{edge1!s}": {edge1.size()}. '
    +                         f'Size of edge "{edge2!s}": {edge2.size()}')
     
         node1, axis1 = edge1.node1, edge1.axis1
         node2, axis2 = edge2.node1, edge2.axis1
    @@ -3770,9 +3945,9 @@ 

    Source code for tensorkrowch.components

     
         for edge in [edge1, edge2]:
             if not edge.is_dangling():
    -            raise ValueError(f'Edge {edge!s} is not a dangling edge. '
    -                             f'This edge points to nodes: {edge.node1!s} and '
    -                             f'{edge.node2!s}')
    +            raise ValueError(f'Edge "{edge!s}" is not a dangling edge. '
    +                             f'This edge points to nodes: "{edge.node1!s}" and '
    +                             f'"{edge.node2!s}"')
     
         node1, axis1 = edge1.node1, edge1.axis1
         node2, axis2 = edge2.node1, edge2.axis1
    @@ -3847,7 +4022,7 @@ 

    Source code for tensorkrowch.components

     ###############################################################################
     #                                   SUCCESSOR                                 #
     ###############################################################################
    -
    [docs]class Successor: +
    [docs]class Successor: # MARK: Successor """ Class for successors. This is a sort of cache memory for :class:`Operations <Operation>` that have been already computed. @@ -3926,7 +4101,7 @@

    Source code for tensorkrowch.components

     ###############################################################################
     #                                TENSOR NETWORK                               #
     ###############################################################################
    -
    [docs]class TensorNetwork(nn.Module): +
    [docs]class TensorNetwork(nn.Module): # MARK: TensorNetwork """ Class for arbitrary Tensor Networks. Subclass of **PyTorch** ``torch.nn.Module``. @@ -4098,7 +4273,7 @@

    Source code for tensorkrowch.components

     
             # TN modes
             # Auto-management of memory mode
    -        self._auto_stack = False   # train -> True / eval -> True
    +        self._auto_stack = True   # train -> True / eval -> True
             self._auto_unbind = False  # train -> False / eval -> True
             self._tracing = False      # Tracing mode (True while calling .trace())
             self._traced = False       # True if .trace() is called, False if reset()
    @@ -4167,7 +4342,7 @@ 

    Source code for tensorkrowch.components

         def auto_stack(self) -> bool:
             """
             Returns boolean indicating whether ``auto_stack`` mode is active. By
    -        default, it is ``False``.
    +        default, it is ``True``.
             
             This mode indicates whether the operation :func:`stack` can take control
             of the memory management of the network to skip some steps in future
    @@ -4379,7 +4554,11 @@ 

    Source code for tensorkrowch.components

             """
             node.disconnect()
             self._remove_node(node, move_names)
    -        del node
    + node._temp_tensor = None
    + + def delete(self) -> None: + for node in self.nodes.values(): + self.delete_node(node) def _update_node_info(self, node: AbstractNode, new_name: Text) -> None: """ @@ -4420,7 +4599,8 @@

    Source code for tensorkrowch.components

             """Updates a single node's name, without taking care of the other names."""
             # Node is ParamNode and tensor is not None
             if isinstance(node.tensor, Parameter):
    -            delattr(self, '_'.join(['param', node._name]))
    +            if hasattr(self, 'param_' + node._name):
    +                delattr(self, 'param_' + node._name)
             for edge in node._edges:
                 if edge.is_attached_to(node):
                     self._remove_edge(edge)
    @@ -4429,15 +4609,15 @@ 

    Source code for tensorkrowch.components

             node._name = new_name
     
             if isinstance(node.tensor, Parameter):
    -            if not hasattr(self, '_'.join(['param', node._name])):
    -                self.register_parameter(
    -                    '_'.join(['param', node._name]),
    -                    self._memory_nodes[node._name])
    -            else:
    -                # Nodes names are never repeated, so it is likely that
    -                # this case will never occur
    -                raise ValueError(
    -                    f'Network already has attribute named {node._name}')
    +            if node._tensor_info['address'] is not None:
    +                if not hasattr(self, 'param_' + node._name):
    +                    self.register_parameter('param_' + node._name,
    +                                            self._memory_nodes[node._name])
    +                else:
    +                    # Nodes names are never repeated, so it is likely that
    +                    # this case will never occur
    +                    raise ValueError(
    +                        f'Network already has attribute named {node._name}')
     
             for edge in node._edges:
                 self._add_edge(edge)
    @@ -4531,10 +4711,9 @@ 

    Source code for tensorkrowch.components

     
             # Node is ParamNode and tensor is not None
             if isinstance(node.tensor, Parameter):
    -            if not hasattr(self, '_'.join(['param', node._name])):
    -                self.register_parameter(
    -                    '_'.join(['param', node._name]),
    -                    self._memory_nodes[node._name])
    +            if not hasattr(self, 'param_' + node._name,):
    +                self.register_parameter( 'param_' + node._name,
    +                                        self._memory_nodes[node._name])
                 else:
                     # Nodes names are never repeated, so it is likely that
                     # this case will never occur
    @@ -4574,7 +4753,8 @@ 

    Source code for tensorkrowch.components

             """
             # Node is ParamNode and tensor is not None
             if isinstance(node.tensor, Parameter):
    -            delattr(self, '_'.join(['param', node._name]))
    +            if hasattr(self, 'param_' + node._name):
    +                delattr(self, 'param_' + node._name)
             for edge in node._edges:
                 if edge.is_attached_to(node):
                     self._remove_edge(edge)
    @@ -4637,8 +4817,8 @@ 

    Source code for tensorkrowch.components

                 in-place (``True``) or copied and then parameterized (``False``).
             """
             if self._resultant_nodes:
    -            warnings.warn('Resultant nodes will be removed before parameterizing'
    -                          ' the TN')
    +            warnings.warn(
    +                'Resultant nodes will be removed before parameterizing the TN')
                 self.reset()
     
             if override:
    @@ -4786,7 +4966,7 @@ 

    Source code for tensorkrowch.components

                 elif isinstance(edge, Edge):
                     if edge not in self._edges:
                         raise ValueError(
    -                        f'Edge {edge!r} should be a dangling edge of the '
    +                        f'Edge "{edge!r}" should be a dangling edge of the '
                             'Tensor Network')
                 else:
                     raise TypeError(
    @@ -4879,7 +5059,10 @@ 

    Source code for tensorkrowch.components

             stack_node = self._virtual_nodes.get('stack_data_memory')
     
             if stack_node is not None:
    -            data = data.movedim(-2, 0)
    +            if isinstance(data, Tensor):
    +                data = data.movedim(-2, 0)
    +            else:
    +                data = torch.stack(data, dim=0)
                 stack_node.tensor = data
                 for i, data_node in enumerate(list(self._data_nodes.values())):
                     data_node._shape = data[i].shape
    @@ -4904,7 +5087,7 @@ 

    Source code for tensorkrowch.components

               
             * ``virtual``: Only virtual nodes created in :class:`operations
               <Operation>` are :meth:`deleted <delete_node>`. This only includes
    -          nodes using the reserved name ``"virtual_stack"``.
    +          nodes using the reserved name ``"virtual_result"``.
               
             * ``resultant``: These nodes are :meth:`deleted <delete_node>` from the
               network.
    @@ -4931,9 +5114,10 @@ 

    Source code for tensorkrowch.components

                 aux_dict.update(self._resultant_nodes)
                 aux_dict.update(self._virtual_nodes)
                 for node in aux_dict.values():
    -                if node._virtual and ('virtual_stack' not in node._name):
    -                    # Virtual nodes named "virtual_stack" are ParamStackNodes
    -                    # that result from stacking a collection of ParamNodes
    +                if node._virtual and ('virtual_result' not in node._name):
    +                    # Virtual nodes named "virtual_result" are nodes that are
    +                    # required in some situations during contraction, like
    +                    # ParamStackNodes
                         # This condition is satisfied by the rest of virtual nodes
                         continue
     
    @@ -4972,13 +5156,13 @@ 

    Source code for tensorkrowch.components

                 aux_dict.update(self._resultant_nodes)
                 aux_dict.update(self._virtual_nodes)
                 for node in list(aux_dict.values()):
    -                if node._virtual and ('virtual_stack' not in node._name):
    +                if node._virtual and ('virtual_result' not in node._name):
                         # This condition is satisfied by the rest of virtual nodes
    -                    # (e.g. "virtual_feature", "virtual_n_features")
                         continue
                     self.delete_node(node, False)
    -
    [docs] def trace(self, example: Optional[Tensor] = None, *args, **kwargs) -> None: +
    [docs] @torch.no_grad() + def trace(self, example: Optional[Tensor] = None, *args, **kwargs) -> None: """ Traces the tensor network contraction algorithm with two purposes: @@ -5012,13 +5196,12 @@

    Source code for tensorkrowch.components

                 Keyword arguments that might be used in :meth:`contract`.
             """
             self.reset()
    -
    -        with torch.no_grad():
    -            self._tracing = True
    -            self(example, *args, **kwargs)
    -            self._tracing = False
    -            self(example, *args, **kwargs)
    -            self._traced = True
    + + self._tracing = True + self(example, *args, **kwargs) + self._tracing = False + self(example, *args, **kwargs) + self._traced = True
    [docs] def contract(self) -> Node: """ @@ -5115,7 +5298,7 @@

    Source code for tensorkrowch.components

                     return self.nodes[key]
                 except Exception:
                     raise KeyError(
    -                    f'Tensor network {self!s} does not have any node with '
    +                    f'Tensor network "{self!s}" does not have any node with '
                         f'name {key}')
             else:
                 raise TypeError('`key` should be int or str type')
    diff --git a/docs/_build/html/_modules/tensorkrowch/decompositions/svd_decompositions.html b/docs/_build/html/_modules/tensorkrowch/decompositions/svd_decompositions.html
    new file mode 100644
    index 0000000..272e13e
    --- /dev/null
    +++ b/docs/_build/html/_modules/tensorkrowch/decompositions/svd_decompositions.html
    @@ -0,0 +1,575 @@
    +
    +
    +
    +
    +  
    +    
    +    
    +    tensorkrowch.decompositions.svd_decompositions — TensorKrowch 1.0.1 documentation
    +    
    +  
    +  
    +
    +
    +    
    +  
    +  
    +  
    +
    +    
    +    
    +    
    +    
    +  
    +  
    +
    +    
    +    
    +    
    +    
    +    
    +    
    +    
    +    
    +    
    +    
    +    
    +    
    +    
    +
    +    
    +    
    +  
    +  
    +
    +
    +
    +
    +
    +
    +
    +
    +
    + + + + + + +
    +
    + + + + + + + + + + +
    + +
    + +
    + + + + +
    +
    + + + + +
    +
    + + + + + + + + + + +
    +
    + + +
    +
    +
    +
    +
    + +
    +

    + +
    +
    + +
    +
    +
    +
    + +
    + +

    Source code for tensorkrowch.decompositions.svd_decompositions

    +"""
    +This script contains:
    +
    +    * vec_to_mps
    +    * mat_to_mpo
    +"""
    +
    +from typing import (List, Optional)
    +
    +import torch
    +
    +
    +
    [docs]def vec_to_mps(vec: torch.Tensor, + n_batches: int = 0, + rank: Optional[int] = None, + cum_percentage: Optional[float] = None, + cutoff: Optional[float] = None) -> List[torch.Tensor]: + r""" + Splits a vector into a sequence of MPS tensors via consecutive SVD + decompositions. The resultant tensors can be used to instantiate a + :class:`~tensorkrowch.models.MPS` with ``boundary = "obc"``. + + The number of resultant tensors and their respective physical dimensions + depend on the shape of the input vector. That is, if one expects to recover + a MPS with physical dimensions + + .. math:: + + d_1 \times \cdots \times d_n + + the input vector will have to be provided with that shape. This can be done + with `reshape <https://pytorch.org/docs/stable/generated/torch.reshape.html>`_. + + If the input vector has batch dimensions, having as shape + + .. math:: + + b_1 \times \cdots \times b_m \times d_1 \times \cdots \times d_n + + the number of batch dimensions :math:`m` can be specified in ``n_batches``. + In this case, the resultant tensors will all have the extra batch dimensions. + These tensors can be used to instantiate a :class:`~tensorkrowch.models.MPSData` + with ``boundary = "obc"``. + + To specify the bond dimension of each cut done via SVD, one can use the + arguments ``rank``, ``cum_percentage`` and ``cutoff``. If more than + one is specified, the resulting rank will be the one that satisfies all + conditions. + + Parameters + ---------- + vec : torch.Tensor + Input vector to decompose. + n_batches : int + Number of batch dimensions of the input vector. Each resultant tensor + will have also the corresponding batch dimensions. It should be between + 0 and the rank of ``vec``. + rank : int, optional + Number of singular values to keep. + cum_percentage : float, optional + Proportion that should be satisfied between the sum of all singular + values kept and the total sum of all singular values. + + .. math:: + + \frac{\sum_{i \in \{kept\}}{s_i}}{\sum_{i \in \{all\}}{s_i}} \ge + cum\_percentage + cutoff : float, optional + Quantity that lower bounds singular values in order to be kept. + + Returns + ------- + List[torch.Tensor] + """ + if not isinstance(vec, torch.Tensor): + raise TypeError('`vec` should be torch.Tensor type') + + if n_batches > len(vec.shape): + raise ValueError( + '`n_batches` should be between 0 and the rank of `vec`') + + batches_shape = vec.shape[:n_batches] + phys_dims = torch.tensor(vec.shape[n_batches:]) + + prev_bond = 1 + tensors = [] + for i in range(len(phys_dims) - 1): + vec = vec.view(*batches_shape, + prev_bond * phys_dims[i], + phys_dims[(i + 1):].prod()) + + u, s, vh = torch.linalg.svd(vec, full_matrices=False) + + lst_ranks = [] + + if rank is None: + rank = s.shape[-1] + lst_ranks.append(rank) + else: + lst_ranks.append(min(max(1, int(rank)), s.shape[-1])) + + if cum_percentage is not None: + s_percentages = s.cumsum(-1) / \ + (s.sum(-1, keepdim=True).expand(s.shape) + 1e-10) # To avoid having all 0's + cum_percentage_tensor = cum_percentage * torch.ones_like(s) + cp_rank = torch.lt( + s_percentages, + cum_percentage_tensor + ).view(-1, s.shape[-1]).all(dim=0).sum() + lst_ranks.append(max(1, cp_rank.item() + 1)) + + if cutoff is not None: + cutoff_tensor = cutoff * torch.ones_like(s) + co_rank = torch.ge( + s, + cutoff_tensor + ).view(-1, s.shape[-1]).all(dim=0).sum() + lst_ranks.append(max(1, co_rank.item())) + + # Select rank from specified restrictions + rank = min(lst_ranks) + + u = u[..., :rank] + if i > 0: + u = u.reshape(*batches_shape, prev_bond, phys_dims[i], rank) + + s = s[..., :rank] + vh = vh[..., :rank, :] + vh = torch.diag_embed(s) @ vh + + tensors.append(u) + prev_bond = rank + vec = torch.diag_embed(s) @ vh + + tensors.append(vec) + return tensors
    + + +
    [docs]def mat_to_mpo(mat: torch.Tensor, + rank: Optional[int] = None, + cum_percentage: Optional[float] = None, + cutoff: Optional[float] = None) -> List[torch.Tensor]: + r""" + Splits a matrix into a sequence of MPO tensors via consecutive SVD + decompositions. The resultant tensors can be used to instantiate a + :class:`~tensorkrowch.models.MPO` with ``boundary = "obc"``. + + The number of resultant tensors and their respective input/output dimensions + depend on the shape of the input matrix. That is, if one expects to recover + a MPO with input/output dimensions + + .. math:: + + in_1 \times out_1 \times \cdots \times in_n \times out_n + + the input matrix will have to be provided with that shape. Thus it must + have an even number of dimensions. To accomplish this, it may happen that + some input/output dimensions are 1. This can be done with + `reshape <https://pytorch.org/docs/stable/generated/torch.reshape.html>`_. + + To specify the bond dimension of each cut done via SVD, one can use the + arguments ``rank``, ``cum_percentage`` and ``cutoff``. If more than + one is specified, the resulting rank will be the one that satisfies all + conditions. + + Parameters + ---------- + mat : torch.Tensor + Input matrix to decompose. It must have an even number of dimensions. + rank : int, optional + Number of singular values to keep. + cum_percentage : float, optional + Proportion that should be satisfied between the sum of all singular + values kept and the total sum of all singular values. + + .. math:: + + \frac{\sum_{i \in \{kept\}}{s_i}}{\sum_{i \in \{all\}}{s_i}} \ge + cum\_percentage + cutoff : float, optional + Quantity that lower bounds singular values in order to be kept. + + Returns + ------- + List[torch.Tensor] + """ + if not isinstance(mat, torch.Tensor): + raise TypeError('`mat` should be torch.Tensor type') + if not len(mat.shape) % 2 == 0: + raise ValueError('`mat` have an even number of dimensions') + + in_out_dims = torch.tensor(mat.shape) + if len(in_out_dims) == 2: + return [mat] + + prev_bond = 1 + tensors = [] + for i in range(0, len(in_out_dims) - 2, 2): + mat = mat.view(prev_bond * in_out_dims[i] * in_out_dims[i + 1], + in_out_dims[(i + 2):].prod()) + + u, s, vh = torch.linalg.svd(mat, full_matrices=False) + + lst_ranks = [] + + if rank is None: + rank = s.shape[-1] + lst_ranks.append(rank) + else: + lst_ranks.append(min(max(1, int(rank)), s.shape[-1])) + + if cum_percentage is not None: + s_percentages = s.cumsum(-1) / \ + (s.sum(-1, keepdim=True).expand(s.shape) + 1e-10) # To avoid having all 0's + cum_percentage_tensor = cum_percentage * torch.ones_like(s) + cp_rank = torch.lt( + s_percentages, + cum_percentage_tensor + ).view(-1, s.shape[-1]).all(dim=0).sum() + lst_ranks.append(max(1, cp_rank.item() + 1)) + + if cutoff is not None: + cutoff_tensor = cutoff * torch.ones_like(s) + co_rank = torch.ge( + s, + cutoff_tensor + ).view(-1, s.shape[-1]).all(dim=0).sum() + lst_ranks.append(max(1, co_rank.item())) + + # Select rank from specified restrictions + rank = min(lst_ranks) + + u = u[..., :rank] + if i == 0: + u = u.reshape(in_out_dims[i], in_out_dims[i + 1], rank) + u = u.permute(0, 2, 1) # left x input x right + else: + u = u.reshape(prev_bond, in_out_dims[i], in_out_dims[i + 1], rank) + u = u.permute(0, 1, 3, 2) # left x input x right x output + + s = s[..., :rank] + vh = vh[..., :rank, :] + vh = torch.diag_embed(s) @ vh + + tensors.append(u) + prev_bond = rank + mat = torch.diag_embed(s) @ vh + + mat = mat.reshape(rank, in_out_dims[-2], in_out_dims[-1]) + tensors.append(mat) + return tensors
    +
    + +
    + +
    +
    + + +
    +
    +
    +
    +
    + + +
    + + +
    +
    + + + + + + + \ No newline at end of file diff --git a/docs/_build/html/_modules/tensorkrowch/embeddings.html b/docs/_build/html/_modules/tensorkrowch/embeddings.html index b6afa67..7c5d2db 100644 --- a/docs/_build/html/_modules/tensorkrowch/embeddings.html +++ b/docs/_build/html/_modules/tensorkrowch/embeddings.html @@ -1,11 +1,11 @@ - + - tensorkrowch.embeddings — TensorKrowch 1.0.0 documentation + tensorkrowch.embeddings — TensorKrowch 1.0.1 documentation @@ -29,17 +29,15 @@ - - - + @@ -180,6 +178,11 @@ Embeddings +
  • + + Decompositions + +
  • @@ -295,7 +298,7 @@

    Source code for tensorkrowch.embeddings

     from tensorkrowch.utils import binomial_coeffs
     
     
    -
    [docs]def unit(data: torch.Tensor, dim: int = 2) -> torch.Tensor: +
    [docs]def unit(data: torch.Tensor, dim: int = 2, axis: int = -1) -> torch.Tensor: r""" Embedds the data tensor using the local feature map defined in the original `paper <https://arxiv.org/abs/1605.05775>`_ by E. Miles Stoudenmire and David @@ -325,21 +328,25 @@

    Source code for tensorkrowch.embeddings

             
             .. math::
             
    -            batch\_size \times n_{features}
    +            (batch_0 \times \cdots \times batch_n \times) n_{features}
             
             That is, ``data`` is a (batch) vector with :math:`n_{features}`
    -        components. The :math:`batch\_size` is optional.
    +        components. The :math:`batch` sizes are optional.
         dim : int
             New feature dimension.
    +    axis : int
    +        Axis where the ``data`` tensor is 'expanded'. Should be between 0 and
    +        the rank of ``data``. By default, it is -1, which returns a tensor with
    +        shape  
    +        
    +        .. math::
    +        
    +            (batch_0 \times \cdots \times batch_n \times) n_{features}
    +            \times dim
                 
         Returns
         -------
         torch.Tensor
    -        New data tensor with shape
    -        
    -        .. math::
    -        
    -            batch\_size \times n_{features} \times dim
                 
         Examples
         --------
    @@ -356,17 +363,20 @@ 

    Source code for tensorkrowch.embeddings

                 [-4.3711e-08,  1.0000e+00]])
         
         >>> b = torch.randn(100, 5)
    -    >>> emb_b = tk.embeddings.unit(b)
    +    >>> emb_b = tk.embeddings.unit(b, dim=6)
         >>> emb_b.shape
    -    torch.Size([100, 5, 2])
    +    torch.Size([100, 5, 6])
         """
    +    if not isinstance(data, torch.Tensor):
    +        raise TypeError('`data` should be torch.Tensor type')
    +    
         lst_tensors = []
         for i in range(1, dim + 1):
             aux = sqrt(binomial_coeffs(dim - 1, i - 1)) * \
                   (pi / 2 * data).cos().pow(dim - i) * \
                   (pi / 2 * data).sin().pow(i - 1)
             lst_tensors.append(aux)
    -    return torch.stack(lst_tensors, dim=-1)
    + return torch.stack(lst_tensors, dim=axis)
    [docs]def add_ones(data: torch.Tensor, axis: int = -1) -> torch.Tensor: @@ -395,22 +405,23 @@

    Source code for tensorkrowch.embeddings

         Parameters
         ----------
         data : torch.Tensor
    -        Data tensor with shape  
    +        Data tensor with shape 
             
             .. math::
             
    -            batch\_size \times n_{features}
    -            
    +            (batch_0 \times \cdots \times batch_n \times) n_{features}
    +        
             That is, ``data`` is a (batch) vector with :math:`n_{features}`
    -        components. The :math:`batch\_size` is optional.
    +        components. The :math:`batch` sizes are optional.
         axis : int
    -        Axis where the ``data`` tensor is 'expanded' with the 1's. Should be
    -        between 0 and the rank of ``data``. By default, it is -1, which returns
    -        a tensor with shape  
    +        Axis where the ``data`` tensor is 'expanded'. Should be between 0 and
    +        the rank of ``data``. By default, it is -1, which returns a tensor with
    +        shape  
             
             .. math::
             
    -            batch\_size \times n_{features} \times 2
    +            (batch_0 \times \cdots \times batch_n \times) n_{features}
    +            \times 2
                 
         Returns
         -------
    @@ -435,6 +446,8 @@ 

    Source code for tensorkrowch.embeddings

         >>> emb_b.shape
         torch.Size([100, 5, 2])
         """
    +    if not isinstance(data, torch.Tensor):
    +        raise TypeError('`data` should be torch.Tensor type')
         return torch.stack([torch.ones_like(data), data], dim=axis)
    @@ -471,20 +484,22 @@

    Source code for tensorkrowch.embeddings

             
             .. math::
             
    -            batch\_size \times n_{features}
    -            
    +            (batch_0 \times \cdots \times batch_n \times) n_{features}
    +        
             That is, ``data`` is a (batch) vector with :math:`n_{features}`
    -        components. The :math:`batch\_size` is optional.
    +        components. The :math:`batch` sizes are optional.
         degree : int
    -        Maximum degree of the monomials.
    +        Maximum degree of the monomials. The feature dimension will be
    +        ``degree + 1``.
         axis : int
    -        Axis where the ``data`` tensor is 'expanded' with monomials. Should be
    -        between 0 and the rank of ``data``. By default, it is -1, which returns
    -        a tensor with shape 
    +        Axis where the ``data`` tensor is 'expanded'. Should be between 0 and
    +        the rank of ``data``. By default, it is -1, which returns a tensor with
    +        shape  
             
             .. math::
             
    -            batch\_size \times n_{features} \times (degree + 1)
    +            (batch_0 \times \cdots \times batch_n \times) n_{features}
    +            \times (degree + 1)
                 
         Returns
         -------
    @@ -505,14 +520,201 @@ 

    Source code for tensorkrowch.embeddings

                 [1., 2., 4.]])
         
         >>> b = torch.randn(100, 5)
    -    >>> emb_b = tk.embeddings.poly(b)
    +    >>> emb_b = tk.embeddings.poly(b, degree=3)
         >>> emb_b.shape
    -    torch.Size([100, 5, 3])
    +    torch.Size([100, 5, 4])
         """
    +    if not isinstance(data, torch.Tensor):
    +        raise TypeError('`data` should be torch.Tensor type')
    +    
         lst_powers = []
         for i in range(degree + 1):
             lst_powers.append(data.pow(i))
         return torch.stack(lst_powers, dim=axis)
    + + +
    [docs]def discretize(data: torch.Tensor, + level: int, + base: int = 2, + axis: int = -1) -> torch.Tensor: + r""" + Embedds the data tensor discretizing each variable in a certain ``basis`` + and with a certain ``level`` of precision, assuming the values to discretize + are all between 0 and 1. That is, given a vector + + .. math:: + + x = \begin{bmatrix} + x_1\\ + \vdots\\ + x_N + \end{bmatrix} + + returns a matrix + + .. math:: + + \hat{x} = \begin{bmatrix} + \lfloor x_1 b^1 \rfloor \mod b & \cdots & + \lfloor x_1 b^{l} \rfloor \mod b\\ + \vdots & \ddots & \vdots\\ + \lfloor x_N b^1 \rfloor \mod b & \cdots & + \lfloor x_N b^{l} \rfloor \mod b + \end{bmatrix} + + where :math:`b` stands for ``base``, and :math:`l` for ``level``. + + Parameters + ---------- + data : torch.Tensor + Data tensor with shape + + .. math:: + + (batch_0 \times \cdots \times batch_n \times) n_{features} + + That is, ``data`` is a (batch) vector with :math:`n_{features}` + components. The :math:`batch` sizes are optional. The ``data`` tensor + is assumed to have elements between 0 and 1. + level : int + Level of precision of the discretization. This will be the new feature + dimension. + base : int + The base of the discretization. + axis : int + Axis where the ``data`` tensor is 'expanded'. Should be between 0 and + the rank of ``data``. By default, it is -1, which returns a tensor with + shape + + .. math:: + + (batch_0 \times \cdots \times batch_n \times) n_{features} + \times level + + Returns + ------- + torch.Tensor + + Examples + -------- + >>> a = torch.tensor([0, 0.5, 0.75, 1]) + >>> a + tensor([0.0000, 0.5000, 0.7500, 1.0000]) + + >>> emb_a = tk.embeddings.discretize(a, level=3) + >>> emb_a + tensor([[0., 0., 0.], + [1., 0., 0.], + [1., 1., 0.], + [1., 1., 1.]]) + + >>> b = torch.rand(100, 5) + >>> emb_b = tk.embeddings.discretize(b, level=3) + >>> emb_b.shape + torch.Size([100, 5, 3]) + """ + if not isinstance(data, torch.Tensor): + raise TypeError('`data` should be torch.Tensor type') + if not torch.ge(data, torch.zeros_like(data)).all(): + raise ValueError('Elements of `data` should be between 0 and 1') + if not torch.le(data, torch.ones_like(data)).all(): + raise ValueError('Elements of `data` should be between 0 and 1') + + max_discr_value = (base - 1) * sum([base ** -i for i in range(1, level + 1)]) + data = torch.where(data > max_discr_value, max_discr_value, data) + + base = torch.tensor(base, device=data.device) + ids = [torch.remainder((data * base.pow(i)).floor(), base) + for i in range(1, level + 1)] + ids = torch.stack(ids, dim=axis) + return ids
    + + +
    [docs]def basis(data: torch.Tensor, dim: int = 2, axis: int = -1) -> torch.Tensor: + r""" + Embedds the data tensor transforming each value, assumed to be an integer + between 0 and ``dim - 1``, into the corresponding vector of the + computational basis. That is, given a vector + + .. math:: + + x = \begin{bmatrix} + x_1\\ + \vdots\\ + x_N + \end{bmatrix} + + returns a matrix + + .. math:: + + \hat{x} = \begin{bmatrix} + \lvert x_1 \rangle\\ + \vdots\\ + \lvert x_N \rangle + \end{bmatrix} + + Parameters + ---------- + data : torch.Tensor + Data tensor with shape + + .. math:: + + (batch_0 \times \cdots \times batch_n \times) n_{features} + + That is, ``data`` is a (batch) vector with :math:`n_{features}` + components. The :math:`batch` sizes are optional. The ``data`` tensor + is assumed to have integer elements between 0 and ``dim - 1``. + dim : int + The dimension of the computational basis. This will be the new feature + dimension. + axis : int + Axis where the ``data`` tensor is 'expanded'. Should be between 0 and + the rank of ``data``. By default, it is -1, which returns a tensor with + shape + + .. math:: + + (batch_0 \times \cdots \times batch_n \times) n_{features} + \times dim + + Returns + ------- + torch.Tensor + + Examples + -------- + >>> a = torch.arange(5) + >>> a + tensor([0, 1, 2, 3, 4]) + + >>> emb_a = tk.embeddings.basis(a, dim=5) + >>> emb_a + tensor([[1, 0, 0, 0, 0], + [0, 1, 0, 0, 0], + [0, 0, 1, 0, 0], + [0, 0, 0, 1, 0], + [0, 0, 0, 0, 1]]) + + >>> b = torch.randint(low=0, high=10, size=(100, 5)) + >>> emb_b = tk.embeddings.basis(b, dim=10) + >>> emb_b.shape + torch.Size([100, 5, 10]) + """ + if not isinstance(data, torch.Tensor): + raise TypeError('`data` should be torch.Tensor type') + if torch.is_floating_point(data): + raise ValueError('`data` should be a tensor of integers') + if not torch.ge(data, torch.zeros_like(data)).all(): + raise ValueError('Elements of `data` should be between 0 and (dim - 1)') + if not torch.le(data, torch.ones_like(data) * (dim - 1)).all(): + raise ValueError('Elements of `data` should be between 0 and (dim - 1)') + + ids = torch.arange(dim, device=data.device).repeat(*data.shape, 1) + ids = torch.where(ids == data.unsqueeze(-1), 1, 0) + ids = ids.movedim(-1, axis) + return ids
    diff --git a/docs/_build/html/_modules/tensorkrowch/initializers.html b/docs/_build/html/_modules/tensorkrowch/initializers.html index c10abfd..23c7d52 100644 --- a/docs/_build/html/_modules/tensorkrowch/initializers.html +++ b/docs/_build/html/_modules/tensorkrowch/initializers.html @@ -1,11 +1,11 @@ - + - tensorkrowch.initializers — TensorKrowch 1.0.0 documentation + tensorkrowch.initializers — TensorKrowch 1.0.1 documentation @@ -29,17 +29,15 @@ - - - + @@ -180,6 +178,11 @@ Embeddings +
  • + + Decompositions + +
  • diff --git a/docs/_build/html/_modules/tensorkrowch/models/mpo.html b/docs/_build/html/_modules/tensorkrowch/models/mpo.html new file mode 100644 index 0000000..0ccc6ef --- /dev/null +++ b/docs/_build/html/_modules/tensorkrowch/models/mpo.html @@ -0,0 +1,1293 @@ + + + + + + + + tensorkrowch.models.mpo — TensorKrowch 1.0.1 documentation + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    +
    + + + + + + +
    +
    + + + + + + + + + + +
    + +
    + +
    + + + + +
    +
    + + + + +
    +
    + + + + + + + + + + +
    +
    + + +
    +
    +
    +
    +
    + +
    +

    + +
    +
    + +
    +
    +
    +
    + +
    + +

    Source code for tensorkrowch.models.mpo

    +"""
    +This script contains:
    +    * MPO:
    +        + UMPO
    +"""
    +
    +import warnings
    +from typing import (List, Optional, Sequence,
    +                    Text, Tuple, Union)
    +
    +import torch
    +
    +import tensorkrowch.operations as op
    +from tensorkrowch.components import AbstractNode, Node, ParamNode
    +from tensorkrowch.components import TensorNetwork
    +from tensorkrowch.models import MPSData
    +
    +
    +
    [docs]class MPO(TensorNetwork): # MARK: MPO + """ + Class for Matrix Product Operators. This is the base class from which + :class:`UMPO` inherits. + + Matrix Product Operators are formed by: + + * ``mats_env``: Environment of `matrix` nodes with axes + ``("left", "input", "right", "output")``. + + * ``left_node``, ``right_node``: `Vector` nodes with axes ``("right",)`` + and ``("left",)``, respectively. These are used to close the boundary + in the case ``boudary`` is ``"obc"``. Otherwise, both are ``None``. + + In contrast with :class:`MPS`, in ``MPO`` all nodes act both as input and + output, with corresponding edges dedicated to that. Thus, data nodes will + be connected to the ``"input"`` edge of all nodes. Upon contraction of the + whole network, a resultant tensor will be formed, with as many dimensions + as nodes were in the MPO. + + If all nodes have the same input dimensions, the input data tensor can be + passed as a single tensor. Otherwise, it would have to be passed as a list + of tensors with different sizes. + + Parameters + ---------- + n_features : int, optional + Number of nodes that will be in ``mats_env``. That is, number of nodes + without taking into account ``left_node`` and ``right_node``. + in_dim : int, list[int] or tuple[int], optional + Input dimension(s). If given as a sequence, its length should be equal + to ``n_features``. + out_dim : int, list[int] or tuple[int], optional + Output dimension(s). If given as a sequence, its length should be equal + to ``n_features``. + bond_dim : int, list[int] or tuple[int], optional + Bond dimension(s). If given as a sequence, its length should be equal + to ``n_features`` (if ``boundary = "pbc"``) or ``n_features - 1`` (if + ``boundary = "obc"``). The i-th bond dimension is always the dimension + of the right edge of the i-th node. + boundary : {"obc", "pbc"} + String indicating whether periodic or open boundary conditions should + be used. + tensors: list[torch.Tensor] or tuple[torch.Tensor], optional + Instead of providing ``n_features``, ``in_dim``, ``in_dim``, ``bond_dim`` + and ``boundary``, a list of MPO tensors can be provided. In such case, + all mentioned attributes will be inferred from the given tensors. All + tensors should be rank-4 tensors, with shape ``(bond_dim, in_dim, + bond_dim, out_dim)``. If the first and last elements are rank-3 tensors, + with shapes ``(in_dim, bond_dim, out_dim)``, ``(bond_dim, in_dim, out_dim)``, + respectively, the inferred boundary conditions will be "obc". Also, if + ``tensors`` contains a single element, it can be rank-2 ("obc") or + rank-4 ("pbc"). + n_batches : int + Number of batch edges of input ``data`` nodes. Usually ``n_batches = 1`` + (where the batch edge is used for the data batched) but it could also + be ``n_batches = 2`` (one edge for data batched, other edge for image + patches in convolutional layers). + init_method : {"zeros", "ones", "copy", "rand", "randn"}, optional + Initialization method. Check :meth:`initialize` for a more detailed + explanation of the different initialization methods. + device : torch.device, optional + Device where to initialize the tensors if ``init_method`` is provided. + kwargs : float + Keyword arguments for the different initialization methods. See + :meth:`~tensorkrowch.AbstractNode.make_tensor`. + + Examples + -------- + ``MPO`` with same input/output dimensions: + + >>> mpo = tk.models.MPO(n_features=5, + ... in_dim=2, + ... out_dim=2, + ... bond_dim=5) + >>> data = torch.ones(20, 5, 2) # batch_size x n_features x feature_size + >>> result = mpo(data) + >>> result.shape + torch.Size([20, 2, 2, 2, 2, 2]) + + ``MPO`` with different input/physical dimensions: + + >>> mpo = tk.models.MPO(n_features=5, + ... in_dim=list(range(2, 7)), + ... out_dim=list(range(7, 2, -1)), + ... bond_dim=5) + >>> data = [torch.ones(20, i) + ... for i in range(2, 7)] # n_features * [batch_size x feature_size] + >>> result = mpo(data) + >>> result.shape + torch.Size([20, 7, 6, 5, 4, 3]) + """ + + def __init__(self, + n_features: Optional[int] = None, + in_dim: Optional[Union[int, Sequence[int]]] = None, + out_dim: Optional[Union[int, Sequence[int]]] = None, + bond_dim: Optional[Union[int, Sequence[int]]] = None, + boundary: Text = 'obc', + tensors: Optional[Sequence[torch.Tensor]] = None, + n_batches: int = 1, + init_method: Text = 'randn', + device: Optional[torch.device] = None, + **kwargs) -> None: + + super().__init__(name='mpo') + + if tensors is None: + # boundary + if boundary not in ['obc', 'pbc']: + raise ValueError('`boundary` should be one of "obc" or "pbc"') + self._boundary = boundary + + # n_features + if not isinstance(n_features, int): + raise TypeError('`n_features` should be int type') + elif n_features < 1: + raise ValueError('`n_features` should be at least 1') + self._n_features = n_features + + # in_dim + if isinstance(in_dim, (list, tuple)): + if len(in_dim) != n_features: + raise ValueError('If `in_dim` is given as a sequence of int, ' + 'its length should be equal to `n_features`') + self._in_dim = list(in_dim) + elif isinstance(in_dim, int): + self._in_dim = [in_dim] * n_features + else: + raise TypeError('`in_dim` should be int, tuple[int] or list[int] ' + 'type') + + # out_dim + if isinstance(out_dim, (list, tuple)): + if len(out_dim) != n_features: + raise ValueError('If `out_dim` is given as a sequence of int, ' + 'its length should be equal to `n_features`') + self._out_dim = list(out_dim) + elif isinstance(out_dim, int): + self._out_dim = [out_dim] * n_features + else: + raise TypeError('`out_dim` should be int, tuple[int] or list[int] ' + 'type') + + # bond_dim + if isinstance(bond_dim, (list, tuple)): + if boundary == 'obc': + if len(bond_dim) != n_features - 1: + raise ValueError( + 'If `bond_dim` is given as a sequence of int, and ' + '`boundary` is "obc", its length should be equal ' + 'to `n_features` - 1') + elif boundary == 'pbc': + if len(bond_dim) != n_features: + raise ValueError( + 'If `bond_dim` is given as a sequence of int, and ' + '`boundary` is "pbc", its length should be equal ' + 'to `n_features`') + self._bond_dim = list(bond_dim) + elif isinstance(bond_dim, int): + if boundary == 'obc': + self._bond_dim = [bond_dim] * (n_features - 1) + elif boundary == 'pbc': + self._bond_dim = [bond_dim] * n_features + else: + raise TypeError('`bond_dim` should be int, tuple[int] or list[int]' + ' type') + + else: + if not isinstance(tensors, (list, tuple)): + raise TypeError('`tensors` should be a tuple[torch.Tensor] or ' + 'list[torch.Tensor] type') + else: + self._n_features = len(tensors) + self._in_dim = [] + self._out_dim = [] + self._bond_dim = [] + for i, t in enumerate(tensors): + if not isinstance(t, torch.Tensor): + raise TypeError('`tensors` should be a tuple[torch.Tensor]' + ' or list[torch.Tensor] type') + + if i == 0: + if len(t.shape) not in [2, 3, 4]: + raise ValueError( + 'The first and last elements in `tensors` ' + 'should be both rank-3 or rank-4 tensors. If' + ' the first element is also the last one,' + ' it should be a rank-2 tensor') + if len(t.shape) == 2: + self._boundary = 'obc' + self._in_dim.append(t.shape[0]) + self._out_dim.append(t.shape[1]) + elif len(t.shape) == 3: + self._boundary = 'obc' + self._in_dim.append(t.shape[0]) + self._bond_dim.append(t.shape[1]) + self._out_dim.append(t.shape[2]) + else: + self._boundary = 'pbc' + self._in_dim.append(t.shape[1]) + self._bond_dim.append(t.shape[2]) + self._out_dim.append(t.shape[3]) + elif i == (self._n_features - 1): + if len(t.shape) != len(tensors[0].shape): + raise ValueError( + 'The first and last elements in `tensors` ' + 'should have the same rank. Both should be ' + 'rank-3 or rank-4 tensors. If the first ' + 'element is also the last one, it should ' + 'be a rank-2 tensor') + if len(t.shape) == 3: + self._in_dim.append(t.shape[1]) + self._out_dim.append(t.shape[2]) + else: + if t.shape[2] != tensors[0].shape[0]: + raise ValueError( + 'If the first and last elements in `tensors`' + ' are rank-4 tensors, the first dimension ' + 'of the first element should coincide with' + ' the third dimension of the last element') + self._in_dim.append(t.shape[1]) + self._bond_dim.append(t.shape[2]) + self._out_dim.append(t.shape[3]) + else: + if len(t.shape) != 4: + raise ValueError( + 'The elements of `tensors` should be rank-4 ' + 'tensors, except the first and lest elements' + ' if boundary is "obc"') + self._in_dim.append(t.shape[1]) + self._bond_dim.append(t.shape[2]) + self._out_dim.append(t.shape[3]) + + # n_batches + if not isinstance(n_batches, int): + raise TypeError('`n_batches` should be int type') + self._n_batches = n_batches + + # Properties + self._left_node = None + self._right_node = None + self._mats_env = [] + + # Create Tensor Network + self._make_nodes() + self.initialize(tensors=tensors, + init_method=init_method, + device=device, + **kwargs) + + # ---------- + # Properties + # ---------- + @property + def n_features(self) -> int: + """Returns number of nodes.""" + return self._n_features + + @property + def in_dim(self) -> List[int]: + """Returns input dimensions.""" + return self._in_dim + + @property + def out_dim(self) -> List[int]: + """Returns output dimensions.""" + return self._out_dim + + @property + def bond_dim(self) -> List[int]: + """Returns bond dimensions.""" + return self._bond_dim + + @property + def boundary(self) -> Text: + """Returns boundary condition ("obc" or "pbc").""" + return self._boundary + + @property + def n_batches(self) -> int: + """ + Returns number of batch edges of the ``data`` nodes. To change this + attribute, first call :meth:`~tensorkrowch.TensorNetwork.unset_data_nodes` + if there are already data nodes in the network. + """ + return self._n_batches + + @n_batches.setter + def n_batches(self, n_batches: int) -> None: + if n_batches != self._n_batches: + if self._data_nodes: + raise ValueError( + '`n_batches` cannot be changed if the MPS has data nodes. ' + 'Use unset_data_nodes first') + elif not isinstance(n_batches, int): + raise TypeError('`n_batches` should be int type') + self._n_batches = n_batches + + @property + def left_node(self) -> Optional[AbstractNode]: + """Returns the ``left_node``.""" + return self._left_node + + @property + def right_node(self) -> Optional[AbstractNode]: + """Returns the ``right_node``.""" + return self._right_node + + @property + def mats_env(self) -> List[AbstractNode]: + """Returns the list of nodes in ``mats_env``.""" + return self._mats_env + + # ------- + # Methods + # ------- + def _make_nodes(self) -> None: + """Creates all the nodes of the MPO.""" + if self._leaf_nodes: + raise ValueError('Cannot create MPO nodes if the MPO already has ' + 'nodes') + + aux_bond_dim = self._bond_dim + + if self._boundary == 'obc': + if not aux_bond_dim: + aux_bond_dim = [1] + + self._left_node = ParamNode(shape=(aux_bond_dim[0],), + axes_names=('right',), + name='left_node', + network=self) + self._right_node = ParamNode(shape=(aux_bond_dim[-1],), + axes_names=('left',), + name='right_node', + network=self) + + aux_bond_dim = aux_bond_dim + [aux_bond_dim[-1]] + [aux_bond_dim[0]] + + for i in range(self._n_features): + node = ParamNode(shape=(aux_bond_dim[i - 1], + self._in_dim[i], + aux_bond_dim[i], + self._out_dim[i]), + axes_names=('left', 'input', 'right', 'output'), + name=f'mats_env_node_({i})', + network=self) + self._mats_env.append(node) + + if i != 0: + self._mats_env[-2]['right'] ^ self._mats_env[-1]['left'] + + if self._boundary == 'pbc': + if i == 0: + periodic_edge = self._mats_env[-1]['left'] + if i == self._n_features - 1: + self._mats_env[-1]['right'] ^ periodic_edge + else: + if i == 0: + self._left_node['right'] ^ self._mats_env[-1]['left'] + if i == self._n_features - 1: + self._mats_env[-1]['right'] ^ self._right_node['left'] + +
    [docs] def initialize(self, + tensors: Optional[Sequence[torch.Tensor]] = None, + init_method: Optional[Text] = 'randn', + device: Optional[torch.device] = None, + **kwargs: float) -> None: + """ + Initializes all the nodes of the :class:`MPO`. It can be called when + instantiating the model, or to override the existing nodes' tensors. + + There are different methods to initialize the nodes: + + * ``{"zeros", "ones", "copy", "rand", "randn"}``: Each node is + initialized calling :meth:`~tensorkrowch.AbstractNode.set_tensor` with + the given method, ``device`` and ``kwargs``. + + Parameters + ---------- + tensors : list[torch.Tensor] or tuple[torch.Tensor], optional + Sequence of tensors to set in each of the MPO nodes. If ``boundary`` + is ``"obc"``, all tensors should be rank-4, except the first and + last ones, which can be rank-3, or rank-2 (if the first and last are + the same). If ``boundary`` is ``"pbc"``, all tensors should be + rank-4. + init_method : {"zeros", "ones", "copy", "rand", "randn"}, optional + Initialization method. + device : torch.device, optional + Device where to initialize the tensors if ``init_method`` is provided. + kwargs : float + Keyword arguments for the different initialization methods. See + :meth:`~tensorkrowch.AbstractNode.make_tensor`. + """ + if self._boundary == 'obc': + self._left_node.set_tensor(init_method='copy', device=device) + self._right_node.set_tensor(init_method='copy', device=device) + + if tensors is not None: + if len(tensors) != self._n_features: + raise ValueError('`tensors` should be a sequence of `n_features`' + ' elements') + + if self._boundary == 'obc': + tensors = tensors[:] + if len(tensors) == 1: + tensors[0] = tensors[0].reshape(1, + tensors[0].shape[0], + 1, + tensors[0].shape[1]) + + else: + # Left node + aux_tensor = torch.zeros(*self._mats_env[0].shape, + device=tensors[0].device) + aux_tensor[0] = tensors[0] + tensors[0] = aux_tensor + + # Right node + aux_tensor = torch.zeros(*self._mats_env[-1].shape, + device=tensors[-1].device) + aux_tensor[..., 0, :] = tensors[-1] + tensors[-1] = aux_tensor + + for tensor, node in zip(tensors, self._mats_env): + node.tensor = tensor + + elif init_method is not None: + + for i, node in enumerate(self._mats_env): + node.set_tensor(init_method=init_method, + device=device, + **kwargs) + + if self._boundary == 'obc': + aux_tensor = torch.zeros(*node.shape, device=device) + if i == 0: + # Left node + aux_tensor[0] = node.tensor[0] + elif i == (self._n_features - 1): + # Right node + aux_tensor[..., 0, :] = node.tensor[..., 0, :] + node.tensor = aux_tensor
    + +
    [docs] def set_data_nodes(self) -> None: + """ + Creates ``data`` nodes and connects each of them to the ``"input"`` + edge of each node. + """ + input_edges = [node['input'] for node in self._mats_env] + super().set_data_nodes(input_edges=input_edges, + num_batch_edges=self._n_batches)
    + +
    [docs] def copy(self, share_tensors: bool = False) -> 'MPO': + """ + Creates a copy of the :class:`MPO`. + + Parameters + ---------- + share_tensor : bool, optional + Boolean indicating whether tensors in the copied MPO should be + set as the tensors in the current MPO (``True``), or cloned + (``False``). In the former case, tensors in both MPO's will be + the same, which might be useful if one needs more than one copy + of an MPO, but wants to compute all the gradients with respect + to the same, unique, tensors. + + Returns + ------- + MPO + """ + new_mpo = MPO(n_features=self._n_features, + in_dim=self._in_dim, + out_dim=self._out_dim, + bond_dim=self._bond_dim, + boundary=self._boundary, + tensors=None, + n_batches=self._n_batches, + init_method=None, + device=None) + new_mpo.name = self.name + '_copy' + if share_tensors: + for new_node, node in zip(new_mpo._mats_env, self._mats_env): + new_node.tensor = node.tensor + else: + for new_node, node in zip(new_mpo._mats_env, self._mats_env): + new_node.tensor = node.tensor.clone() + + return new_mpo
    + +
    [docs] def parameterize(self, + set_param: bool = True, + override: bool = False) -> 'TensorNetwork': + """ + Parameterizes all nodes of the MPO. If there are ``resultant`` nodes + in the MPO, it will be first :meth:`~tensorkrowch.TensorNetwork.reset`. + + Parameters + ---------- + set_param : bool + Boolean indicating whether the tensor network has to be parameterized + (``True``) or de-parameterized (``False``). + override : bool + Boolean indicating whether the tensor network should be parameterized + in-place (``True``) or copied and then parameterized (``False``). + """ + if self._resultant_nodes: + warnings.warn( + 'Resultant nodes will be removed before parameterizing the TN') + self.reset() + + if override: + net = self + else: + net = self.copy(share_tensors=False) + + for i in range(self._n_features): + net._mats_env[i] = net._mats_env[i].parameterize(set_param) + + if net._boundary == 'obc': + net._left_node = net._left_node.parameterize(set_param) + net._right_node = net._right_node.parameterize(set_param) + + return net
    + + def _input_contraction(self, + nodes_env: List[Node], + inline_input: bool = False) -> Tuple[ + Optional[List[Node]], + Optional[List[Node]]]: + """Contracts input data nodes with MPO nodes.""" + if inline_input: + mats_result = [node['input'].contract() for node in nodes_env] + return mats_result + + else: + if nodes_env: + stack = op.stack(nodes_env) + stack_data = op.stack( + [node.neighbours('input') for node in nodes_env]) + + stack ^ stack_data + + result = stack_data @ stack + mats_result = op.unbind(result) + return mats_result + else: + return [] + + @staticmethod + def _inline_contraction(nodes: List[Node]) -> Node: + """Contracts sequence of MPO nodes (matrices) inline.""" + result_node = nodes[0] + for node in nodes[1:]: + result_node @= node + return result_node + + def _contract_envs_inline(self, + mats_env: List[Node], + mps: Optional[MPSData] = None) -> Node: + """Contracts nodes environments inline.""" + if (mps is not None) and (mps._boundary == 'obc'): + mats_env[0] = mps._left_node @ mats_env[0] + mats_env[-1] = mats_env[-1] @ mps._right_node + + if self._boundary == 'obc': + mats_env = [self._left_node] + mats_env + mats_env = mats_env + [self._right_node] + return self._inline_contraction(mats_env) + + def _aux_pairwise(self, nodes: List[Node]) -> Tuple[List[Node], + List[Node]]: + """Contracts a sequence of MPO nodes (matrices) pairwise.""" + length = len(nodes) + aux_nodes = nodes + if length > 1: + half_length = length // 2 + nice_length = 2 * half_length + + even_nodes = aux_nodes[0:nice_length:2] + odd_nodes = aux_nodes[1:nice_length:2] + leftover = aux_nodes[nice_length:] + + stack1 = op.stack(even_nodes) + stack2 = op.stack(odd_nodes) + + stack1 ^ stack2 + + aux_nodes = stack1 @ stack2 + aux_nodes = op.unbind(aux_nodes) + + return aux_nodes, leftover + return nodes, [] + + def _pairwise_contraction(self, + mats_nodes: List[Node], + mps: Optional[MPSData] = None) -> Node: + """Contracts nodes environments pairwise.""" + length = len(mats_nodes) + aux_nodes = mats_nodes + if length > 1: + leftovers = [] + while length > 1: + aux1, aux2 = self._aux_pairwise(aux_nodes) + aux_nodes = aux1 + leftovers = aux2 + leftovers + length = len(aux1) + + aux_nodes = aux_nodes + leftovers + return self._pairwise_contraction(aux_nodes, mps) + + return self._contract_envs_inline(aux_nodes, mps) + +
    [docs] def contract(self, + inline_input: bool = False, + inline_mats: bool = False, + mps: Optional[MPSData] = None) -> Node: + """ + Contracts the whole MPO with input data nodes. The input can be in the + form of an :class:`MPSData`, which may be convenient for tensorizing + vector-matrix multiplication in the form of MPS-MPO contraction. + + If the ``MPO`` is contracted with a ``MPSData``, MPS nodes will become + part of the MPO network, and they will be connected to the ``"input"`` + edges of the MPO. Thus, the MPS and the MPO should have the same number + of features (``n_features``). + + Even though it is not necessary to connect the ``MPSData`` nodes to the + MPO nodes by hand before contraction, it can be done. However, one + should first move the MPS nodes to the MPO network. + + Also, when contracting the MPO with and ``MPSData``, if any of the + contraction arguments, ``inline_input`` or ``inline_mats``, is set to + ``False``, the MPO (already connected to the MPS) should be + :meth:`~tensorkrowch.TensorNetwork.reset` before contraction if new + data is set into the ``MPSData`` nodes. This is because :class:`MPSData` + admits data tensors with different bond dimensions for each iteration, + and this may cause undesired behaviour when reusing some information of + previous calls to :func:~tensorkrowch.stack` with the previous data + tensors. + + To perform the MPS-MPO contraction, first input data tensors have to + be put into the :class:`MPSData` via :meth:`MPSData.add_data`. Then, + contraction is carried out by calling ``mpo(mps=mps_data)``, without + passing the input data again, as it is already stored in the MPSData + nodes. + + Parameters + ---------- + inline_input : bool + Boolean indicating whether input ``data`` nodes should be contracted + with the ``MPO`` nodes inline (one contraction at a time) or in a + single stacked contraction. + inline_mats : bool + Boolean indicating whether the sequence of matrices (resultant + after contracting the input ``data`` nodes) should be contracted + inline or as a sequence of pairwise stacked contrations. + mps : MPSData, optional + MPS that is to be contracted with the MPO. New data can be + put into the MPS via :meth:`MPSData.add_data`, and the MPS-MPO + contraction is performed by calling ``mpo(mps=mps_data)``, without + passing the input data again, as it is already stored in the MPS + cores. + + Returns + ------- + Node + """ + if mps is not None: + if not isinstance(mps, MPSData): + raise TypeError('`mps` should be MPSData type') + if mps._n_features != self._n_features: + raise ValueError( + '`mps` should have as many features as the MPO') + + # Move MPSData ndoes to self + mps._mats_env[0].move_to_network(self) + + # Connect mps nodes to mpo nodes + for mps_node, mpo_node in zip(mps._mats_env, self._mats_env): + mps_node['feature'] ^ mpo_node['input'] + + mats_env = self._input_contraction(self._mats_env, inline_input) + + if inline_mats: + result = self._contract_envs_inline(mats_env, mps) + else: + result = self._pairwise_contraction(mats_env, mps) + + # Contract periodic edge + if result.is_connected_to(result): + result @= result + + # Put batch edges in first positions + batch_edges = [] + other_edges = [] + for i, edge in enumerate(result.edges): + if edge.is_batch(): + batch_edges.append(i) + else: + other_edges.append(i) + + all_edges = batch_edges + other_edges + if all_edges != list(range(len(all_edges))): + result = op.permute(result, tuple(all_edges)) + + return result
    + + +
    [docs]class UMPO(MPO): # MARK: UMPO + """ + Class for Uniform (translationally invariant) Matrix Product Operators. It is + the uniform version of :class:`MPO`, that is, all nodes share the same + tensor. Thus this class cannot have different input/output or bond dimensions + for each node, and boundary conditions are always periodic (``"pbc"``). + + | + + For a more detailed list of inherited properties and methods, + check :class:`MPO`. + + Parameters + ---------- + n_features : int + Number of nodes that will be in ``mats_env``. + in_dim : int, optional + Input dimension. + out_dim : int, optional + Output dimension. + bond_dim : int, optional + Bond dimension. + tensor: torch.Tensor, optional + Instead of providing ``in_dim``, ``out_dim`` and ``bond_dim``, a single + tensor can be provided. ``n_features`` is still needed to specify how + many times the tensor should be used to form a finite MPO. The tensor + should be rank-4, with its first and third dimensions being equal. + n_batches : int + Number of batch edges of input ``data`` nodes. Usually ``n_batches = 1`` + (where the batch edge is used for the data batched) but it could also + be ``n_batches = 2`` (one edge for data batched, other edge for image + patches in convolutional layers). + init_method : {"zeros", "ones", "copy", "rand", "randn"}, optional + Initialization method. Check :meth:`initialize` for a more detailed + explanation of the different initialization methods. + device : torch.device, optional + Device where to initialize the tensors if ``init_method`` is provided. + kwargs : float + Keyword arguments for the different initialization methods. See + :meth:`~tensorkrowch.AbstractNode.make_tensor`. + + Examples + -------- + >>> mpo = tk.models.UMPO(n_features=4, + ... in_dim=2, + ... out_dim=2, + ... bond_dim=5) + >>> for node in mpo.mats_env: + ... assert node.tensor_address() == 'virtual_uniform' + ... + >>> data = torch.ones(20, 4, 2) # batch_size x n_features x feature_size + >>> result = mpo(data) + >>> result.shape + torch.Size([20, 2, 2, 2, 2]) + """ + + def __init__(self, + n_features: int = None, + in_dim: Optional[int] = None, + out_dim: Optional[int] = None, + bond_dim: Optional[int] = None, + tensor: Optional[torch.Tensor] = None, + n_batches: int = 1, + init_method: Text = 'randn', + device: Optional[torch.device] = None, + **kwargs) -> None: + + tensors = None + + # n_features + if not isinstance(n_features, int): + raise TypeError('`n_features` should be int type') + elif n_features < 1: + raise ValueError('`n_features` should be at least 1') + + if tensor is None: + # in_dim + if not isinstance(in_dim, int): + raise TypeError('`in_dim` should be int type') + + # out_dim + if not isinstance(out_dim, int): + raise TypeError('`out_dim` should be int type') + + # bond_dim + if not isinstance(bond_dim, int): + raise TypeError('`bond_dim` should be int type') + + else: + if not isinstance(tensor, torch.Tensor): + raise TypeError('`tensor` should be torch.Tensor type') + if len(tensor.shape) != 4: + raise ValueError('`tensor` should be a rank-4 tensor') + if tensor.shape[0] != tensor.shape[2]: + raise ValueError('`tensor` first and last dimensions should' + ' be equal so that the MPS can have ' + 'periodic boundary conditions') + + tensors = [tensor] * n_features + + super().__init__(n_features=n_features, + in_dim=in_dim, + out_dim=out_dim, + bond_dim=bond_dim, + boundary='pbc', + tensors=tensors, + n_batches=n_batches, + init_method=init_method, + device=device, + **kwargs) + self.name = 'umpo' + + def _make_nodes(self) -> None: + """Creates all the nodes of the MPO.""" + super()._make_nodes() + + # Virtual node + uniform_memory = ParamNode(shape=(self._bond_dim[0], + self._in_dim[0], + self._bond_dim[0], + self._out_dim[0]), + axes_names=('left', 'input', 'right', 'output'), + name='virtual_uniform', + network=self, + virtual=True) + self.uniform_memory = uniform_memory + + for node in self._mats_env: + node.set_tensor_from(uniform_memory) + +
    [docs] def initialize(self, + tensors: Optional[Sequence[torch.Tensor]] = None, + init_method: Optional[Text] = 'randn', + device: Optional[torch.device] = None, + **kwargs: float) -> None: + """ + Initializes the common tensor of the :class:`UMPO`. It can be called + when instantiating the model, or to override the existing nodes' tensors. + + There are different methods to initialize the nodes: + + * ``{"zeros", "ones", "copy", "rand", "randn"}``: The tensor is + initialized calling :meth:`~tensorkrowch.AbstractNode.set_tensor` with + the given method, ``device`` and ``kwargs``. + + Parameters + ---------- + tensors : list[torch.Tensor] or tuple[torch.Tensor], optional + Sequence of a single tensor to set in each of the MPO nodes. The + tensor should be rank-4, with its first and third dimensions being + equal. + init_method : {"zeros", "ones", "copy", "rand", "randn"}, optional + Initialization method. + device : torch.device, optional + Device where to initialize the tensors if ``init_method`` is provided. + kwargs : float + Keyword arguments for the different initialization methods. See + :meth:`~tensorkrowch.AbstractNode.make_tensor`. + """ + node = self.uniform_memory + + if tensors is not None: + self.uniform_memory.tensor = tensors[0] + + elif init_method is not None: + self.uniform_memory.set_tensor(init_method=init_method, + device=device, + **kwargs)
    + +
    [docs] def copy(self, share_tensors: bool = False) -> 'UMPO': + """ + Creates a copy of the :class:`UMPO`. + + Parameters + ---------- + share_tensor : bool, optional + Boolean indicating whether the common tensor in the copied UMPO + should be set as the tensor in the current UMPO (``True``), or + cloned (``False``). In the former case, the tensor in both UMPO's + will be the same, which might be useful if one needs more than one + copy of a UMPO, but wants to compute all the gradients with respect + to the same, unique, tensor. + + Returns + ------- + UMPO + """ + new_mpo = UMPO(n_features=self._n_features, + in_dim=self._in_dim[0], + out_dim=self._out_dim[0], + bond_dim=self._bond_dim[0], + tensor=None, + n_batches=self._n_batches, + init_method=None, + device=None) + new_mpo.name = self.name + '_copy' + if share_tensors: + new_mpo.uniform_memory.tensor = self.uniform_memory.tensor + else: + new_mpo.uniform_memory.tensor = self.uniform_memory.tensor.clone() + return new_mpo
    + +
    [docs] def parameterize(self, + set_param: bool = True, + override: bool = False) -> 'TensorNetwork': + """ + Parameterizes all nodes of the MPO. If there are ``resultant`` nodes + in the MPO, it will be first :meth:`~tensorkrowch.TensorNetwork.reset`. + + Parameters + ---------- + set_param : bool + Boolean indicating whether the tensor network has to be parameterized + (``True``) or de-parameterized (``False``). + override : bool + Boolean indicating whether the tensor network should be parameterized + in-place (``True``) or copied and then parameterized (``False``). + """ + if self._resultant_nodes: + warnings.warn( + 'Resultant nodes will be removed before parameterizing the TN') + self.reset() + + if override: + net = self + else: + net = self.copy(share_tensors=False) + + for i in range(self._n_features): + net._mats_env[i] = net._mats_env[i].parameterize(set_param) + + # It is important that uniform_memory is parameterized after the rest + # of the nodes + net.uniform_memory = net.uniform_memory.parameterize(set_param) + + # Tensor addresses have to be reassigned to reference + # the uniform memory + for node in net._mats_env: + node.set_tensor_from(net.uniform_memory) + + return net
    +
    + +
    + +
    +
    + + +
    +
    +
    +
    +
    + + +
    + + +
    +
    + + + + + + + \ No newline at end of file diff --git a/docs/_build/html/_modules/tensorkrowch/models/mps.html b/docs/_build/html/_modules/tensorkrowch/models/mps.html index 256d2b8..4488acf 100644 --- a/docs/_build/html/_modules/tensorkrowch/models/mps.html +++ b/docs/_build/html/_modules/tensorkrowch/models/mps.html @@ -1,11 +1,11 @@ - + - tensorkrowch.models.mps — TensorKrowch 1.0.0 documentation + tensorkrowch.models.mps — TensorKrowch 1.0.1 documentation @@ -29,17 +29,15 @@ - - - + @@ -180,6 +178,11 @@ Embeddings +
  • + + Decompositions + +
  • @@ -286,51 +289,77 @@

    Source code for tensorkrowch.models.mps

     """
     This script contains:
    -    * MPS
    -    * UMPS
    -    * ConvMPS
    -    * ConvUMPS
    +    * MPS:
    +        + UMPS
    +        + MPSLayer
    +        + UMPSLayer
    +    * AbstractConvClass:
    +        + ConvMPS
    +        + ConvUMPS
    +        + ConvMPSLayer
    +        + ConvUMPSLayer
     """
     
    +import warnings
    +from abc import abstractmethod, ABC
     from typing import (List, Optional, Sequence,
                         Text, Tuple, Union)
     
    +from math import sqrt
    +
     import torch
     import torch.nn as nn
     
     import tensorkrowch.operations as op
     from tensorkrowch.components import AbstractNode, Node, ParamNode
     from tensorkrowch.components import TensorNetwork
    +from tensorkrowch.models import MPO, UMPO
    +from tensorkrowch.embeddings import basis
    +from tensorkrowch.utils import split_sequence_into_regions, random_unitary
     
     
    -
    [docs]class MPS(TensorNetwork): +
    [docs]class MPS(TensorNetwork): # MARK: MPS """ - Class for Matrix Product States, where all nodes are input nodes, that is, - they are all connected to ``data`` nodes that will store the input data - tensor(s). When contracting the MPS with new input data, the result will - be a just a number. + Class for Matrix Product States. This is the base class from which + :class:`UMPS`, :class:`MPSLayer` and :class:`UMPSLayer` inherit. - If the input dimensions of all the input nodes are equal, the input data - tensor can be passed as a single tensor. Otherwise, it would have to be - passed as a list of tensors with different sizes. + Matrix Product States are formed by: - An ``MPS`` is formed by the following nodes: - - * ``left_node``, ``right_node``: `Vector` nodes with axes ``("input", "right")`` - and ``("left", "input")``, respectively. These are the nodes at the - extremes of the ``MPS``. If ``boundary`` is ``"pbc""``, both are ``None``. - - * ``mats_env``: Environment of `matrix` nodes that. These nodes have axes + * ``mats_env``: Environment of `matrix` nodes with axes ``("left", "input", "right")``. + + * ``left_node``, ``right_node``: `Vector` nodes with axes ``("right",)`` + and ``("left",)``, respectively. These are used to close the boundary + in the case ``boudary`` is ``"obc"``. Otherwise, both are ``None``. + + The base ``MPS`` class enables setting various nodes as either input or + output nodes. This feature proves useful when computing marginal or + conditional distributions. The assignment of roles can be altered + dynamically, allowing input nodes to transition to output nodes, and vice + versa. + + Input nodes will be connected to data nodes at their ``"input"`` edges, and + contracted against them when calling :meth:`contract`. Output nodes, on the + other hand, will remain disconnected. If ``marginalize_output = True`` in + :meth:`contract`, the open indices of the output nodes can be marginalized + so that the output is a single scalar (or a vector with only batch + dimensions). If ``marginalize_output = False`` the result will be a tensor + with as many dimensions as output nodes where in the MPS, plus the + corresponding batch dimensions. + + If all input nodes have the same physical dimensions, the input data tensor + can be passed as a single tensor. Otherwise, it would have to be passed as + a list of tensors with different sizes. Parameters ---------- - n_features : int - Number of input nodes. - in_dim : int, list[int] or tuple[int] - Input dimension(s). Equivalent to the physical dimension. If given as a - sequence, its length should be equal to ``n_features``. - bond_dim : int, list[int] or tuple[int] + n_features : int, optional + Number of nodes that will be in ``mats_env``. That is, number of nodes + without taking into account ``left_node`` and ``right_node``. + phys_dim : int, list[int] or tuple[int], optional + Physical dimension(s). If given as a sequence, its length should be + equal to ``n_features``. + bond_dim : int, list[int] or tuple[int], optional Bond dimension(s). If given as a sequence, its length should be equal to ``n_features`` (if ``boundary = "pbc"``) or ``n_features - 1`` (if ``boundary = "obc"``). The i-th bond dimension is always the dimension @@ -338,254 +367,726 @@

    Source code for tensorkrowch.models.mps

         boundary : {"obc", "pbc"}
             String indicating whether periodic or open boundary conditions should
             be used.
    +    tensors: list[torch.Tensor] or tuple[torch.Tensor], optional
    +        Instead of providing ``n_features``, ``phys_dim``, ``bond_dim`` and
    +        ``boundary``, a list of MPS tensors can be provided. In such case, all
    +        mentioned attributes will be inferred from the given tensors. All
    +        tensors should be rank-3 tensors, with shape ``(bond_dim, phys_dim,
    +        bond_dim)``. If the first and last elements are rank-2 tensors, with
    +        shapes ``(phys_dim, bond_dim)``, ``(bond_dim, phys_dim)``, respectively,
    +        the inferred boundary conditions will be "obc". Also, if ``tensors``
    +        contains a single element, it can be rank-1 ("obc") or rank-3 ("pbc").
    +    in_features: list[int] or tuple[int], optional
    +        List of indices indicating the positions of the MPS nodes that will be
    +        considered as input nodes. These nodes will have a neighbouring data
    +        node connected to its ``"input"`` edge when the :meth:`set_data_nodes`
    +        method is called. ``in_features`` is the complementary set of
    +        ``out_features``, so it is only required to specify one of them.
    +    out_features: list[int] or tuple[int], optional
    +        List of indices indicating the positions of the MPS nodes that will be
    +        considered as output nodes. These nodes will be left with their ``"input"``
    +        edges open when contrating the network. If ``marginalize_output`` is
    +        set to ``True`` in :meth:`contract`, the network will be connected to
    +        itself at these nodes, and contracted. ``out_features`` is the
    +        complementary set of ``in_features``, so it is only required to specify
    +        one of them.
         n_batches : int
             Number of batch edges of input ``data`` nodes. Usually ``n_batches = 1``
             (where the batch edge is used for the data batched) but it could also
             be ``n_batches = 2`` (one edge for data batched, other edge for image
             patches in convolutional layers).
    +    init_method : {"zeros", "ones", "copy", "rand", "randn", "randn_eye", "unit"}, optional
    +        Initialization method. Check :meth:`initialize` for a more detailed
    +        explanation of the different initialization methods.
    +    device : torch.device, optional
    +        Device where to initialize the tensors if ``init_method`` is provided.
    +    kwargs : float
    +        Keyword arguments for the different initialization methods. See
    +        :meth:`~tensorkrowch.AbstractNode.make_tensor`.
             
         Examples
         --------
    -    ``MPS`` with same input/physical dimensions:
    +    ``MPS`` with the same physical dimensions:
         
         >>> mps = tk.models.MPS(n_features=5,
    -    ...                     in_dim=2,
    +    ...                     phys_dim=2,
         ...                     bond_dim=5)
         >>> data = torch.ones(20, 5, 2) # batch_size x n_features x feature_size
         >>> result = mps(data)
         >>> result.shape
         torch.Size([20])
         
    -    ``MPS`` with different input/physical dimensions:
    +    ``MPS`` with different physical dimensions:
         
         >>> mps = tk.models.MPS(n_features=5,
    -    ...                     in_dim=list(range(2, 7)),
    +    ...                     phys_dim=list(range(2, 7)),
         ...                     bond_dim=5)
         >>> data = [torch.ones(20, i)
         ...         for i in range(2, 7)] # n_features * [batch_size x feature_size]
         >>> result = mps(data)
         >>> result.shape
         torch.Size([20])
    +    
    +    ``MPS`` can also be initialized from a list of tensors:
    +    
    +    >>> tensors = [torch.randn(5, 2, 5) for _ in range(10)]
    +    >>> mps = tk.models.MPS(tensors=tensors)
    +    
    +    If ``in_features``/``out_features`` are specified, data will only be
    +    connected to the input nodes, leaving output nodes open:
    +    
    +    >>> mps = tk.models.MPS(tensors=tensors,
    +    ...                     out_features=[0, 3, 9])
    +    >>> data = torch.ones(20, 7, 2) # batch_size x n_features x feature_size
    +    >>> result = mps(data)
    +    >>> result.shape
    +    torch.Size([20, 2, 2, 2])
    +    
    +    >>> mps.reset()
    +    >>> result = mps(data, marginalize_output=True)
    +    >>> result.shape
    +    torch.Size([20, 20])
         """
     
         def __init__(self,
    -                 n_features: int,
    -                 in_dim: Union[int, Sequence[int]],
    -                 bond_dim: Union[int, Sequence[int]],
    +                 n_features: Optional[int] = None,
    +                 phys_dim: Optional[Union[int, Sequence[int]]] = None,
    +                 bond_dim: Optional[Union[int, Sequence[int]]] = None,
                      boundary: Text = 'obc',
    -                 n_batches: int = 1) -> None:
    +                 tensors: Optional[Sequence[torch.Tensor]] = None,
    +                 in_features: Optional[Sequence[int]] = None,
    +                 out_features: Optional[Sequence[int]] = None,
    +                 n_batches: int = 1,
    +                 init_method: Text = 'randn',
    +                 device: Optional[torch.device] = None,
    +                 **kwargs) -> None:
     
             super().__init__(name='mps')
    -
    -        # boundary
    -        if boundary not in ['obc', 'pbc']:
    -            raise ValueError('`boundary` should be one of "obc" or "pbc"')
    -        self._boundary = boundary
    -
    -        # n_features
    -        if boundary == 'obc':
    -            if n_features < 2:
    -                raise ValueError('If `boundary` is "obc", at least '
    -                                 'there has to be 2 nodes')
    -        elif boundary == 'pbc':
    -            if n_features < 1:
    -                raise ValueError('If `boundary` is "pbc", at least '
    -                                 'there has to be one node')
    -        else:
    -            raise ValueError('`boundary` should be one of "obc" or "pbc"')
    -        self._n_features = n_features
    -
    -        # in_dim
    -        if isinstance(in_dim, (list, tuple)):
    -            if len(in_dim) != n_features:
    -                raise ValueError('If `in_dim` is given as a sequence of int, '
    -                                 'its length should be equal to `n_features`')
    -            self._in_dim = list(in_dim)
    -        elif isinstance(in_dim, int):
    -            self._in_dim = [in_dim] * n_features
    +        
    +        if tensors is None:
    +            # boundary
    +            if boundary not in ['obc', 'pbc']:
    +                raise ValueError('`boundary` should be one of "obc" or "pbc"')
    +            self._boundary = boundary
    +
    +            # n_features
    +            if not isinstance(n_features, int):
    +                raise TypeError('`n_features` should be int type')
    +            elif n_features < 1:
    +                raise ValueError('`n_features` should be at least 1')
    +            self._n_features = n_features
    +
    +            # phys_dim
    +            if isinstance(phys_dim, Sequence):
    +                if len(phys_dim) != n_features:
    +                    raise ValueError('If `phys_dim` is given as a sequence of int, '
    +                                     'its length should be equal to `n_features`')
    +                self._phys_dim = list(phys_dim)
    +            elif isinstance(phys_dim, int):
    +                self._phys_dim = [phys_dim] * n_features
    +            else:
    +                raise TypeError('`phys_dim` should be int, tuple[int] or list[int] '
    +                                'type')
    +
    +            # bond_dim
    +            if isinstance(bond_dim, Sequence):
    +                if boundary == 'obc':
    +                    if len(bond_dim) != n_features - 1:
    +                        raise ValueError(
    +                            'If `bond_dim` is given as a sequence of int, and '
    +                            '`boundary` is "obc", its length should be equal '
    +                            'to `n_features` - 1')
    +                elif boundary == 'pbc':
    +                    if len(bond_dim) != n_features:
    +                        raise ValueError(
    +                            'If `bond_dim` is given as a sequence of int, and '
    +                            '`boundary` is "pbc", its length should be equal '
    +                            'to `n_features`')
    +                self._bond_dim = list(bond_dim)
    +            elif isinstance(bond_dim, int):
    +                if boundary == 'obc':
    +                    self._bond_dim = [bond_dim] * (n_features - 1)
    +                elif boundary == 'pbc':
    +                    self._bond_dim = [bond_dim] * n_features
    +            else:
    +                raise TypeError('`bond_dim` should be int, tuple[int] or list[int]'
    +                                ' type')
    +        
             else:
    -            raise TypeError('`in_dim` should be int, tuple[int] or list[int] '
    -                            'type')
    -
    -        # bond_dim
    -        if isinstance(bond_dim, (list, tuple)):
    -            if boundary == 'obc':
    -                if len(bond_dim) != n_features - 1:
    -                    raise ValueError('If `bond_dim` is given as a sequence of int,'
    -                                     ' and `boundary` is "obc", its length '
    -                                     'should be equal to `n_features` - 1')
    -            elif boundary == 'pbc':
    -                if len(bond_dim) != n_features:
    -                    raise ValueError('If `bond_dim` is given as a sequence of int,'
    -                                     ' and `boundary` is "pbc", its length '
    -                                     'should be equal to `n_features`')
    -            self._bond_dim = list(bond_dim)
    -        elif isinstance(bond_dim, int):
    -            if boundary == 'obc':
    -                self._bond_dim = [bond_dim] * (n_features - 1)
    -            elif boundary == 'pbc':
    -                self._bond_dim = [bond_dim] * n_features
    +            if not isinstance(tensors, Sequence):
    +                raise TypeError('`tensors` should be a tuple[torch.Tensor] or '
    +                                'list[torch.Tensor] type')
    +            else:
    +                self._n_features = len(tensors)
    +                self._phys_dim = []
    +                self._bond_dim = []
    +                for i, t in enumerate(tensors):
    +                    if not isinstance(t, torch.Tensor):
    +                        raise TypeError('`tensors` should be a tuple[torch.Tensor]'
    +                                        ' or list[torch.Tensor] type')
    +                    
    +                    if i == 0:
    +                        if len(t.shape) not in [1, 2, 3]:
    +                            raise ValueError(
    +                                'The first and last elements in `tensors` '
    +                                'should be both rank-2 or rank-3 tensors. If'
    +                                ' the first element is also the last one,'
    +                                ' it should be a rank-1 tensor')
    +                        if len(t.shape) == 1:
    +                            self._boundary = 'obc'
    +                            self._phys_dim.append(t.shape[0])
    +                        elif len(t.shape) == 2:
    +                            self._boundary = 'obc'
    +                            self._phys_dim.append(t.shape[0])
    +                            self._bond_dim.append(t.shape[1])
    +                        else:
    +                            self._boundary = 'pbc'
    +                            self._phys_dim.append(t.shape[1])
    +                            self._bond_dim.append(t.shape[2])
    +                    elif i == (self._n_features - 1):
    +                        if len(t.shape) != len(tensors[0].shape):
    +                            raise ValueError(
    +                                'The first and last elements in `tensors` '
    +                                'should have the same rank. Both should be '
    +                                'rank-2 or rank-3 tensors. If the first '
    +                                'element is also the last one, it should '
    +                                'be a rank-1 tensor')
    +                        if len(t.shape) == 2:
    +                            self._phys_dim.append(t.shape[1])
    +                        else:
    +                            if t.shape[-1] != tensors[0].shape[0]:
    +                                raise ValueError(
    +                                    'If the first and last elements in `tensors`'
    +                                    ' are rank-3 tensors, the first dimension '
    +                                    'of the first element should coincide with'
    +                                    ' the last dimension of the last element')
    +                            self._phys_dim.append(t.shape[1])
    +                            self._bond_dim.append(t.shape[2])
    +                    else:
    +                        if len(t.shape) != 3:
    +                            raise ValueError(
    +                                'The elements of `tensors` should be rank-3 '
    +                                'tensors, except the first and lest elements'
    +                                ' if boundary is "obc"')
    +                        self._phys_dim.append(t.shape[1])
    +                        self._bond_dim.append(t.shape[2])
    +        
    +        # in_features and out_features
    +        if in_features is None:
    +            if out_features is None:
    +                # By default, all nodes are input nodes
    +                self._in_features = list(range(self._n_features))
    +                self._out_features = []
    +            else:
    +                if isinstance(out_features, (list, tuple)):
    +                    for out_f in out_features:
    +                        if not isinstance(out_f, int):
    +                            raise TypeError('`out_features` should be tuple[int]'
    +                                            ' or list[int] type')
    +                        if (out_f < 0) or (out_f >= self._n_features):
    +                            raise ValueError('Elements of `out_features` should'
    +                                             ' be between 0 and (`n_features` - 1)')
    +                    out_features = set(out_features)
    +                    in_features = set(range(self._n_features)).difference(out_features)
    +                    
    +                    self._in_features = list(in_features)
    +                    self._out_features = list(out_features)
    +                    
    +                    self._in_features.sort()
    +                    self._out_features.sort()
    +                else:
    +                    raise TypeError('`out_features` should be tuple[int]'
    +                                    ' or list[int] type')
             else:
    -            raise TypeError('`in_dim` should be int, tuple[int] or list[int] '
    -                            'type')
    -
    +            if isinstance(in_features, (list, tuple)):
    +                for in_f in in_features:
    +                    if not isinstance(in_f, int):
    +                        raise TypeError('`in_features` should be tuple[int]'
    +                                        ' or list[int] type')
    +                    if (in_f < 0) or (in_f >= self._n_features):
    +                        raise ValueError('Elements in `in_features` should'
    +                                         'be between 0 and (`n_features` - 1)')
    +                in_features = set(in_features)
    +            else:
    +                raise TypeError('`in_features` should be tuple[int]'
    +                                ' or list[int] type')
    +                    
    +            if out_features is None:
    +                out_features = set(range(self._n_features)).difference(in_features)
    +                
    +                self._in_features = list(in_features)
    +                self._out_features = list(out_features)
    +                
    +                self._in_features.sort()
    +                self._out_features.sort()
    +            else:
    +                out_features = set(out_features)
    +                union = in_features.union(out_features)
    +                inter = in_features.intersection(out_features)
    +                
    +                if (union == set(range(self._n_features))) and (inter == set([])):
    +                    self._in_features = list(in_features)
    +                    self._out_features = list(out_features)
    +                    
    +                    self._in_features.sort()
    +                    self._out_features.sort()
    +                else:
    +                    raise ValueError(
    +                        'If both `in_features` and `out_features` are provided,'
    +                        ' they should be complementary. That is, the union should'
    +                        ' be the total range 0, ..., (`n_features` - 1), and '
    +                        'the intersection should be empty')
    +        
             # n_batches
             if not isinstance(n_batches, int):
    -            raise TypeError('`n_batches should be int type')
    +            raise TypeError('`n_batches` should be int type')
             self._n_batches = n_batches
    +        
    +        # Properties
    +        self._left_node = None
    +        self._right_node = None
    +        self._mats_env = []
     
             # Create Tensor Network
             self._make_nodes()
    -        self.initialize()
    -
    +        self.initialize(tensors=tensors,
    +                        init_method=init_method,
    +                        device=device,
    +                        **kwargs)
    +    
    +    # ----------
    +    # Properties
    +    # ----------
         @property
         def n_features(self) -> int:
             """Returns number of nodes."""
             return self._n_features
     
         @property
    -    def boundary(self) -> Text:
    -        """Returns boundary condition ("obc" or "pbc")."""
    -        return self._boundary
    -
    -    @property
    -    def in_dim(self) -> List[int]:
    -        """Returns input/physical dimension."""
    -        return self._in_dim
    +    def phys_dim(self) -> List[int]:
    +        """Returns physical dimensions."""
    +        return self._phys_dim
     
         @property
         def bond_dim(self) -> List[int]:
    -        """Returns bond dimension."""
    +        """Returns bond dimensions."""
             return self._bond_dim
    +    
    +    @property
    +    def boundary(self) -> Text:
    +        """Returns boundary condition ("obc" or "pbc")."""
    +        return self._boundary
     
         @property
         def n_batches(self) -> int:
    -        """Returns number of batch edges of the ``data`` nodes."""
    +        """
    +        Returns number of batch edges of the ``data`` nodes. To change this
    +        attribute, first call :meth:`~tensorkrowch.TensorNetwork.unset_data_nodes`
    +        if there are already data nodes in the network.
    +        """
             return self._n_batches
    -
    +    
    +    @n_batches.setter
    +    def n_batches(self, n_batches: int) -> None:
    +        if n_batches != self._n_batches:
    +            if self._data_nodes:
    +                raise ValueError(
    +                    '`n_batches` cannot be changed if the MPS has data nodes. '
    +                    'Use unset_data_nodes first')
    +            elif not isinstance(n_batches, int):
    +                raise TypeError('`n_batches` should be int type')
    +            self._n_batches = n_batches
    +    
    +    @property
    +    def in_features(self) -> List[int]:
    +        """
    +        Returns list of positions of the input nodes. To change this
    +        attribute, first call :meth:`~tensorkrowch.TensorNetwork.unset_data_nodes`
    +        if there are already data nodes in the network. When changing it,
    +        :attr:`out_features` will change accordingly to be the complementary.
    +        """
    +        return self._in_features
    +    
    +    @in_features.setter
    +    def in_features(self, in_features) -> None:
    +        if self._data_nodes:
    +            raise ValueError(
    +                '`in_features` cannot be changed if the MPS has data nodes. '
    +                'Use unset_data_nodes first')
    +                
    +        if isinstance(in_features, (list, tuple)):
    +            for in_f in in_features:
    +                if not isinstance(in_f, int):
    +                    raise TypeError('`in_features` should be tuple[int]'
    +                                    ' or list[int] type')
    +                if (in_f < 0) or (in_f >= self._n_features):
    +                    raise ValueError('Elements in `in_features` should'
    +                                     'be between 0 and (`n_features` - 1)')
    +            in_features = set(in_features)
    +            out_features = set(range(self._n_features)).difference(in_features)
    +                
    +            self._in_features = list(in_features)
    +            self._out_features = list(out_features)
    +            
    +            self._in_features.sort()
    +            self._out_features.sort()
    +        else:
    +            raise TypeError(
    +                '`in_features` should be tuple[int] or list[int] type')
    +    
    +    @property
    +    def out_features(self) -> List[int]:
    +        """
    +        Returns list of positions of the output nodes. To change this
    +        attribute, first call :meth:`~tensorkrowch.TensorNetwork.unset_data_nodes`
    +        if there are already data nodes in the network. When changing it,
    +        :attr:`in_features` will change accordingly to be the complementary.
    +        """
    +        return self._out_features
    +    
    +    @out_features.setter
    +    def out_features(self, out_features) -> None:
    +        if self._data_nodes:
    +                raise ValueError(
    +                    '`out_features` cannot be changed if the MPS has data nodes. '
    +                    'Use unset_data_nodes first')
    +                
    +        if isinstance(out_features, (list, tuple)):
    +            for out_f in out_features:
    +                if not isinstance(out_f, int):
    +                    raise TypeError('`out_features` should be tuple[int]'
    +                                    ' or list[int] type')
    +                if (out_f < 0) or (out_f >= self._n_features):
    +                    raise ValueError('Elements in `out_features` should'
    +                                        'be between 0 and (`n_features` - 1)')
    +            out_features = set(out_features)
    +            in_features = set(range(self._n_features)).difference(out_features)
    +                
    +            self._in_features = list(in_features)
    +            self._out_features = list(out_features)
    +            
    +            self._in_features.sort()
    +            self._out_features.sort()
    +        else:
    +            raise TypeError(
    +                '`out_features` should be tuple[int] or list[int] type')
    +            
    +    @property
    +    def in_regions(self) -> List[List[int]]:
    +        """ Returns a list of lists of consecutive input positions."""
    +        return split_sequence_into_regions(self._in_features)
    +    
    +    @property
    +    def out_regions(self) -> List[List[int]]:
    +        """ Returns a list of lists of consecutive output positions."""
    +        return split_sequence_into_regions(self._out_features)
    +    
    +    @property
    +    def left_node(self) -> Optional[AbstractNode]:
    +        """Returns the ``left_node``."""
    +        return self._left_node
    +    
    +    @property
    +    def right_node(self) -> Optional[AbstractNode]:
    +        """Returns the ``right_node``."""
    +        return self._right_node
    +    
    +    @property
    +    def mats_env(self) -> List[AbstractNode]:
    +        """Returns the list of nodes in ``mats_env``."""
    +        return self._mats_env
    +    
    +    @property
    +    def in_env(self) -> List[AbstractNode]:
    +        """Returns the list of input nodes."""
    +        return [self._mats_env[i] for i in self._in_features]
    +    
    +    @property
    +    def out_env(self) -> List[AbstractNode]:
    +        """Returns the list of output nodes."""
    +        return [self._mats_env[i] for i in self._out_features]
    +    
    +    # -------
    +    # Methods
    +    # -------
         def _make_nodes(self) -> None:
             """Creates all the nodes of the MPS."""
    -        if self.leaf_nodes:
    +        if self._leaf_nodes:
                 raise ValueError('Cannot create MPS nodes if the MPS already has '
                                  'nodes')
    +        
    +        aux_bond_dim = self._bond_dim
    +        
    +        if self._boundary == 'obc':
    +            if not aux_bond_dim:
    +                aux_bond_dim = [1]
    +                
    +            self._left_node = ParamNode(shape=(aux_bond_dim[0],),
    +                                        axes_names=('right',),
    +                                        name='left_node',
    +                                        network=self)
    +            self._right_node = ParamNode(shape=(aux_bond_dim[-1],),
    +                                    axes_names=('left',),
    +                                    name='right_node',
    +                                    network=self)
    +            
    +            aux_bond_dim = aux_bond_dim + [aux_bond_dim[-1]] + [aux_bond_dim[0]]
    +        
    +        for i in range(self._n_features):
    +            node = ParamNode(shape=(aux_bond_dim[i - 1],
    +                                    self._phys_dim[i],
    +                                    aux_bond_dim[i]),
    +                             axes_names=('left', 'input', 'right'),
    +                             name=f'mats_env_node_({i})',
    +                             network=self)
    +            self._mats_env.append(node)
     
    -        self.left_node = None
    -        self.right_node = None
    -        self.mats_env = []
    -
    -        if self.boundary == 'obc':
    -            self.left_node = ParamNode(shape=(self.in_dim[0], self.bond_dim[0]),
    -                                       axes_names=('input', 'right'),
    -                                       name='left_node',
    -                                       network=self)
    -
    -            for i in range(self._n_features - 2):
    -                node = ParamNode(shape=(self.bond_dim[i],
    -                                        self.in_dim[i + 1],
    -                                        self.bond_dim[i + 1]),
    -                                 axes_names=('left', 'input', 'right'),
    -                                 name=f'mats_env_node_({i})',
    -                                 network=self)
    -                self.mats_env.append(node)
    +            if i != 0:
    +                self._mats_env[-2]['right'] ^ self._mats_env[-1]['left']
     
    +            if self._boundary == 'pbc':
                     if i == 0:
    -                    self.left_node['right'] ^ self.mats_env[-1]['left']
    -                else:
    -                    self.mats_env[-2]['right'] ^ self.mats_env[-1]['left']
    -
    -            self.right_node = ParamNode(shape=(self.bond_dim[-1],
    -                                               self.in_dim[-1]),
    -                                        axes_names=('left', 'input'),
    -                                        name='right_node',
    -                                        network=self)
    -
    -            if self._n_features > 2:
    -                self.mats_env[-1]['right'] ^ self.right_node['left']
    +                    periodic_edge = self._mats_env[-1]['left']
    +                if i == self._n_features - 1:
    +                    self._mats_env[-1]['right'] ^ periodic_edge
                 else:
    -                self.left_node['right'] ^ self.right_node['left']
    -
    -        else:
    -            for i in range(self._n_features):
    -                node = ParamNode(shape=(self.bond_dim[i - 1],
    -                                        self.in_dim[i],
    -                                        self.bond_dim[i]),
    -                                 axes_names=('left', 'input', 'right'),
    -                                 name=f'mats_env_node_({i})',
    -                                 network=self)
    -                self.mats_env.append(node)
    -
                     if i == 0:
    -                    periodic_edge = self.mats_env[-1]['left']
    -                else:
    -                    self.mats_env[-2]['right'] ^ self.mats_env[-1]['left']
    -
    +                    self._left_node['right'] ^ self._mats_env[-1]['left']
                     if i == self._n_features - 1:
    -                    self.mats_env[-1]['right'] ^ periodic_edge
    -
    -
    [docs] def initialize(self, std: float = 1e-9) -> None: + self._mats_env[-1]['right'] ^ self._right_node['left'] + + def _make_unitaries(self, device: Optional[torch.device] = None) -> List[torch.Tensor]: + """ + Creates random unitaries to initialize the MPS in canonical form with + orthogonality center at the rightmost node.""" + tensors = [] + for i, node in enumerate(self._mats_env): + if self._boundary == 'obc': + if i == 0: + node_shape = node.shape[1:] + aux_shape = node_shape + elif i == (self._n_features - 1): + node_shape = node.shape[:2] + aux_shape = node_shape + else: + node_shape = node.shape + aux_shape = (node.shape[:2].numel(), node.shape[2]) + else: + node_shape = node.shape + aux_shape = (node.shape[:2].numel(), node.shape[2]) + size = max(aux_shape[0], aux_shape[1]) + + tensor = random_unitary(size, device=device) + tensor = tensor[:min(aux_shape[0], size), :min(aux_shape[1], size)] + tensor = tensor.reshape(*node_shape) + + tensors.append(tensor) + + if self._boundary == 'obc': + tensors[-1] = tensors[-1] / tensors[-1].norm() + return tensors + +
    [docs] def initialize(self, + tensors: Optional[Sequence[torch.Tensor]] = None, + init_method: Optional[Text] = 'randn', + device: Optional[torch.device] = None, + **kwargs: float) -> None: """ - Initializes all the nodes as explained `here <https://arxiv.org/abs/1605.03795>`_. - It can be overriden for custom initializations. + Initializes all the nodes of the :class:`MPS`. It can be called when + instantiating the model, or to override the existing nodes' tensors. + + There are different methods to initialize the nodes: + + * ``{"zeros", "ones", "copy", "rand", "randn"}``: Each node is + initialized calling :meth:`~tensorkrowch.AbstractNode.set_tensor` with + the given method, ``device`` and ``kwargs``. + + * ``"randn_eye"``: Nodes are initialized as in this + `paper <https://arxiv.org/abs/1605.03795>`_, adding identities at the + top of random gaussian tensors. In this case, ``std`` should be + specified with a low value, e.g., ``std = 1e-9``. + + * ``"unit"``: Nodes are initialized as random unitaries, so that the + MPS is in canonical form, with the orthogonality center at the + rightmost node. + + Parameters + ---------- + tensors : list[torch.Tensor] or tuple[torch.Tensor], optional + Sequence of tensors to set in each of the MPS nodes. If ``boundary`` + is ``"obc"``, all tensors should be rank-3, except the first and + last ones, which can be rank-2, or rank-1 (if the first and last are + the same). If ``boundary`` is ``"pbc"``, all tensors should be + rank-3. + init_method : {"zeros", "ones", "copy", "rand", "randn", "randn_eye", "unit"}, optional + Initialization method. + device : torch.device, optional + Device where to initialize the tensors if ``init_method`` is provided. + kwargs : float + Keyword arguments for the different initialization methods. See + :meth:`~tensorkrowch.AbstractNode.make_tensor`. """ - # Left node - if self.left_node is not None: - tensor = torch.randn(self.left_node.shape) * std - aux = torch.zeros(tensor.shape[1]) * std - aux[0] = 1. - tensor[0, :] = aux - self.left_node.tensor = tensor - - # Right node - if self.right_node is not None: - tensor = torch.randn(self.right_node.shape) * std - aux = torch.zeros(tensor.shape[0]) * std - aux[0] = 1. - tensor[:, 0] = aux - self.right_node.tensor = tensor - - # Mats env - for node in self.mats_env: - tensor = torch.randn(node.shape) * std - aux = torch.eye(tensor.shape[0], tensor.shape[2]) - tensor[:, 0, :] = aux - node.tensor = tensor
    + if self._boundary == 'obc': + self._left_node.set_tensor(init_method='copy', device=device) + self._right_node.set_tensor(init_method='copy', device=device) + + if init_method == 'unit': + tensors = self._make_unitaries(device=device) + + if tensors is not None: + if len(tensors) != self._n_features: + raise ValueError('`tensors` should be a sequence of `n_features`' + ' elements') + + if self._boundary == 'obc': + tensors = tensors[:] + if len(tensors) == 1: + tensors[0] = tensors[0].reshape(1, -1, 1) + else: + # Left node + aux_tensor = torch.zeros(*self._mats_env[0].shape, + device=tensors[0].device) + aux_tensor[0] = tensors[0] + tensors[0] = aux_tensor + + # Right node + aux_tensor = torch.zeros(*self._mats_env[-1].shape, + device=tensors[-1].device) + aux_tensor[..., 0] = tensors[-1] + tensors[-1] = aux_tensor + + for tensor, node in zip(tensors, self._mats_env): + node.tensor = tensor + + elif init_method is not None: + add_eye = False + if init_method == 'randn_eye': + init_method = 'randn' + add_eye = True + + for i, node in enumerate(self._mats_env): + node.set_tensor(init_method=init_method, + device=device, + **kwargs) + if add_eye: + aux_tensor = node.tensor.detach() + aux_tensor[:, 0, :] += torch.eye(node.shape[0], + node.shape[2], + device=device) + node.tensor = aux_tensor + + if self._boundary == 'obc': + aux_tensor = torch.zeros(*node.shape, device=device) + if i == 0: + # Left node + aux_tensor[0] = node.tensor[0] + node.tensor = aux_tensor + elif i == (self._n_features - 1): + # Right node + aux_tensor[..., 0] = node.tensor[..., 0] + node.tensor = aux_tensor
    [docs] def set_data_nodes(self) -> None: """ - Creates ``data`` nodes and connects each of them to the input/physical + Creates ``data`` nodes and connects each of them to the ``"input"`` edge of each input node. + """ + input_edges = [node['input'] for node in self.in_env] + super().set_data_nodes(input_edges=input_edges, + num_batch_edges=self._n_batches)
    + +
    [docs] def copy(self, share_tensors: bool = False) -> 'MPS': + """ + Creates a copy of the :class:`MPS`. + + Parameters + ---------- + share_tensor : bool, optional + Boolean indicating whether tensors in the copied MPS should be + set as the tensors in the current MPS (``True``), or cloned + (``False``). In the former case, tensors in both MPS's will be + the same, which might be useful if one needs more than one copy + of an MPS, but wants to compute all the gradients with respect + to the same, unique, tensors. + + Returns + ------- + MPS """ - input_edges = [] - if self.left_node is not None: - input_edges.append(self.left_node['input']) - input_edges += list(map(lambda node: node['input'], self.mats_env)) - if self.right_node is not None: - input_edges.append(self.right_node['input']) + new_mps = MPS(n_features=self._n_features, + phys_dim=self._phys_dim, + bond_dim=self._bond_dim, + boundary=self._boundary, + tensors=None, + in_features=self._in_features, + out_features=self._out_features, + n_batches=self._n_batches, + init_method=None, + device=None) + new_mps.name = self.name + '_copy' + if share_tensors: + for new_node, node in zip(new_mps._mats_env, self._mats_env): + new_node.tensor = node.tensor + else: + for new_node, node in zip(new_mps._mats_env, self._mats_env): + new_node.tensor = node.tensor.clone() + return new_mps
    + +
    [docs] def parameterize(self, + set_param: bool = True, + override: bool = False) -> 'TensorNetwork': + """ + Parameterizes all nodes of the MPS. If there are ``resultant`` nodes + in the MPS, it will be first :meth:`~tensorkrowch.TensorNetwork.reset`. - super().set_data_nodes(input_edges=input_edges, - num_batch_edges=self.n_batches) + Parameters + ---------- + set_param : bool + Boolean indicating whether the tensor network has to be parameterized + (``True``) or de-parameterized (``False``). + override : bool + Boolean indicating whether the tensor network should be parameterized + in-place (``True``) or copied and then parameterized (``False``). + """ + if self._resultant_nodes: + warnings.warn( + 'Resultant nodes will be removed before parameterizing the TN') + self.reset() - if self.mats_env: - self.mats_env_data = list(map(lambda node: node.neighbours('input'), - self.mats_env))
    + if override: + net = self + else: + net = self.copy(share_tensors=False) + + for i in range(self._n_features): + net._mats_env[i] = net._mats_env[i].parameterize(set_param) + + if net._boundary == 'obc': + net._left_node = net._left_node.parameterize(set_param) + net._right_node = net._right_node.parameterize(set_param) + + return net
    def _input_contraction(self, + nodes_env: List[AbstractNode], + input_nodes: List[AbstractNode], inline_input: bool = False) -> Tuple[ - Optional[List[Node]], - Optional[List[Node]]]: - """Contracts input data nodes with MPS nodes.""" + Optional[List[Node]], + Optional[List[Node]]]: + """Contracts input data nodes with MPS input nodes.""" if inline_input: - mats_result = list(map(lambda node: node @ node.neighbours('input'), - self.mats_env)) - + mats_result = [ + node @ in_node + for node, in_node in zip(nodes_env, input_nodes) + ] return mats_result else: - if self.mats_env: - stack = op.stack(self.mats_env) - stack_data = op.stack(self.mats_env_data) + if nodes_env: + stack = op.stack(nodes_env) + stack_data = op.stack(input_nodes) - stack['input'] ^ stack_data['feature'] + stack ^ stack_data result = stack_data @ stack mats_result = op.unbind(result) @@ -594,27 +1095,32 @@

    Source code for tensorkrowch.models.mps

                     return []
     
         @staticmethod
    -    def _inline_contraction(nodes: List[Node]) -> Node:
    +    def _inline_contraction(mats_env: List[AbstractNode],
    +                            from_left: bool = True) -> Node:
             """Contracts sequence of MPS nodes (matrices) inline."""
    -        result_node = nodes[0]
    -        for node in nodes[1:]:
    -            result_node @= node
    -        return result_node
    -
    -    def _contract_envs_inline(self, mats_env: List[Node]) -> Node:
    -        """Contracts the left and right environments inline."""
    -        if self.boundary == 'obc':
    -            left_node = self.left_node @ self.left_node.neighbours('input')
    -            right_node = self.right_node @ self.right_node.neighbours('input')
    -            contract_lst = [left_node] + mats_env + [right_node]
    -        elif len(mats_env) > 1:
    -            contract_lst = mats_env
    +        if from_left:
    +            result_node = mats_env[0]
    +            for node in mats_env[1:]:
    +                result_node @= node
    +            return result_node
             else:
    -            return mats_env[0] @ mats_env[0]
    -
    -        return self._inline_contraction(contract_lst)
    -
    -    def _aux_pairwise(self, nodes: List[Node]) -> Tuple[List[Node],
    +            result_node = mats_env[-1]
    +            for node in mats_env[-2::-1]:
    +                result_node = node @ result_node
    +            return result_node
    +
    +    def _contract_envs_inline(self, mats_env: List[AbstractNode]) -> Node:
    +        """Contracts nodes environments inline."""
    +        from_left = True
    +        if self._boundary == 'obc':
    +            if mats_env[0].neighbours('left') is self._left_node:
    +                mats_env = [self._left_node] + mats_env
    +            if mats_env[-1].neighbours('right') is self._right_node:
    +                mats_env = mats_env + [self._right_node]
    +                from_left = False
    +        return self._inline_contraction(mats_env=mats_env, from_left=from_left)
    +
    +    def _aux_pairwise(self, nodes: List[AbstractNode]) -> Tuple[List[Node],
         List[Node]]:
             """Contracts a sequence of MPS nodes (matrices) pairwise."""
             length = len(nodes)
    @@ -638,10 +1144,10 @@ 

    Source code for tensorkrowch.models.mps

                 return aux_nodes, leftover
             return nodes, []
     
    -    def _pairwise_contraction(self, mats_nodes: List[Node]) -> Node:
    -        """Contracts the left and right environments pairwise."""
    -        length = len(mats_nodes)
    -        aux_nodes = mats_nodes
    +    def _pairwise_contraction(self, mats_env: List[AbstractNode]) -> Node:
    +        """Contracts nodes environments pairwise."""
    +        length = len(mats_env)
    +        aux_nodes = mats_env
             if length > 1:
                 leftovers = []
                 while length > 1:
    @@ -657,108 +1163,642 @@ 

    Source code for tensorkrowch.models.mps

     
     
    [docs] def contract(self, inline_input: bool = False, - inline_mats: bool = False) -> Node: + inline_mats: bool = False, + marginalize_output: bool = False, + embedding_matrices: Optional[ + Union[torch.Tensor, + Sequence[torch.Tensor]]] = None, + mpo: Optional[MPO] = None + ) -> Node: """ Contracts the whole MPS. + If the MPS has input nodes, these are contracted against input ``data`` + nodes. + + If the MPS has output nodes, these can be left with their ``"input"`` + edges open, or can be marginalized, contracting the remaining output + nodes with themselves, if the argument ``"marginalize_output"`` is set + to ``True``. + + In the latter case, one can add additional nodes in between the MPS-MPS + contraction: + + * ``embedding_matrices``: A list of matrices with appropiate physical + dimensions can be passed, one for each output node. These matrices + will connect the two ``"input"`` edges of the corresponding nodes. + + * ``mpo``: If an :class:`MPO` is passed, when calling + ``mps(marginalize_output=True, mpo=mpo)``, this will perform the + MPS-MPO-MPS contraction at the output nodes of the MPS. Therefore, + the MPO should have as many nodes as output nodes are in the MPS. + + After contraction, the MPS will still be connected to the MPO nodes + until these are manually disconnected. + + The provided MPO can also be already connected to the MPS before + contraction. In this case, it is assumed that the output nodes of the + MPS are connected to the ``"output"`` edges of the MPO nodes, and + that the MPO nodes have been moved to the MPS, so that all nodes + belong to the MPS network. In this case, each MPO node will connect + the two ``"input"`` edges of the corresponding MPS nodes. + + If the MPO nodes are not trainable, they can be de-parameterized + by doing ``mpo = mpo.parameterize(set_param=False, override=True)``. + This should be done before the contraction, or before connecting + the MPO nodes to the MPS, since the de-parameterized nodes are not + the same nodes as the original ``ParamNodes`` of the MPO. + + When ``marginalize_output = True``, the contracted input nodes are + duplicated using different batch dimensions. That is, if the MPS + is contracted with input data with ``batch_size = 100``, and some + other (output) nodes are marginalized, the result will be a tensor + with shape ``(100, 100)`` rather than just ``(100,)``. + Parameters ---------- inline_input : bool Boolean indicating whether input ``data`` nodes should be contracted - with the ``MPS`` nodes inline (one contraction at a time) or in a - single stacked contraction. + with the ``MPS`` input nodes inline (one contraction at a time) or + in a single stacked contraction. inline_mats : bool Boolean indicating whether the sequence of matrices (resultant after contracting the input ``data`` nodes) should be contracted inline or as a sequence of pairwise stacked contrations. + marginalize_output : bool + Boolean indicating whether output nodes should be marginalized. If + ``True``, after contracting all the input nodes with their + neighbouring data nodes, this resultant network is contracted with + itself connecting output nodes to itselves at ``"input"`` edges. If + ``False``, output nodes are left with their ``"input"`` edges + disconnected. + embedding_matrices : torch.Tensor, list[torch.Tensor] or tuple[torch.Tensor], optional + If ``marginalize_output = True``, a matrix can be introduced + between each output node and its copy, connecting the ``"input"`` + edges. This can be useful when data vectors are not represented + as qubits in the computational basis, but are transformed via + some :ref:`Embeddings` function. + mpo : MPO, optional + MPO that is to be contracted with the MPS at the output nodes, if + ``marginalize_output = True``. In this case, the ``"output"`` edges + of the MPO nodes will be connected to the ``"input"`` edges of the + MPS output nodes. If there are no input nodes, the MPS-MPO-MPS + is performed by calling ``mps(marginalize_output=True, mpo=mpo)``, + without passing extra data tensors. Returns ------- Node """ - mats_env = self._input_contraction(inline_input) - - if inline_mats: - result = self._contract_envs_inline(mats_env) + if embedding_matrices is not None: + if isinstance(embedding_matrices, Sequence): + if len(embedding_matrices) != len(self._out_features): + raise ValueError( + '`embedding_matrices` should have the same amount of ' + 'elements as output nodes are in the MPS') + else: + embedding_matrices = [embedding_matrices] * len(self._out_features) + + for i, (mat, node) in enumerate(zip(embedding_matrices, + self.out_env)): + if not isinstance(mat, torch.Tensor): + raise TypeError( + '`embedding_matrices` should be torch.Tensor type') + if len(mat.shape) != 2: + raise ValueError( + '`embedding_matrices should ne rank-2 tensors') + if mat.shape[0] != mat.shape[1]: + raise ValueError( + '`embedding_matrices` should have equal dimensions') + if node['input'].size() != mat.shape[0]: + raise ValueError( + '`embedding_matrices` dimensions should be equal ' + 'to the input dimensions of the corresponding MPS ' + 'output nodes') + elif mpo is not None: + if not isinstance(mpo, MPO): + raise TypeError('`mpo` should be MPO type') + if mpo._n_features != len(self._out_features): + raise ValueError( + '`mpo` should have as many features as output nodes are ' + 'in the MPS') + + in_regions = self.in_regions + out_regions = self.out_regions + + mats_in_env = self._input_contraction( + nodes_env=self.in_env, + input_nodes=[node.neighbours('input') for node in self.in_env], + inline_input=inline_input) + + in_results = [] + for region in in_regions: + if inline_mats: + result = self._contract_envs_inline( + mats_env=mats_in_env[:len(region)]) + else: + result = self._pairwise_contraction( + mats_env=mats_in_env[:len(region)]) + + mats_in_env = mats_in_env[len(region):] + in_results.append(result) + + if not out_regions: + # If there is only input region, in_results has only 1 node + result = in_results[0] + else: - result = self._pairwise_contraction(mats_env) - + # Contract each in_result with the next output node + nodes_out_env = [] + out_first = out_regions[0][0] == 0 + out_last = out_regions[-1][-1] == (self._n_features - 1) + + for i in range(len(out_regions)): + aux_out_env = [self._mats_env[j] for j in out_regions[i]] + + if (i == 0) and out_first: + if self._boundary == 'obc': + aux_out_env[0] = self._left_node @ aux_out_env[0] + else: + aux_out_env[0] = in_results[i - out_first] @ aux_out_env[0] + + nodes_out_env += aux_out_env + + if out_last: + if (self._boundary == 'obc'): + nodes_out_env[-1] = nodes_out_env[-1] @ self._right_node + else: + nodes_out_env[-1] = nodes_out_env[-1] @ in_results[-1] + + if not marginalize_output: + # Contract all output nodes sequentially + result = self._inline_contraction(mats_env=nodes_out_env) + + else: + # Copy output nodes sharing tensors + copied_nodes = [] + for node in nodes_out_env: + copied_node = node.__class__(shape=node._shape, + axes_names=node.axes_names, + name='virtual_result_copy', + network=self, + virtual=True) + copied_node.set_tensor_from(node) + copied_nodes.append(copied_node) + + # Change batch names so that they not coincide with + # original batches, which gives dupliicate output batches + for ax in copied_node.axes: + if ax._batch: + ax.name = ax.name + '_copy' + + # Connect copied nodes with neighbours + for i in range(len(copied_nodes)): + if (i == 0) and (self._boundary == 'pbc'): + if nodes_out_env[i - 1].is_connected_to(nodes_out_env[i]): + copied_nodes[i - 1]['right'] ^ copied_nodes[i]['left'] + elif i > 0: + copied_nodes[i - 1]['right'] ^ copied_nodes[i]['left'] + + # Contract with embedding matrices + if embedding_matrices is not None: + mats_nodes = [] + for i, node in enumerate(nodes_out_env): + # Reattach input edges + node.reattach_edges(axes=['input']) + + # Create matrices + mat_node = Node(tensor=embedding_matrices[i], + axes_names=('input', 'output'), + name='virtual_result_mat', + network=self, + virtual=True) + + # Connect matrices to output nodes + mat_node['output'] ^ node['input'] + mats_nodes.append(mat_node) + + # Connect matrices to copies + for mat_node, copied_node in zip(mats_nodes, copied_nodes): + copied_node['input'] ^ mat_node['input'] + + # Contract output nodes with matrices + nodes_out_env = self._input_contraction( + nodes_env=nodes_out_env, + input_nodes=mats_nodes, + inline_input=True) + + # Contract with mpo + elif mpo is not None: + # Move all the connected component to the MPS network + mpo._mats_env[0].move_to_network(self) + + # Move uniform memory + if isinstance(mpo, UMPO): + mpo.uniform_memory.move_to_network(self) + for node in mpo._mats_env: + node.set_tensor_from(mpo.uniform_memory) + + # Connect MPO to MPS + for mps_node, mpo_node in zip(nodes_out_env, mpo._mats_env): + # Reattach input edges + mps_node.reattach_edges(axes=['input']) + mpo_node['output'] ^ mps_node['input'] + + # Connect MPO to copies + for copied_node, mpo_node in zip(copied_nodes, mpo._mats_env): + copied_node['input'] ^ mpo_node['input'] + + # Contract MPO with MPS + nodes_out_env = self._input_contraction( + nodes_env=nodes_out_env, + input_nodes=mpo._mats_env, + inline_input=True) + + # Contract MPO left and right nodes + if mpo._boundary == 'obc': + nodes_out_env[0] = mpo._left_node @ nodes_out_env[0] + nodes_out_env[-1] = nodes_out_env[-1] @ mpo._right_node + + else: + # Reattach input edges of resultant output nodes and connect + # with copied nodes + for node, copied_node in zip(nodes_out_env, copied_nodes): + # Reattach input edges + node.reattach_edges(axes=['input']) + + # Connect copies directly to output nodes + copied_node['input'] ^ node['input'] + + # Contract output nodes with copies + mats_out_env = self._input_contraction( + nodes_env=nodes_out_env, + input_nodes=copied_nodes, + inline_input=True) + + # Contract resultant matrices + result = self._inline_contraction(mats_env=mats_out_env) + + # Contract periodic edge + if result.is_connected_to(result): + result @= result + + # Put batch edges in first positions + batch_edges = [] + other_edges = [] + for i, edge in enumerate(result.edges): + if edge.is_batch(): + batch_edges.append(i) + else: + other_edges.append(i) + + all_edges = batch_edges + other_edges + if all_edges != list(range(len(all_edges))): + result = op.permute(result, tuple(all_edges)) + + return result
    + +
    [docs] def norm(self) -> torch.Tensor: + """ + Computes the norm of the MPS. + + This method internally sets ``in_features = []``, and calls the + :meth:`~tensorkrowch.TensorNetwork.forward` method with + ``marginalize_output = True``. Therefore, it may alter the behaviour + of the MPS if it is not :meth:`~tensorkrowch.TensorNetwork.reset` + afterwards. Also, if the MPS was contracted before with other arguments, + it should be ``reset`` before calling ``norm`` to avoid undesired + behaviour. + """ + if self._data_nodes: + self.unset_data_nodes() + self.in_features = [] + + result = self.forward(marginalize_output=True) + result = result.sqrt() return result
    -
    [docs] def canonicalize(self, - oc: Optional[int] = None, - mode: Text = 'svd', - rank: Optional[int] = None, - cum_percentage: Optional[float] = None, - cutoff: Optional[float] = None) -> None: - r""" - Turns MPS into canonical form via local SVD/QR decompositions. +
    [docs] def partial_density(self, trace_sites: Sequence[int] = []) -> torch.Tensor: + """ + Returns de partial density matrix, tracing out the sites specified + by ``trace_sites``. + + This method internally sets ``out_features = trace_sites``, and calls + the :meth:`~tensorkrowch.TensorNetwork.forward` method with + ``marginalize_output = True``. Therefore, it may alter the behaviour + of the MPS if it is not :meth:`~tensorkrowch.TensorNetwork.reset` + afterwards. Also, if the MPS was contracted before with other arguments, + it should be ``reset`` before calling ``partial_density`` to avoid + undesired behaviour. + + Since the density matrix is computed by contracting the MPS, it means + one can take gradients of it with respect to the MPS tensors, if it + is needed. + + This method may also alter the attribute :attr:`n_batches` of the + :class:`MPS`. Parameters ---------- - oc : int - Position of the orthogonality center. It should be between 0 and - ``n_features -1``. - mode : {"svd", "svdr", "qr"} - Indicates which decomposition should be used to split a node after - contracting it. See more at :func:`svd_`, :func:`svdr_`, :func:`qr_`. - If mode is "qr", operation :func:`qr_` will be performed on nodes at - the left of the output node, whilst operation :func:`rq_` will be - used for nodes at the right. - rank : int, optional - Number of singular values to keep. - cum_percentage : float, optional - Proportion that should be satisfied between the sum of all singular - values kept and the total sum of all singular values. - - .. math:: - - \frac{\sum_{i \in \{kept\}}{s_i}}{\sum_{i \in \{all\}}{s_i}} \ge - cum\_percentage - cutoff : float, optional - Quantity that lower bounds singular values in order to be kept. - + trace_sites : list[int] or tuple[int] + Sequence of nodes' indices in the MPS. These indices specify the + nodes that should be traced to compute the density matrix. If + it is empty ``[]``, the total density matrix will be returned, + though this may be costly if :attr:`n_features` is big. + Examples -------- >>> mps = tk.models.MPS(n_features=4, - ... in_dim=2, + ... phys_dim=[2, 3, 4, 5], ... bond_dim=5) - >>> mps.canonicalize(rank=3) - >>> mps.bond_dim - [2, 3, 2] + >>> density = mps.partial_density(trace_sites=[0, 2]) + >>> density.shape + torch.Size([3, 5, 3, 5]) """ - self.reset() - - prev_auto_stack = self._auto_stack - self.auto_stack = False - - if oc is None: - oc = self._n_features - 1 - elif oc >= self._n_features: - raise ValueError(f'Orthogonality center position `oc` should be ' - f'between 0 and {self._n_features - 1}') - - nodes = self.mats_env - if self.boundary == 'obc': - nodes = [self.left_node] + nodes + [self.right_node] - - for i in range(oc): - if mode == 'svd': - result1, result2 = nodes[i]['right'].svd_( - side='right', - rank=rank, - cum_percentage=cum_percentage, - cutoff=cutoff) + if not isinstance(trace_sites, Sequence): + raise TypeError( + '`trace_sites` should be list[int] or tuple[int] type') + + for site in trace_sites: + if not isinstance(site, int): + raise TypeError( + 'elements of `trace_sites` should be int type') + if (site < 0) or (site >= self._n_features): + raise ValueError( + 'Elements of `trace_sites` should be between 0 and ' + '(`n_features` - 1)') + + if self._data_nodes: + self.unset_data_nodes() + self.out_features = trace_sites + + # Create dataset with all possible combinations for the input nodes + # so that they are kept sort of "open" + dims = torch.tensor([self._phys_dim[i] for i in self._in_features]) + + data = [] + for i in range(len(self._in_features)): + aux = torch.arange(dims[i]).view(-1, 1) + aux = aux.repeat(1, dims[(i + 1):].prod()).flatten().view(-1, 1) + aux = aux.repeat(dims[:i].prod(), 1) + + data.append(aux.reshape(*dims, 1)) + + n_dims = len(set(dims)) + if n_dims >= 1: + if n_dims == 1: + data = torch.cat(data, dim=-1) + data = basis(data, dim=dims[0]).float().to(self.in_env[0].device) + elif n_dims > 1: + data = [ + basis(dat, dim=dim).squeeze(-2).float().to(self.in_env[0].device) + for dat, dim in zip(data, dims) + ] + + self.n_batches = len(dims) + result = self.forward(data, marginalize_output=True) + + else: + result = self.forward(marginalize_output=True) + + return result
    + +
    [docs] @torch.no_grad() + def mi(self, + middle_site: int, + renormalize: bool = False) -> Union[float, Tuple[float]]: + r""" + Computes the Mutual Information between subsystems :math:`A` and + :math:`B`, :math:`\textrm{MI}(A:B)`, where :math:`A` goes from site + 0 to ``middle_site``, and :math:`B` goes from ``middle_site + 1`` to + ``n_features - 1``. + + To compute the mutual information, the MPS is put into canonical form + with orthogonality center at ``middle_site``. Bond dimensions are not + changed if possible. Only when the bond dimension is bigger than the + physical dimension multiplied by the other bond dimension of the node, + it will be cropped to that size. + + If the MPS is not normalized, it may happen that the computation of the + mutual information fails due to errors in the Singular Value + Decompositions. To avoid this, it is recommended to set + ``renormalize = True``. In this case, the norm of each node after the + SVD is extracted in logarithmic form, and accumulated. As a result, + the function will return the tuple ``(mi, log_norm)``, which is a sort + of `scaled` mutual information. The actual mutual information could be + obtained as ``exp(log_norm) * mi``. + + Parameters + ---------- + middle_site : int + Position that separates regios :math:`A` and :math:`B`. It should + be between 0 and ``n_features - 2``. + renormalize : bool + Indicates whether nodes should be renormalized after SVD/QR + decompositions. If not, it may happen that the norm explodes as it + is being accumulated from all nodes. Renormalization aims to avoid + this undesired behavior by extracting the norm of each node on a + logarithmic scale after SVD/QR decompositions are computed. Finally, + the normalization factor is evenly distributed among all nodes of + the MPS. + + Returns + ------- + float or tuple[float, float] + """ + self.reset() + + prev_auto_stack = self._auto_stack + self.auto_stack = False + + if (middle_site < 0) or (middle_site > (self._n_features - 2)): + raise ValueError( + '`middle_site` should be between 0 and `n_features` - 2') + + log_norm = 0 + + nodes = self._mats_env[:] + if self._boundary == 'obc': + nodes[0].tensor[1:] = torch.zeros_like( + nodes[0].tensor[1:]) + nodes[-1].tensor[..., 1:] = torch.zeros_like( + nodes[-1].tensor[..., 1:]) + + for i in range(middle_site): + result1, result2 = nodes[i]['right'].svd_( + side='right', + rank=nodes[i]['right'].size()) + + if renormalize: + aux_norm = result2.norm() / sqrt(result2.shape[0]) + if not aux_norm.isinf() and (aux_norm > 0): + result2.tensor = result2.tensor / aux_norm + log_norm += aux_norm.log() + + result1 = result1.parameterize() + nodes[i] = result1 + nodes[i + 1] = result2 + + for i in range(len(nodes) - 1, middle_site, -1): + result1, result2 = nodes[i]['left'].svd_( + side='left', + rank=nodes[i]['left'].size()) + + if renormalize: + aux_norm = result1.norm() / sqrt(result1.shape[0]) + if not aux_norm.isinf() and (aux_norm > 0): + result1.tensor = result1.tensor / aux_norm + log_norm += aux_norm.log() + + result2 = result2.parameterize() + nodes[i] = result2 + nodes[i - 1] = result1 + + nodes[middle_site] = nodes[middle_site].parameterize() + + # Compute mutual information + middle_tensor = nodes[middle_site].tensor.clone() + _, s, _ = torch.linalg.svd( + middle_tensor.reshape(middle_tensor.shape[:-1].numel(), # left x input + middle_tensor.shape[-1]), # right + full_matrices=False) + + s = s[s > 0] + mutual_info = -(s * (s.log() + log_norm)).sum() + + # Rescale + if log_norm != 0: + rescale = (log_norm / len(nodes)).exp() + + if renormalize and (log_norm != 0): + for node in nodes: + node.tensor = node.tensor * rescale + + # Update variables + if self._boundary == 'obc': + self._bond_dim = [node['right'].size() for node in nodes[:-1]] + else: + self._bond_dim = [node['right'].size() for node in nodes] + self._mats_env = nodes + + self.auto_stack = prev_auto_stack + + if renormalize: + return mutual_info, log_norm + else: + return mutual_info
    + +
    [docs] @torch.no_grad() + def canonicalize(self, + oc: Optional[int] = None, + mode: Text = 'svd', + rank: Optional[int] = None, + cum_percentage: Optional[float] = None, + cutoff: Optional[float] = None, + renormalize: bool = False) -> None: + r""" + Turns MPS into canonical form via local SVD/QR decompositions. + + To specify the new bond dimensions, the arguments ``rank``, + ``cum_percentage`` or ``cutoff`` can be specified. These will be used + equally for all SVD computations. + + If none of them are specified, the bond dimensions won't be modified + if possible. Only when the bond dimension is bigger than the physical + dimension multiplied by the other bond dimension of the node, it will + be cropped to that size. + + Parameters + ---------- + oc : int + Position of the orthogonality center. It should be between 0 and + ``n_features - 1``. + mode : {"svd", "svdr", "qr"} + Indicates which decomposition should be used to split a node after + contracting it. See more at :func:`~tensorkrowch.svd_`, + :func:`~tensorkrowch.svdr_`, :func:`~tensorkrowch.qr_`. + If mode is "qr", operation :func:`~tensorkrowch.qr_` will be + performed on nodes at the left of the output node, whilst operation + :func:`~tensorkrowch.rq_` will be used for nodes at the right. + rank : int, optional + Number of singular values to keep. + cum_percentage : float, optional + Proportion that should be satisfied between the sum of all singular + values kept and the total sum of all singular values. + + .. math:: + + \frac{\sum_{i \in \{kept\}}{s_i}}{\sum_{i \in \{all\}}{s_i}} \ge + cum\_percentage + cutoff : float, optional + Quantity that lower bounds singular values in order to be kept. + renormalize : bool + Indicates whether nodes should be renormalized after SVD/QR + decompositions. If not, it may happen that the norm explodes as it + is being accumulated from all nodes. Renormalization aims to avoid + this undesired behavior by extracting the norm of each node on a + logarithmic scale after SVD/QR decompositions are computed. Finally, + the normalization factor is evenly distributed among all nodes of + the MPS. + + Examples + -------- + >>> mps = tk.models.MPS(n_features=4, + ... phys_dim=2, + ... bond_dim=5) + >>> mps.canonicalize(rank=3) + >>> mps.bond_dim + [3, 3, 3] + """ + self.reset() + + prev_auto_stack = self._auto_stack + self.auto_stack = False + + if oc is None: + oc = self._n_features - 1 + elif (oc < 0) or (oc >= self._n_features): + raise ValueError('Orthogonality center position `oc` should be ' + 'between 0 and `n_features` - 1') + + log_norm = 0 + + nodes = self._mats_env[:] + if self._boundary == 'obc': + nodes[0].tensor[1:] = torch.zeros_like( + nodes[0].tensor[1:]) + nodes[-1].tensor[..., 1:] = torch.zeros_like( + nodes[-1].tensor[..., 1:]) + + # If mode is svd or svr and none of the args is provided, the ranks are + # kept as they were originally + keep_rank = False + if (rank is None) and (cum_percentage is None) and (cutoff is None): + keep_rank = True + + for i in range(oc): + if mode == 'svd': + result1, result2 = nodes[i]['right'].svd_( + side='right', + rank=nodes[i]['right'].size() if keep_rank else rank, + cum_percentage=cum_percentage, + cutoff=cutoff) elif mode == 'svdr': result1, result2 = nodes[i]['right'].svdr_( side='right', - rank=rank, + rank=nodes[i]['right'].size() if keep_rank else rank, cum_percentage=cum_percentage, cutoff=cutoff) elif mode == 'qr': result1, result2 = nodes[i]['right'].qr_() else: raise ValueError('`mode` can only be "svd", "svdr" or "qr"') + + if renormalize: + aux_norm = result2.norm() / sqrt(result2.shape[0]) + if not aux_norm.isinf() and (aux_norm > 0): + result2.tensor = result2.tensor / aux_norm + log_norm += aux_norm.log() result1 = result1.parameterize() nodes[i] = result1 @@ -768,38 +1808,46 @@

    Source code for tensorkrowch.models.mps

                 if mode == 'svd':
                     result1, result2 = nodes[i]['left'].svd_(
                         side='left',
    -                    rank=rank,
    +                    rank=nodes[i]['left'].size() if keep_rank else rank,
                         cum_percentage=cum_percentage,
                         cutoff=cutoff)
                 elif mode == 'svdr':
                     result1, result2 = nodes[i]['left'].svdr_(
                         side='left',
    -                    rank=rank,
    +                    rank=nodes[i]['left'].size() if keep_rank else rank,
                         cum_percentage=cum_percentage,
                         cutoff=cutoff)
                 elif mode == 'qr':
                     result1, result2 = nodes[i]['left'].rq_()
                 else:
                     raise ValueError('`mode` can only be "svd", "svdr" or "qr"')
    +            
    +            if renormalize:
    +                aux_norm = result1.norm() / sqrt(result1.shape[0])
    +                if not aux_norm.isinf() and (aux_norm > 0):
    +                    result1.tensor = result1.tensor / aux_norm
    +                    log_norm += aux_norm.log()
     
                 result2 = result2.parameterize()
                 nodes[i] = result2
                 nodes[i - 1] = result1
     
             nodes[oc] = nodes[oc].parameterize()
    -
    -        if self.boundary == 'obc':
    -            self.left_node = nodes[0]
    -            self.mats_env = nodes[1:-1]
    -            self.right_node = nodes[-1]
    +        
    +        # Rescale
    +        if log_norm != 0:
    +            rescale = (log_norm / len(nodes)).exp()
    +        
    +        if renormalize and (log_norm != 0):
    +            for node in nodes:
    +                node.tensor = node.tensor * rescale
    +        
    +        # Update variables
    +        if self._boundary == 'obc':
    +            self._bond_dim = [node['right'].size() for node in nodes[:-1]]
             else:
    -            self.mats_env = nodes
    -
    -        bond_dim = []
    -        for node in nodes:
    -            if 'right' in node.axes_names:
    -                bond_dim.append(node['right'].size())
    -        self._bond_dim = bond_dim
    +            self._bond_dim = [node['right'].size() for node in nodes]
    +        self._mats_env = nodes
     
             self.auto_stack = prev_auto_stack
    @@ -820,20 +1868,20 @@

    Source code for tensorkrowch.models.mps

                     self.delete_node(node.neighbours('input'))
     
             line_mat_nodes = []
    -        in_dim_lst = []
    +        phys_dim_lst = []
             proj_mat_node = None
             for j in range(len(nodes)):
    -            in_dim_lst.append(nodes[j]['input'].size())
    -            if bond_dim <= torch.tensor(in_dim_lst).prod().item():
    -                proj_mat_node = Node(shape=(*in_dim_lst, bond_dim),
    -                                     axes_names=(*(['input'] * len(in_dim_lst)),
    +            phys_dim_lst.append(nodes[j]['input'].size())
    +            if bond_dim <= torch.tensor(phys_dim_lst).prod().item():
    +                proj_mat_node = Node(shape=(*phys_dim_lst, bond_dim),
    +                                     axes_names=(*(['input'] * len(phys_dim_lst)),
                                                      'bond_dim'),
                                          name=f'proj_mat_node_{side}',
                                          network=self)
     
                     proj_mat_node.tensor = torch.eye(
    -                    torch.tensor(in_dim_lst).prod().int().item(),
    -                    bond_dim).view(*in_dim_lst, -1).to(device)
    +                    torch.tensor(phys_dim_lst).prod().int().item(),
    +                    bond_dim).view(*phys_dim_lst, -1).to(device)
                     for k in range(j + 1):
                         nodes[k]['input'] ^ proj_mat_node[k]
     
    @@ -844,16 +1892,16 @@ 

    Source code for tensorkrowch.models.mps

                     break
     
             if proj_mat_node is None:
    -            bond_dim = torch.tensor(in_dim_lst).prod().int().item()
    -            proj_mat_node = Node(shape=(*in_dim_lst, bond_dim),
    -                                 axes_names=(*(['input'] * len(in_dim_lst)),
    +            bond_dim = torch.tensor(phys_dim_lst).prod().int().item()
    +            proj_mat_node = Node(shape=(*phys_dim_lst, bond_dim),
    +                                 axes_names=(*(['input'] * len(phys_dim_lst)),
                                                  'bond_dim'),
                                      name=f'proj_mat_node_{side}',
                                      network=self)
     
                 proj_mat_node.tensor = torch.eye(
    -                torch.tensor(in_dim_lst).prod().int().item(),
    -                bond_dim).view(*in_dim_lst, -1).to(device)
    +                torch.tensor(phys_dim_lst).prod().int().item(),
    +                bond_dim).view(*phys_dim_lst, -1).to(device)
                 for k in range(j + 1):
                     nodes[k]['input'] ^ proj_mat_node[k]
     
    @@ -864,13 +1912,13 @@ 

    Source code for tensorkrowch.models.mps

     
             k = j + 1
             while k < len(nodes):
    -            in_dim = nodes[k]['input'].size()
    -            proj_vec_node = Node(shape=(in_dim,),
    +            phys_dim = nodes[k]['input'].size()
    +            proj_vec_node = Node(shape=(phys_dim,),
                                      axes_names=('input',),
                                      name=f'proj_vec_node_{side}_({k})',
                                      network=self)
     
    -            proj_vec_node.tensor = torch.eye(in_dim, 1).squeeze().to(device)
    +            proj_vec_node.tensor = torch.eye(phys_dim, 1).squeeze().to(device)
                 nodes[k]['input'] ^ proj_vec_node['input']
                 line_mat_nodes.append(proj_vec_node @ nodes[k])
     
    @@ -887,7 +1935,7 @@ 

    Source code for tensorkrowch.models.mps

                                        nodes: List[AbstractNode],
                                        idx: int,
                                        left_nodeL: AbstractNode):
    -        """Returns canonicalize version of the tensor at site ``idx``."""
    +        """Returns canonicalized version of the tensor at site ``idx``."""
             L = nodes[idx]  # left x input x right
             left_nodeC = None
     
    @@ -897,17 +1945,17 @@ 

    Source code for tensorkrowch.models.mps

     
             L = L.tensor
     
    -        if idx < self._n_features - 1:
    +        if idx < (self._n_features - 1):
                 bond_dim = self._bond_dim[idx]
     
                 prod_phys_left = 1
                 for i in range(idx + 1):
    -                prod_phys_left *= self.in_dim[i]
    +                prod_phys_left *= self.phys_dim[i]
                 bond_dim = min(bond_dim, prod_phys_left)
     
                 prod_phys_right = 1
                 for i in range(idx + 1, self._n_features):
    -                prod_phys_right *= self.in_dim[i]
    +                prod_phys_right *= self.phys_dim[i]
                 bond_dim = min(bond_dim, prod_phys_right)
     
                 if bond_dim < self._bond_dim[idx]:
    @@ -935,7 +1983,8 @@ 

    Source code for tensorkrowch.models.mps

     
             return L, left_nodeC
     
    -
    [docs] def canonicalize_univocal(self): +
    [docs] @torch.no_grad() + def canonicalize_univocal(self): """ Turns MPS into the univocal canonical form defined `here <https://arxiv.org/abs/2202.12319>`_. @@ -949,10 +1998,17 @@

    Source code for tensorkrowch.models.mps

             prev_auto_stack = self._auto_stack
             self.auto_stack = False
     
    -        nodes = [self.left_node] + self.mats_env + [self.right_node]
    +        nodes = self._mats_env[:]
             for node in nodes:
                 if not node['input'].is_dangling():
                     node['input'].disconnect()
    +        
    +        if self._boundary == 'obc':
    +            nodes[0] = self._left_node @ nodes[0]
    +            nodes[0].reattach_edges(axes=['input'])
    +            
    +            nodes[-1] = nodes[-1] @ self._right_node
    +            nodes[-1].reattach_edges(axes=['input'])
     
             new_tensors = []
             left_nodeC = None
    @@ -962,54 +2018,81 @@ 

    Source code for tensorkrowch.models.mps

                     idx=i,
                     left_nodeL=left_nodeC)
                 new_tensors.append(tensor)
    -
    -        for i, (node, tensor) in enumerate(zip(nodes, new_tensors)):
    -            if i < self._n_features - 1:
    +        
    +        for i, node in enumerate(nodes):
    +            if i < (self._n_features - 1):
                     if self._bond_dim[i] < node['right'].size():
                         node['right'].change_size(self._bond_dim[i])
    -            node.tensor = tensor
     
                 if not node['input'].is_dangling():
                     self.delete_node(node.neighbours('input'))
    +        
             self.reset()
    +        self.initialize(tensors=new_tensors)
     
    -        for node, data_node in zip(nodes, self._data_nodes.values()):
    +        for node, data_node in zip(self._mats_env, self._data_nodes.values()):
                 node['input'] ^ data_node['feature']
     
             self.auto_stack = prev_auto_stack
    -
    [docs]class UMPS(TensorNetwork): +
    [docs]class UMPS(MPS): # MARK: UMPS """ - Class for Uniform (translationally invariant) Matrix Product States where - all nodes are input nodes. It is the uniform version of :class:`MPS`, that - is, all nodes share the same tensor. Thus this class cannot have different - input or bond dimensions for each node, and boundary conditions are - always periodic (``"pbc"``). + Class for Uniform (translationally invariant) Matrix Product States. It is + the uniform version of :class:`MPS`, that is, all nodes share the same + tensor. Thus this class cannot have different physical or bond dimensions + for each node, and boundary conditions are always periodic (``"pbc"``). - A ``UMPS`` is formed by the following nodes: - - * ``mats_env``: Environment of `matrix` nodes that. These nodes have axes - ``("left", "input", "right")``. + | + + For a more detailed list of inherited properties and methods, + check :class:`MPS`. Parameters ---------- n_features : int - Number of input nodes. - in_dim : int - Input dimension. Equivalent to the physical dimension. - bond_dim : int + Number of nodes that will be in ``mats_env``. + phys_dim : int, optional + Physical dimension. + bond_dim : int, optional Bond dimension. + tensor: torch.Tensor, optional + Instead of providing ``phys_dim`` and ``bond_dim``, a single tensor + can be provided. ``n_features`` is still needed to specify how many + times the tensor should be used to form a finite MPS. The tensor + should be rank-3, with its first and last dimensions being equal. + in_features: list[int] or tuple[int], optional + List of indices indicating the positions of the MPS nodes that will be + considered as input nodes. These nodes will have a neighbouring data + node connected to its ``"input"`` edge when the :meth:`set_data_nodes` + method is called. ``in_features`` is the complementary set of + ``out_features``, so it is only required to specify one of them. + out_features: list[int] or tuple[int], optional + List of indices indicating the positions of the MPS nodes that will be + considered as output nodes. These nodes will be left with their ``"input"`` + edges open when contrating the network. If ``marginalize_output`` is + set to ``True`` in :meth:`contract`, the network will be connected to + itself at these nodes, and contracted. ``out_features`` is the + complementary set of ``in_features``, so it is only required to specify + one of them. n_batches : int Number of batch edges of input ``data`` nodes. Usually ``n_batches = 1`` (where the batch edge is used for the data batched) but it could also be ``n_batches = 2`` (one edge for data batched, other edge for image patches in convolutional layers). + init_method : {"zeros", "ones", "copy", "rand", "randn", "randn_eye", "unit"}, optional + Initialization method. Check :meth:`initialize` for a more detailed + explanation of the different initialization methods. + device : torch.device, optional + Device where to initialize the tensors if ``init_method`` is provided. + kwargs : float + Keyword arguments for the different initialization methods. See + :meth:`~tensorkrowch.AbstractNode.make_tensor`. Examples -------- >>> mps = tk.models.UMPS(n_features=4, - ... in_dim=2, + ... phys_dim=2, ... bond_dim=5) >>> for node in mps.mats_env: ... assert node.tensor_address() == 'virtual_uniform' @@ -1022,245 +2105,1438 @@

    Source code for tensorkrowch.models.mps

     
         def __init__(self,
                      n_features: int,
    -                 in_dim: int,
    -                 bond_dim: int,
    -                 n_batches: int = 1) -> None:
    -
    -        super().__init__(name='mps')
    -
    +                 phys_dim: Optional[int] = None,
    +                 bond_dim: Optional[int] = None,
    +                 tensor: Optional[torch.Tensor] = None,
    +                 in_features: Optional[Sequence[int]] = None,
    +                 out_features: Optional[Sequence[int]] = None,
    +                 n_batches: int = 1,
    +                 init_method: Text = 'randn',
    +                 device: Optional[torch.device] = None,
    +                 **kwargs) -> None:
    +        
    +        tensors = None
    +        
             # n_features
    -        if n_features < 1:
    -            raise ValueError('`n_features` cannot be lower than 1')
    -        self._n_features = n_features
    -
    -        # in_dim
    -        if isinstance(in_dim, int):
    -            self._in_dim = in_dim
    -        else:
    -            raise TypeError('`in_dim` should be int type')
    -
    -        # bond_dim
    -        if isinstance(bond_dim, int):
    -            self._bond_dim = bond_dim
    +        if not isinstance(n_features, int):
    +            raise TypeError('`n_features` should be int type')
    +        elif n_features < 1:
    +            raise ValueError('`n_features` should be at least 1')
    +        
    +        if tensor is None:
    +            # phys_dim
    +            if not isinstance(phys_dim, int):
    +                raise TypeError('`phys_dim` should be int type')
    +
    +            # bond_dim
    +            if not isinstance(bond_dim, int):
    +                raise TypeError('`bond_dim` should be int type')
    +            
             else:
    -            raise TypeError('`bond_dim` should be int type')
    -
    -        # n_batches
    -        if not isinstance(n_batches, int):
    -            raise TypeError('`n_batches should be int type')
    -        self._n_batches = n_batches
    -
    -        # Create Tensor Network
    -        self._make_nodes()
    -        self.initialize()
    -
    -    @property
    -    def n_features(self) -> int:
    -        """Returns number of nodes."""
    -        return self._n_features
    -
    -    @property
    -    def in_dim(self) -> int:
    -        """Returns input/physical dimension."""
    -        return self._in_dim
    -
    -    @property
    -    def bond_dim(self) -> int:
    -        """Returns bond dimension."""
    -        return self._bond_dim
    -
    -    @property
    -    def n_batches(self) -> int:
    -        """Returns number of batch edges of the ``data`` nodes."""
    -        return self._n_batches
    +            if not isinstance(tensor, torch.Tensor):
    +                raise TypeError('`tensor` should be torch.Tensor type')
    +            if len(tensor.shape) != 3:
    +                raise ValueError('`tensor` should be a rank-3 tensor')
    +            if tensor.shape[0] != tensor.shape[2]:
    +                raise ValueError('`tensor` first and last dimensions should'
    +                                 ' be equal so that the MPS can have '
    +                                 'periodic boundary conditions')
    +            
    +            tensors = [tensor] * n_features
    +        
    +        super().__init__(n_features=n_features,
    +                         phys_dim=phys_dim,
    +                         bond_dim=bond_dim,
    +                         boundary='pbc',
    +                         tensors=tensors,
    +                         in_features=in_features,
    +                         out_features=out_features,
    +                         n_batches=n_batches,
    +                         init_method=init_method,
    +                         device=device,
    +                         **kwargs)
    +        self.name = 'umps'
     
         def _make_nodes(self) -> None:
             """Creates all the nodes of the MPS."""
    -        if self._leaf_nodes:
    -            raise ValueError('Cannot create MPS nodes if the MPS already has '
    -                             'nodes')
    -
    -        self.left_node = None
    -        self.right_node = None
    -        self.mats_env = []
    -
    -        for i in range(self._n_features):
    -            node = ParamNode(shape=(self.bond_dim, self.in_dim, self.bond_dim),
    -                             axes_names=('left', 'input', 'right'),
    -                             name=f'mats_env_node_({i})',
    -                             network=self)
    -            self.mats_env.append(node)
    -
    -            if i == 0:
    -                periodic_edge = self.mats_env[-1]['left']
    -            else:
    -                self.mats_env[-2]['right'] ^ self.mats_env[-1]['left']
    -
    -            if i == self._n_features - 1:
    -                self.mats_env[-1]['right'] ^ periodic_edge
    -
    +        super()._make_nodes()
    +        
             # Virtual node
    -        uniform_memory = ParamNode(shape=(self.bond_dim, self.in_dim, self.bond_dim),
    +        uniform_memory = ParamNode(shape=(self._bond_dim[0],
    +                                          self._phys_dim[0],
    +                                          self._bond_dim[0]),
                                        axes_names=('left', 'input', 'right'),
                                        name='virtual_uniform',
                                        network=self,
                                        virtual=True)
             self.uniform_memory = uniform_memory
    -
    -
    [docs] def initialize(self, std: float = 1e-9) -> None: + + for node in self._mats_env: + node.set_tensor_from(uniform_memory) + + def _make_unitaries(self, device: Optional[torch.device] = None) -> torch.Tensor: + """Initializes MPS in canonical form.""" + node = self.uniform_memory + node_shape = node.shape + aux_shape = (node.shape[:2].numel(), node.shape[2]) + + size = max(aux_shape[0], aux_shape[1]) + + tensor = random_unitary(size, device=device) + tensor = tensor[:min(aux_shape[0], size), :min(aux_shape[1], size)] + tensor = tensor.reshape(*node_shape) + return tensor + +
    [docs] def initialize(self, + tensors: Optional[Sequence[torch.Tensor]] = None, + init_method: Optional[Text] = 'randn', + device: Optional[torch.device] = None, + **kwargs: float) -> None: """ - Initializes output and uniform nodes as explained `here - <https://arxiv.org/abs/1605.03795>`_. - It can be overriden for custom initializations. + Initializes the common tensor of the :class:`UMPS`. It can be called + when instantiating the model, or to override the existing nodes' tensors. + + There are different methods to initialize the nodes: + + * ``{"zeros", "ones", "copy", "rand", "randn"}``: The tensor is + initialized calling :meth:`~tensorkrowch.AbstractNode.set_tensor` with + the given method, ``device`` and ``kwargs``. + + * ``"randn_eye"``: Tensor is initialized as in this + `paper <https://arxiv.org/abs/1605.03795>`_, adding identities at the + top of a random gaussian tensor. In this case, ``std`` should be + specified with a low value, e.g., ``std = 1e-9``. + + * ``"unit"``: Tensor is initialized as a random unitary, so that the + MPS is in canonical form. + + Parameters + ---------- + tensors : list[torch.Tensor] or tuple[torch.Tensor], optional + Sequence of a single tensor to set in each of the MPS nodes. The + tensor should be rank-3, with its first and last dimensions being + equal. + init_method : {"zeros", "ones", "copy", "rand", "randn", "randn_eye", "unit"}, optional + Initialization method. + device : torch.device, optional + Device where to initialize the tensors if ``init_method`` is provided. + kwargs : float + Keyword arguments for the different initialization methods. See + :meth:`~tensorkrowch.AbstractNode.make_tensor`. """ - # Virtual node - tensor = torch.randn(self.uniform_memory.shape) * std - random_eye = torch.randn(tensor.shape[0], tensor.shape[2]) * std - random_eye = random_eye + torch.eye(tensor.shape[0], tensor.shape[2]) - tensor[:, 0, :] = random_eye - - self.uniform_memory.tensor = tensor - - for node in self.mats_env: - node.set_tensor_from(self.uniform_memory)
    - -
    [docs] def set_data_nodes(self) -> None: + node = self.uniform_memory + + if init_method == 'unit': + tensors = [self._make_unitaries(device=device)] + + if tensors is not None: + node.tensor = tensors[0] + + elif init_method is not None: + add_eye = False + if init_method == 'randn_eye': + init_method = 'randn' + add_eye = True + + node.set_tensor(init_method=init_method, + device=device, + **kwargs) + if add_eye: + aux_tensor = node.tensor.detach() + aux_tensor[:, 0, :] += torch.eye(node.shape[0], + node.shape[2], + device=device) + node.tensor = aux_tensor
    + +
    [docs] def copy(self, share_tensors: bool = False) -> 'UMPS': """ - Creates ``data`` nodes and connects each of them to the input/physical - edge of each input node. - """ - input_edges = [] - if self.left_node is not None: - input_edges.append(self.left_node['input']) - input_edges += list(map(lambda node: node['input'], self.mats_env)) - if self.right_node is not None: - input_edges.append(self.right_node['input']) - - super().set_data_nodes(input_edges=input_edges, - num_batch_edges=self._n_batches) - - if self.mats_env: - self.mats_env_data = list(map(lambda node: node.neighbours('input'), - self.mats_env))
    + Creates a copy of the :class:`UMPS`. - def _input_contraction(self, - inline_input: bool = False) -> Tuple[ - Optional[List[Node]], - Optional[List[Node]]]: - """Contracts input data nodes with MPS nodes.""" - if inline_input: - mats_result = [] - for node in self.mats_env: - mats_result.append(node @ node.neighbours('input')) - return mats_result + Parameters + ---------- + share_tensor : bool, optional + Boolean indicating whether the common tensor in the copied UMPS + should be set as the tensor in the current UMPS (``True``), or + cloned (``False``). In the former case, the tensor in both UMPS's + will be the same, which might be useful if one needs more than one + copy of a UMPS, but wants to compute all the gradients with respect + to the same, unique, tensor. + Returns + ------- + UMPS + """ + new_mps = UMPS(n_features=self._n_features, + phys_dim=self._phys_dim[0], + bond_dim=self._bond_dim[0], + tensor=None, + in_features=self._in_features, + out_features=self._out_features, + n_batches=self._n_batches, + init_method=None, + device=None) + new_mps.name = self.name + '_copy' + if share_tensors: + new_mps.uniform_memory.tensor = self.uniform_memory.tensor else: - if self.mats_env: - stack = op.stack(self.mats_env) - stack_data = op.stack(self.mats_env_data) - - stack['input'] ^ stack_data['feature'] + new_mps.uniform_memory.tensor = self.uniform_memory.tensor.clone() + return new_mps
    + +
    [docs] def parameterize(self, + set_param: bool = True, + override: bool = False) -> 'TensorNetwork': + """ + Parameterizes all nodes of the MPS. If there are ``resultant`` nodes + in the MPS, it will be first :meth:`~tensorkrowch.TensorNetwork.reset`. - result = stack_data @ stack - mats_result = op.unbind(result) - return mats_result - else: - return [] + Parameters + ---------- + set_param : bool + Boolean indicating whether the tensor network has to be parameterized + (``True``) or de-parameterized (``False``). + override : bool + Boolean indicating whether the tensor network should be parameterized + in-place (``True``) or copied and then parameterized (``False``). + """ + if self._resultant_nodes: + warnings.warn( + 'Resultant nodes will be removed before parameterizing the TN') + self.reset() - @staticmethod - def _inline_contraction(nodes: List[Node]) -> Node: - """Contracts sequence of MPS nodes (matrices) inline.""" - result_node = nodes[0] - for node in nodes[1:]: - result_node @= node - return result_node - - def _contract_envs_inline(self, mats_env: List[Node]) -> Node: - """Contracts the left and right environments inline.""" - if len(mats_env) > 1: - contract_lst = mats_env + if override: + net = self else: - return mats_env[0] @ mats_env[0] - - return self._inline_contraction(contract_lst) - - def _aux_pairwise(self, nodes: List[Node]) -> Tuple[List[Node], - List[Node]]: - """Contracts a sequence of MPS nodes (matrices) pairwise.""" - length = len(nodes) - aux_nodes = nodes - if length > 1: - half_length = length // 2 - nice_length = 2 * half_length - - even_nodes = aux_nodes[0:nice_length:2] - odd_nodes = aux_nodes[1:nice_length:2] - leftover = aux_nodes[nice_length:] - - stack1 = op.stack(even_nodes) - stack2 = op.stack(odd_nodes) + net = self.copy(share_tensors=False) + + for i in range(self._n_features): + net._mats_env[i] = net._mats_env[i].parameterize(set_param) + + # It is important that uniform_memory is parameterized after the rest + # of the nodes + net.uniform_memory = net.uniform_memory.parameterize(set_param) + + # Tensor addresses have to be reassigned to reference + # the uniform memory + for node in net._mats_env: + node.set_tensor_from(net.uniform_memory) + + return net
    + + def canonicalize(self, + oc: Optional[int] = None, + mode: Text = 'svd', + rank: Optional[int] = None, + cum_percentage: Optional[float] = None, + cutoff: Optional[float] = None, + renormalize: bool = False) -> None: + """:meta private:""" + raise NotImplementedError( + '`canonicalize` not implemented for UMPS') + + def canonicalize_univocal(self): + """:meta private:""" + raise NotImplementedError( + '`canonicalize_univocal` not implemented for UMPS')
    - stack1['right'] ^ stack2['left'] - aux_nodes = stack1 @ stack2 - aux_nodes = op.unbind(aux_nodes) +
    [docs]class MPSLayer(MPS): # MARK: MPSLayer + """ + Class for Matrix Product States with a single output node. That is, this + MPS has :math:`n` nodes, being :math:`n-1` input nodes connected to ``data`` + nodes (nodes that will contain the data tensors), and one output node, + whose physical dimension (``out_dim``) is used as the label (for + classification tasks). + + Besides, since this class has an output edge, when contracting the whole + tensor network (with input data), the result will be a vector that can be + plugged into the next layer (being this other tensor network or a neural + network layer). + + If the physical dimensions of all the input nodes (``in_dim``) are equal, + the input data tensor can be passed as a single tensor. Otherwise, it would + have to be passed as a list of tensors with different sizes. + + | + + That is, ``MPSLayer`` is equivalent to :class:`MPS` with + ``out_features = [out_position]``. However, ``in_features`` and + ``out_features`` are still free to be changed if necessary, even though + this may change the expected behaviour of the ``MPSLayer``. The expected + behaviour can be recovered by setting ``out_features = [out_position]`` + again. + + | + + For a more detailed list of inherited properties and methods, + check :class:`MPS`. - return aux_nodes, leftover - return nodes, [] + Parameters + ---------- + n_features : int, optional + Number of nodes that will be in ``mats_env``. That is, number of nodes + without taking into account ``left_node`` and ``right_node``. This also + includes the output node, so if one wants to instantiate an ``MPSLayer`` + for a dataset with ``n`` features, it should be ``n_features = n + 1``, + to account for the output node. + in_dim : int, list[int] or tuple[int], optional + Input dimension(s). Equivalent to the physical dimension(s) but only + for input nodes. If given as a sequence, its length should be equal to + ``n_features - 1``, since these are the input dimensions of the input + nodes. + out_dim : int, optional + Output dimension (labels) for the output node. Equivalent to the + physical dimension of the output node. + bond_dim : int, list[int] or tuple[int], optional + Bond dimension(s). If given as a sequence, its length should be equal + to ``n_features`` (if ``boundary = "pbc"``) or ``n_features - 1`` (if + ``boundary = "obc"``). The i-th bond dimension is always the dimension + of the right edge of the i-th node (including output node). + out_position : int, optional + Position of the output node (label). Should be between 0 and + ``n_features - 1``. If ``None``, the output node will be located at the + middle of the MPS. + boundary : {"obc", "pbc"} + String indicating whether periodic or open boundary conditions should + be used. + tensors: list[torch.Tensor] or tuple[torch.Tensor], optional + Instead of providing ``n_features``, ``in_dim``, ``out_dim``, + ``bond_dim`` and ``boundary``, a list of MPS tensors can be provided. + In such case, all mentioned attributes will be inferred from the given + tensors. All tensors should be rank-3 tensors, with shape ``(bond_dim, + phys_dim, bond_dim)``. If the first and last elements are rank-2 tensors, + with shapes ``(phys_dim, bond_dim)``, ``(bond_dim, phys_dim)``, + respectively, the inferred boundary conditions will be "obc". Also, if + ``tensors`` contains a single element, it can be rank-1 ("obc") or + rank-3 ("pbc"). + n_batches : int + Number of batch edges of input ``data`` nodes. Usually ``n_batches = 1`` + (where the batch edge is used for the data batched) but it could also + be ``n_batches = 2`` (e.g. one edge for data batched, other edge for + image patches in convolutional layers). + init_method : {"zeros", "ones", "copy", "rand", "randn", "randn_eye", "unit"}, optional + Initialization method. Check :meth:`initialize` for a more detailed + explanation of the different initialization methods. + device : torch.device, optional + Device where to initialize the tensors if ``init_method`` is provided. + kwargs : float + Keyword arguments for the different initialization methods. See + :meth:`~tensorkrowch.AbstractNode.make_tensor`. + + Examples + -------- + ``MPSLayer`` with same input dimensions: + + >>> mps_layer = tk.models.MPSLayer(n_features=4, + ... in_dim=2, + ... out_dim=10, + ... bond_dim=5) + >>> data = torch.ones(20, 3, 2) # batch_size x (n_features - 1) x feature_size + >>> result = mps_layer(data) + >>> result.shape + torch.Size([20, 10]) + + ``MPSLayer`` with different input dimensions: + + >>> mps_layer = tk.models.MPSLayer(n_features=4, + ... in_dim=list(range(2, 5)), + ... out_dim=10, + ... bond_dim=5) + >>> data = [torch.ones(20, i) + ... for i in range(2, 5)] # (n_features - 1) * [batch_size x feature_size] + >>> result = mps_layer(data) + >>> result.shape + torch.Size([20, 10]) + """ - def _pairwise_contraction(self, mats_nodes: List[Node]) -> Node: - """Contracts the left and right environments pairwise.""" - length = len(mats_nodes) - aux_nodes = mats_nodes - if length > 1: - leftovers = [] - while length > 1: - aux1, aux2 = self._aux_pairwise(aux_nodes) - aux_nodes = aux1 - leftovers = aux2 + leftovers - length = len(aux1) + def __init__(self, + n_features: Optional[int] = None, + in_dim: Optional[Union[int, Sequence[int]]] = None, + out_dim: Optional[int] = None, + bond_dim: Optional[Union[int, Sequence[int]]] = None, + out_position: Optional[int] = None, + boundary: Text = 'obc', + tensors: Optional[Sequence[torch.Tensor]] = None, + n_batches: int = 1, + init_method: Text = 'randn', + device: Optional[torch.device] = None, + **kwargs) -> None: + + phys_dim = None + + if tensors is not None: + if not isinstance(tensors, (list, tuple)): + raise TypeError('`tensors` should be a tuple[torch.Tensor] or ' + 'list[torch.Tensor] type') + n_features = len(tensors) + else: + if not isinstance(n_features, int): + raise TypeError('`n_features` should be int type') + + # out_position + if out_position is None: + out_position = n_features // 2 + if (out_position < 0) or (out_position > n_features): + raise ValueError( + f'`out_position` should be between 0 and {n_features}') + self._out_position = out_position + + if tensors is None: + # in_dim + if isinstance(in_dim, (list, tuple)): + if len(in_dim) != (n_features - 1): + raise ValueError( + 'If `in_dim` is given as a sequence of int, its ' + 'length should be equal to `n_features` - 1') + else: + for dim in in_dim: + if not isinstance(dim, int): + raise TypeError( + '`in_dim` should be int, tuple[int] or ' + 'list[int] type') + in_dim = list(in_dim) + elif isinstance(in_dim, int): + in_dim = [in_dim] * (n_features - 1) + else: + if n_features == 1: + in_dim = [] + else: + raise TypeError( + '`in_dim` should be int, tuple[int] or list[int] type') + + # out_dim + if not isinstance(out_dim, int): + raise TypeError('`out_dim` should be int type') + + # phys_dim + phys_dim = in_dim[:out_position] + [out_dim] + in_dim[out_position:] + + super().__init__(n_features=n_features, + phys_dim=phys_dim, + bond_dim=bond_dim, + boundary=boundary, + tensors=tensors, + in_features=None, + out_features=[out_position], + n_batches=n_batches, + init_method=init_method, + device=device, + **kwargs) + self.name = 'mpslayer' + self._in_dim = self._phys_dim[:out_position] + \ + self._phys_dim[(out_position + 1):] + self._out_dim = self._phys_dim[out_position] + + @property + def in_dim(self) -> List[int]: + """Returns input dimensions.""" + return self._in_dim + + @property + def out_dim(self) -> int: + """ + Returns the output dimension, that is, the number of labels in the + output node. Same as ``in_dim`` for input nodes. + """ + return self._out_dim + + @property + def out_position(self) -> int: + """Returns position of the output node (label).""" + return self._out_position + + @property + def out_node(self) -> ParamNode: + """Returns the output node.""" + return self._mats_env[self._out_position] + +
    [docs] def initialize(self, + tensors: Optional[Sequence[torch.Tensor]] = None, + init_method: Optional[Text] = 'randn', + device: Optional[torch.device] = None, + **kwargs: float) -> None: + """ + Initializes all the nodes of the :class:`MPSLayer`. It can be called when + instantiating the model, or to override the existing nodes' tensors. + + There are different methods to initialize the nodes: + + * ``{"zeros", "ones", "copy", "rand", "randn"}``: Each node is + initialized calling :meth:`~tensorkrowch.AbstractNode.set_tensor` with + the given method, ``device`` and ``kwargs``. + + * ``"randn_eye"``: Nodes are initialized as in this + `paper <https://arxiv.org/abs/1605.03795>`_, adding identities at the + top of random gaussian tensors. In this case, ``std`` should be + specified with a low value, e.g., ``std = 1e-9``. + + * ``"unit"``: Nodes are initialized as random unitaries, so that the + MPS is in canonical form, with the orthogonality center at the + rightmost node. + + Parameters + ---------- + tensors : list[torch.Tensor] or tuple[torch.Tensor], optional + Sequence of tensors to set in each of the MPS nodes. If ``boundary`` + is ``"obc"``, all tensors should be rank-3, except the first and + last ones, which can be rank-2, or rank-1 (if the first and last are + the same). If ``boundary`` is ``"pbc"``, all tensors should be + rank-3. + init_method : {"zeros", "ones", "copy", "rand", "randn", "randn_eye", "unit"}, optional + Initialization method. + device : torch.device, optional + Device where to initialize the tensors if ``init_method`` is provided. + kwargs : float + Keyword arguments for the different initialization methods. See + :meth:`~tensorkrowch.AbstractNode.make_tensor`. + """ + if self._boundary == 'obc': + self._left_node.set_tensor(init_method='copy', device=device) + self._right_node.set_tensor(init_method='copy', device=device) + + if init_method == 'unit': + tensors = self._make_unitaries(device=device) + + if tensors is not None: + if len(tensors) != self._n_features: + raise ValueError('`tensors` should be a sequence of `n_features`' + ' elements') + + if self._boundary == 'obc': + tensors = tensors[:] + if len(tensors) == 1: + tensors[0] = tensors[0].reshape(1, -1, 1) + else: + # Left node + aux_tensor = torch.zeros(*self._mats_env[0].shape, + device=tensors[0].device) + aux_tensor[0] = tensors[0] + tensors[0] = aux_tensor + + # Right node + aux_tensor = torch.zeros(*self._mats_env[-1].shape, + device=tensors[-1].device) + aux_tensor[..., 0] = tensors[-1] + tensors[-1] = aux_tensor + + for tensor, node in zip(tensors, self._mats_env): + node.tensor = tensor + + elif init_method is not None: + add_eye = False + if init_method == 'randn_eye': + init_method = 'randn' + add_eye = True + + for i, node in enumerate(self._mats_env): + node.set_tensor(init_method=init_method, + device=device, + **kwargs) + if add_eye: + aux_tensor = node.tensor.detach() + eye_tensor = torch.eye(node.shape[0], + node.shape[2], + device=device) + if i == self._out_position: + eye_tensor = eye_tensor.unsqueeze(1) + eye_tensor = eye_tensor.expand(node.shape) + aux_tensor += eye_tensor + else: + aux_tensor[:, 0, :] += eye_tensor + node.tensor = aux_tensor + + if self._boundary == 'obc': + aux_tensor = torch.zeros(*node.shape, device=device) + if i == 0: + # Left node + aux_tensor[0] = node.tensor[0] + node.tensor = aux_tensor + elif i == (self._n_features - 1): + # Right node + aux_tensor[..., 0] = node.tensor[..., 0] + node.tensor = aux_tensor
    + +
    [docs] def copy(self, share_tensors: bool = False) -> 'MPSLayer': + """ + Creates a copy of the :class:`MPSLayer`. + + Parameters + ---------- + share_tensor : bool, optional + Boolean indicating whether tensors in the copied MPSLayer should be + set as the tensors in the current MPSLayer (``True``), or cloned + (``False``). In the former case, tensors in both MPSLayer's will be + the same, which might be useful if one needs more than one copy + of an MPSLayer, but wants to compute all the gradients with respect + to the same, unique, tensors. + + Returns + ------- + MPSLayer + """ + new_mps = MPSLayer(n_features=self._n_features, + in_dim=self._in_dim, + out_dim=self._out_dim, + bond_dim=self._bond_dim, + out_position=self._out_position, + boundary=self._boundary, + tensors=None, + n_batches=self._n_batches, + init_method=None, + device=None) + new_mps.name = self.name + '_copy' + if share_tensors: + for new_node, node in zip(new_mps._mats_env, self._mats_env): + new_node.tensor = node.tensor + else: + for new_node, node in zip(new_mps._mats_env, self._mats_env): + new_node.tensor = node.tensor.clone() + + return new_mps
    + + +
    [docs]class UMPSLayer(MPS): # MARK: UMPSLayer + """ + Class for Uniform (translationally invariant) Matrix Product States with an + output node. It is the uniform version of :class:`MPSLayer`, with all input + nodes sharing the same tensor, but with a different node for the output node. + Thus this class cannot have different input or bond dimensions for each node, + and boundary conditions are always periodic (``"pbc"``). + + | + + For a more detailed list of inherited properties and methods, + check :class:`MPS`. + + Parameters + ---------- + n_features : int + Number of nodes that will be in ``mats_env``. This also includes the + output node, so if one wants to instantiate a ``UMPSLayer`` for a + dataset with ``n`` features, it should be ``n_features = n + 1``, to + account for the output node. + in_dim : int, optional + Input dimension. Equivalent to the physical dimension but only for + input nodes. + out_dim : int, optional + Output dimension (labels) for the output node. + bond_dim : int, optional + Bond dimension. + out_position : int, optional + Position of the output node (label). Should be between 0 and + ``n_features - 1``. If ``None``, the output node will be located at the + middle of the MPS. + tensors: list[torch.Tensor] or tuple[torch.Tensor], optional + Instead of providing ``in_dim``, ``out_dim`` and ``bond_dim``, a + sequence of 2 tensors can be provided, the first one will be the uniform + tensor, and the second one will be the output node's tensor. + ``n_features`` is still needed to specify how many times the uniform + tensor should be used to form a finite MPS. In this case, since the + output node will have a different tensor, the uniform tensor will be + used in the remaining ``n_features - 1`` input nodes. Both tensors + should be rank-3, with all their first and last dimensions being equal. + n_batches : int + Number of batch edges of input ``data`` nodes. Usually ``n_batches = 1`` + (where the batch edge is used for the data batched) but it could also + be ``n_batches = 2`` (one edge for data batched, other edge for image + patches in convolutional layers). + init_method : {"zeros", "ones", "copy", "rand", "randn", "randn_eye", "unit"}, optional + Initialization method. Check :meth:`initialize` for a more detailed + explanation of the different initialization methods. + device : torch.device, optional + Device where to initialize the tensors if ``init_method`` is provided. + kwargs : float + Keyword arguments for the different initialization methods. See + :meth:`~tensorkrowch.AbstractNode.make_tensor`. + + Examples + -------- + >>> mps_layer = tk.models.UMPSLayer(n_features=4, + ... in_dim=2, + ... out_dim=10, + ... bond_dim=5) + >>> for i, node in enumerate(mps_layer.mats_env): + ... if i != mps_layer.out_position: + ... assert node.tensor_address() == 'virtual_uniform' + ... + >>> data = torch.ones(20, 3, 2) # batch_size x (n_features - 1) x feature_size + >>> result = mps_layer(data) + >>> result.shape + torch.Size([20, 10]) + """ + + def __init__(self, + n_features: int, + in_dim: Optional[int] = None, + out_dim: Optional[int] = None, + bond_dim: Optional[int] = None, + out_position: Optional[int] = None, + tensors: Optional[Sequence[torch.Tensor]] = None, + n_batches: int = 1, + init_method: Text = 'randn', + device: Optional[torch.device] = None, + **kwargs) -> None: + + phys_dim = None + + # n_features + if not isinstance(n_features, int): + raise TypeError('`n_features` should be int type') + elif n_features < 1: + raise ValueError('`n_features` should be at least 1') + + # out_position + if out_position is None: + out_position = n_features // 2 + if (out_position < 0) or (out_position > n_features): + raise ValueError( + f'`out_position` should be between 0 and {n_features}') + self._out_position = out_position + + if tensors is None: + # in_dim + if isinstance(in_dim, int): + in_dim = [in_dim] * (n_features - 1) + else: + if n_features == 1: + in_dim = [] + else: + raise TypeError( + '`in_dim` should be int, tuple[int] or list[int] type') + + # out_dim + if not isinstance(out_dim, int): + raise TypeError('`out_dim` should be int type') + + # phys_dim + phys_dim = in_dim[:out_position] + [out_dim] + in_dim[out_position:] + + else: + if not isinstance(tensors, Sequence): + raise TypeError('`tensors` should be a tuple[torch.Tensor] or ' + 'list[torch.Tensor] type') + if len(tensors) != 2: + raise ValueError('`tensors` should have 2 elements, the first' + ' corresponding to the common input tensor, ' + 'and another one for the output node') + for t in tensors: + if not isinstance(t, torch.Tensor): + raise TypeError( + 'Elements of `tensors` should be torch.Tensor type') + if len(t.shape) != 3: + raise ValueError( + 'Elements of `tensors` should be a rank-3 tensor') + if t.shape[0] != t.shape[2]: + raise ValueError( + 'Elements of `tensors` should have equal first and last' + ' dimensions so that the MPS can have periodic boundary' + ' conditions') + + if n_features == 1: + # Only output node is used, uniform memory will + # take that tensor too + tensors = [tensors[1]] + else: + tensors = [tensors[0]] * out_position + [tensors[1]] + \ + [tensors[0]] * (n_features - 1 - out_position) + + super().__init__(n_features=n_features, + phys_dim=phys_dim, + bond_dim=bond_dim, + boundary='pbc', + tensors=tensors, + in_features=None, + out_features=[out_position], + n_batches=n_batches, + init_method=init_method, + device=device, + **kwargs) + self.name = 'umpslayer' + self._in_dim = self._phys_dim[:out_position] + \ + self._phys_dim[(out_position + 1):] + self._out_dim = self._phys_dim[out_position] + + @property + def in_dim(self) -> List[int]: + """Returns input dimensions.""" + return self._in_dim + + @property + def out_dim(self) -> int: + """ + Returns the output dimension, that is, the number of labels in the + output node. Same as ``in_dim`` for input nodes. + """ + return self._out_dim + + @property + def out_position(self) -> int: + """Returns position of the output node (label).""" + return self._out_position + + @property + def out_node(self) -> ParamNode: + """Returns the output node.""" + return self._mats_env[self._out_position] + + def _make_nodes(self) -> None: + """Creates all the nodes of the MPS.""" + super()._make_nodes() + + # Virtual node + uniform_memory = ParamNode(shape=(self._bond_dim[0], + self._phys_dim[0], + self._bond_dim[0]), + axes_names=('left', 'input', 'right'), + name='virtual_uniform', + network=self, + virtual=True) + self.uniform_memory = uniform_memory + + in_nodes = self._mats_env[:self._out_position] + \ + self._mats_env[(self._out_position + 1):] + for node in in_nodes: + node.set_tensor_from(uniform_memory) + + def _make_unitaries(self, device: Optional[torch.device] = None) -> List[torch.Tensor]: + """Initializes MPS in canonical form.""" + tensors = [] + for node in [self.uniform_memory, self.out_node]: + node_shape = node.shape + aux_shape = (node.shape[:2].numel(), node.shape[2]) + + size = max(aux_shape[0], aux_shape[1]) + + tensor = random_unitary(size, device=device) + tensor = tensor[:min(aux_shape[0], size), :min(aux_shape[1], size)] + tensor = tensor.reshape(*node_shape) + + tensors.append(tensor) + return tensors + +
    [docs] def initialize(self, + tensors: Optional[Sequence[torch.Tensor]] = None, + init_method: Optional[Text] = 'randn', + device: Optional[torch.device] = None, + **kwargs: float) -> None: + """ + Initializes the common tensor of the :class:`UMPSLayer`. It can be called + when instantiating the model, or to override the existing nodes' tensors. + + There are different methods to initialize the nodes: + + * ``{"zeros", "ones", "copy", "rand", "randn"}``: The tensor is + initialized calling :meth:`~tensorkrowch.AbstractNode.set_tensor` with + the given method, ``device`` and ``kwargs``. + + * ``"randn_eye"``: Tensor is initialized as in this + `paper <https://arxiv.org/abs/1605.03795>`_, adding identities at the + top of a random gaussian tensor. In this case, ``std`` should be + specified with a low value, e.g., ``std = 1e-9``. + + * ``"unit"``: Tensor is initialized as a random unitary, so that the + MPS is in canonical form. + + Parameters + ---------- + tensors : list[torch.Tensor] or tuple[torch.Tensor], optional + Sequence of a 2 tensors, the first one will be the uniform tensor + that will be set in all input nodes, and the second one will be the + output node's tensor. Both tensors should be rank-3, with all their + first and last dimensions being equal. + init_method : {"zeros", "ones", "copy", "rand", "randn", "randn_eye", "unit"}, optional + Initialization method. + device : torch.device, optional + Device where to initialize the tensors if ``init_method`` is provided. + kwargs : float + Keyword arguments for the different initialization methods. See + :meth:`~tensorkrowch.AbstractNode.make_tensor`. + """ + if init_method == 'unit': + tensors = self._make_unitaries(device=device) + + if tensors is not None: + self.uniform_memory.tensor = tensors[0] + self.out_node.tensor = tensors[-1] + + elif init_method is not None: + for i, node in enumerate([self.uniform_memory, self.out_node]): + add_eye = False + if init_method == 'randn_eye': + init_method = 'randn' + add_eye = True + + node.set_tensor(init_method=init_method, + device=device, + **kwargs) + if add_eye: + aux_tensor = node.tensor.detach() + eye_tensor = torch.eye(node.shape[0], + node.shape[2], + device=device) + if i == 0: + aux_tensor[:, 0, :] += eye_tensor + else: + eye_tensor = eye_tensor.unsqueeze(1) + eye_tensor = eye_tensor.expand(node.shape) + aux_tensor += eye_tensor + node.tensor = aux_tensor
    + +
    [docs] def copy(self, share_tensors: bool = False) -> 'UMPSLayer': + """ + Creates a copy of the :class:`UMPSLayer`. + + Parameters + ---------- + share_tensor : bool, optional + Boolean indicating whether tensors in the copied UMPSLayer should be + set as the tensors in the current UMPSLayer (``True``), or cloned + (``False``). In the former case, tensors in both UMPSLayer's will be + the same, which might be useful if one needs more than one copy + of an UMPSLayer, but wants to compute all the gradients with respect + to the same, unique, tensors. + + Returns + ------- + UMPSLayer + """ + new_mps = UMPSLayer(n_features=self._n_features, + in_dim=self._in_dim[0] if self._in_dim else None, + out_dim=self._out_dim, + bond_dim=self._bond_dim, + out_position=self._out_position, + tensor=None, + n_batches=self._n_batches, + init_method=None, + device=None) + new_mps.name = self.name + '_copy' + if share_tensors: + new_mps.uniform_memory.tensor = self.uniform_memory.tensor + new_mps.out_node.tensor = self.out_node.tensor + else: + new_mps.uniform_memory.tensor = self.uniform_memory.tensor.clone() + new_mps.out_node.tensor = self.out_node.tensor.clone() + return new_mps
    + +
    [docs] def parameterize(self, + set_param: bool = True, + override: bool = False) -> 'TensorNetwork': + """ + Parameterizes all nodes of the MPS. If there are ``resultant`` nodes + in the MPS, it will be first :meth:`~tensorkrowch.TensorNetwork.reset`. + + Parameters + ---------- + set_param : bool + Boolean indicating whether the tensor network has to be parameterized + (``True``) or de-parameterized (``False``). + override : bool + Boolean indicating whether the tensor network should be parameterized + in-place (``True``) or copied and then parameterized (``False``). + """ + if self._resultant_nodes: + warnings.warn( + 'Resultant nodes will be removed before parameterizing the TN') + self.reset() + + if override: + net = self + else: + net = self.copy(share_tensors=False) + + for i in range(self._n_features): + net._mats_env[i] = net._mats_env[i].parameterize(set_param) + + # It is important that uniform_memory is parameterized after the rest + # of the nodes + net.uniform_memory = net.uniform_memory.parameterize(set_param) + + # Tensor addresses have to be reassigned to reference + # the uniform memory + for node in net._mats_env: + node.set_tensor_from(net.uniform_memory) + + return net
    + + def canonicalize(self, + oc: Optional[int] = None, + mode: Text = 'svd', + rank: Optional[int] = None, + cum_percentage: Optional[float] = None, + cutoff: Optional[float] = None, + renormalize: bool = False) -> None: + """:meta private:""" + raise NotImplementedError( + '`canonicalize` not implemented for UMPSLayer') + + def canonicalize_univocal(self): + """:meta private:""" + raise NotImplementedError( + '`canonicalize_univocal` not implemented for UMPSLayer')
    + + +############################################################################### +# CONV MODELS # +############################################################################### +class AbstractConvClass(ABC): # MARK: AbstractConvClass + + @abstractmethod + def __init__(self): + pass + + def _set_attributes(self, + in_channels: int, + kernel_size: Union[int, Sequence[int]], + stride: int, + padding: int, + dilation: int) -> nn.Module: + + if isinstance(kernel_size, int): + kernel_size = (kernel_size, kernel_size) + elif not isinstance(kernel_size, Sequence): + raise TypeError('`kernel_size` must be int, list[int] or tuple[int]') + + if isinstance(stride, int): + stride = (stride, stride) + elif not isinstance(stride, Sequence): + raise TypeError('`stride` must be int, list[int] or tuple[int]') + + if isinstance(padding, int): + padding = (padding, padding) + elif not isinstance(padding, Sequence): + raise TypeError('`padding` must be int, list[int] or tuple[int]') + + if isinstance(dilation, int): + dilation = (dilation, dilation) + elif not isinstance(dilation, Sequence): + raise TypeError('`dilation` must be int , list[int] or tuple[int]') + + self._in_channels = in_channels + self._kernel_size = kernel_size + self._stride = stride + self._padding = padding + self._dilation = dilation + + unfold = nn.Unfold(kernel_size=kernel_size, + stride=stride, + padding=padding, + dilation=dilation) + return unfold + + def forward(self, image, mode='flat', *args, **kwargs): + r""" + Overrides :meth:`~tensorkrowch.TensorNetwork.forward` to compute a + convolution on the input image. + + Parameters + ---------- + image : torch.Tensor + Input batch of images with shape + + .. math:: + + batch\_size \times in\_channels \times height \times width + mode : {"flat", "snake"} + Indicates the order in which MPS should take the pixels in the image. + When ``"flat"``, the image is flattened putting one row of the image + after the other. When ``"snake"``, its row is put in the opposite + orientation as the previous row (like a snake running through the + image). + args : + Arguments that might be used in :meth:`~MPS.contract`. + kwargs : + Keyword arguments that might be used in :meth:`~MPS.contract`, + like ``inline_input`` or ``inline_mats``. + """ + # Input image shape: batch_size x in_channels x height x width + + patches = self.unfold(image).transpose(1, 2) + # batch_size x nb_windows x (in_channels * nb_pixels) + + patches = patches.view(*patches.shape[:-1], self.in_channels, -1) + # batch_size x nb_windows x in_channels x nb_pixels + + patches = patches.transpose(2, 3) + # batch_size x nb_windows x nb_pixels x in_channels + + if mode == 'snake': + new_patches = patches[..., :self._kernel_size[1], :] + for i in range(1, self._kernel_size[0]): + if i % 2 == 0: + aux = patches[..., (i * self._kernel_size[1]): + ((i + 1) * self._kernel_size[1]), :] + else: + aux = patches[..., + (i * self._kernel_size[1]): + ((i + 1) * self._kernel_size[1]), :].flip(dims=[0]) + new_patches = torch.cat([new_patches, aux], dim=2) + + patches = new_patches + + elif mode != 'flat': + raise ValueError('`mode` can only be "flat" or "snake"') + + h_in = image.shape[2] + w_in = image.shape[3] + + h_out = int((h_in + 2 * self.padding[0] - self.dilation[0] * + (self.kernel_size[0] - 1) - 1) / self.stride[0] + 1) + w_out = int((w_in + 2 * self.padding[1] - self.dilation[1] * + (self.kernel_size[1] - 1) - 1) / self.stride[1] + 1) + + result = super().forward(patches, *args, **kwargs) + # batch_size x nb_windows (x out_channels ...) + + if len(result.shape) == 3: + result = result.movedim(1, -1) + # batch_size (x out_channels ...) x nb_windows + + result = result.view(*result.shape[:-1], h_out, w_out) + # batch_size (x out_channels ...) x height_out x width_out + + return result + + +
    [docs]class ConvMPS(AbstractConvClass, MPS): # MARK: ConvMPS + """ + Convolutional version of :class:`MPS`, where the input data is assumed to + be a batch of images. + + Input data as well as initialization parameters are described in `torch.nn.Conv2d + <https://pytorch.org/docs/stable/generated/torch.nn.Conv2d.html>`_. + + Parameters + ---------- + in_channels : int + Input channels. Same as ``phys_dim`` in :class:`MPS`. + bond_dim : int, list[int] or tuple[int] + Bond dimension(s). If given as a sequence, its length should be equal + to :math:`kernel\_size_0 \cdot kernel\_size_1` (if ``boundary = "pbc"``) + or :math:`kernel\_size_0 \cdot kernel\_size_1 - 1` (if + ``boundary = "obc"``). The i-th bond dimension is always the dimension + of the right edge of the i-th node. + kernel_size : int, list[int] or tuple[int] + Kernel size used in `torch.nn.Unfold + <https://pytorch.org/docs/stable/generated/torch.nn.Unfold.html#torch.nn.Unfold>`_. + If given as an ``int``, the actual kernel size will be + ``(kernel_size, kernel_size)``. + stride : int + Stride used in `torch.nn.Unfold + <https://pytorch.org/docs/stable/generated/torch.nn.Unfold.html#torch.nn.Unfold>`_. + padding : int + Padding used in `torch.nn.Unfold + <https://pytorch.org/docs/stable/generated/torch.nn.Unfold.html#torch.nn.Unfold>`_. + If given as an ``int``, the actual kernel size will be + ``(kernel_size, kernel_size)``. + dilation : int + Dilation used in `torch.nn.Unfold + <https://pytorch.org/docs/stable/generated/torch.nn.Unfold.html#torch.nn.Unfold>`_. + If given as an ``int``, the actual kernel size will be + ``(kernel_size, kernel_size)``. + boundary : {"obc", "pbc"} + String indicating whether periodic or open boundary conditions should + be used. + tensors: list[torch.Tensor] or tuple[torch.Tensor], optional + To initialize MPS nodes, a list of MPS tensors can be provided. All + tensors should be rank-3 tensors, with shape ``(bond_dim, in_channels, + bond_dim)``. If the first and last elements are rank-2 tensors, with + shapes ``(in_channels, bond_dim)``, ``(bond_dim, in_channels)``, + respectively, the inferred boundary conditions will be "obc". Also, if + ``tensors`` contains a single element, it can be rank-1 ("obc") or + rank-3 ("pbc"). + init_method : {"zeros", "ones", "copy", "rand", "randn", "randn_eye", "unit"}, optional + Initialization method. Check :meth:`~MPS.initialize` for a more detailed + explanation of the different initialization methods. + device : torch.device, optional + Device where to initialize the tensors if ``init_method`` is provided. + kwargs : float + Keyword arguments for the different initialization methods. See + :meth:`~tensorkrowch.AbstractNode.make_tensor`. + + Examples + -------- + >>> conv_mps = tk.models.ConvMPS(in_channels=2, + ... bond_dim=5, + ... kernel_size=2) + >>> data = torch.ones(20, 2, 2, 2) # batch_size x in_channels x height x width + >>> result = conv_mps(data) + >>> result.shape + torch.Size([20, 1, 1]) + """ + + def __init__(self, + in_channels: int, + bond_dim: Union[int, Sequence[int]], + kernel_size: Union[int, Sequence], + stride: int = 1, + padding: int = 0, + dilation: int = 1, + boundary: Text = 'obc', + tensors: Optional[Sequence[torch.Tensor]] = None, + init_method: Text = 'randn', + device: Optional[torch.device] = None, + **kwargs): + + unfold = self._set_attributes(in_channels=in_channels, + kernel_size=kernel_size, + stride=stride, + padding=padding, + dilation=dilation) + + MPS.__init__(self, + n_features=self._kernel_size[0] * self._kernel_size[1], + phys_dim=in_channels, + bond_dim=bond_dim, + boundary=boundary, + tensors=tensors, + n_batches=2, + init_method=init_method, + device=device, + **kwargs) + + self.unfold = unfold + + @property + def in_channels(self) -> int: + """Returns ``in_channels``. Same as ``phys_dim`` in :class:`MPS`.""" + return self._in_channels + + @property + def kernel_size(self) -> Tuple[int, int]: + """ + Returns ``kernel_size``. Number of nodes is given by + :math:`kernel\_size_0 \cdot kernel\_size_1`. + """ + return self._kernel_size + + @property + def stride(self) -> Tuple[int, int]: + """ + Returns stride used in `torch.nn.Unfold + <https://pytorch.org/docs/stable/generated/torch.nn.Unfold.html#torch.nn.Unfold>`_. + """ + return self._stride + + @property + def padding(self) -> Tuple[int, int]: + """ + Returns padding used in `torch.nn.Unfold + <https://pytorch.org/docs/stable/generated/torch.nn.Unfold.html#torch.nn.Unfold>`_. + """ + return self._padding + + @property + def dilation(self) -> Tuple[int, int]: + """ + Returns dilation used in `torch.nn.Unfold + <https://pytorch.org/docs/stable/generated/torch.nn.Unfold.html#torch.nn.Unfold>`_. + """ + return self._dilation + +
    [docs] def copy(self, share_tensors: bool = False) -> 'ConvMPS': + """ + Creates a copy of the :class:`ConvMPS`. + + Parameters + ---------- + share_tensor : bool, optional + Boolean indicating whether tensors in the copied ConvMPS should be + set as the tensors in the current ConvMPS (``True``), or cloned + (``False``). In the former case, tensors in both ConvMPS's will be + the same, which might be useful if one needs more than one copy + of a ConvMPS, but wants to compute all the gradients with respect + to the same, unique, tensors. + + Returns + ------- + ConvMPS + """ + new_mps = ConvMPS(in_channels=self._in_channels, + bond_dim=self._bond_dim, + kernel_size=self._kernel_size, + stride=self._stride, + padding=self._padding, + dilation=self.dilation, + boundary=self._boundary, + tensors=None, + init_method=None, + device=None) + new_mps.name = self.name + '_copy' + if share_tensors: + for new_node, node in zip(new_mps._mats_env, self._mats_env): + new_node.tensor = node.tensor + else: + for new_node, node in zip(new_mps._mats_env, self._mats_env): + new_node.tensor = node.tensor.clone() + + return new_mps
    + + +
    [docs]class ConvUMPS(AbstractConvClass, UMPS): # MARK: ConvUMPS + """ + Convolutional version of :class:`UMPS`, where the input data is assumed to + be a batch of images. + + Input data as well as initialization parameters are described in `torch.nn.Conv2d + <https://pytorch.org/docs/stable/generated/torch.nn.Conv2d.html>`_. + + Parameters + ---------- + in_channels : int + Input channels. Same as ``phys_dim`` in :class:`UMPS`. + bond_dim : int + Bond dimension. + kernel_size : int, list[int] or tuple[int] + Kernel size used in `torch.nn.Unfold + <https://pytorch.org/docs/stable/generated/torch.nn.Unfold.html#torch.nn.Unfold>`_. + If given as an ``int``, the actual kernel size will be + ``(kernel_size, kernel_size)``. + stride : int + Stride used in `torch.nn.Unfold + <https://pytorch.org/docs/stable/generated/torch.nn.Unfold.html#torch.nn.Unfold>`_. + padding : int + Padding used in `torch.nn.Unfold + <https://pytorch.org/docs/stable/generated/torch.nn.Unfold.html#torch.nn.Unfold>`_. + If given as an ``int``, the actual kernel size will be + ``(kernel_size, kernel_size)``. + dilation : int + Dilation used in `torch.nn.Unfold + <https://pytorch.org/docs/stable/generated/torch.nn.Unfold.html#torch.nn.Unfold>`_. + If given as an ``int``, the actual kernel size will be + ``(kernel_size, kernel_size)``. + tensor: torch.Tensor, optional + To initialize MPS nodes, a MPS tensor can be provided. The tensor + should be rank-3, with its first and last dimensions being equal. + init_method : {"zeros", "ones", "copy", "rand", "randn", "randn_eye", "unit"}, optional + Initialization method. Check :meth:`~UMPS.initialize` for a more detailed + explanation of the different initialization methods. + device : torch.device, optional + Device where to initialize the tensors if ``init_method`` is provided. + kwargs : float + Keyword arguments for the different initialization methods. See + :meth:`~tensorkrowch.AbstractNode.make_tensor`. + + + Examples + -------- + >>> conv_mps = tk.models.ConvUMPS(in_channels=2, + ... bond_dim=5, + ... kernel_size=2) + >>> for node in conv_mps.mats_env: + ... assert node.tensor_address() == 'virtual_uniform' + ... + >>> data = torch.ones(20, 2, 2, 2) # batch_size x in_channels x height x width + >>> result = conv_mps(data) + >>> result.shape + torch.Size([20, 1, 1]) + """ + + def __init__(self, + in_channels: int, + bond_dim: int, + kernel_size: Union[int, Sequence], + stride: int = 1, + padding: int = 0, + dilation: int = 1, + tensor: Optional[torch.Tensor] = None, + init_method: Text = 'randn', + device: Optional[torch.device] = None, + **kwargs): + + unfold = self._set_attributes(in_channels=in_channels, + kernel_size=kernel_size, + stride=stride, + padding=padding, + dilation=dilation) + + UMPS.__init__(self, + n_features=self._kernel_size[0] * self._kernel_size[1], + phys_dim=in_channels, + bond_dim=bond_dim, + tensor=tensor, + n_batches=2, + init_method=init_method, + device=device, + **kwargs) + + self.unfold = unfold + + @property + def in_channels(self) -> int: + """Returns ``in_channels``. Same as ``phys_dim`` in :class:`MPS`.""" + return self._in_channels + + @property + def kernel_size(self) -> Tuple[int, int]: + """ + Returns ``kernel_size``. Number of nodes is given by + :math:`kernel\_size_0 \cdot kernel\_size_1`. + """ + return self._kernel_size - aux_nodes = aux_nodes + leftovers - return self._pairwise_contraction(aux_nodes) + @property + def stride(self) -> Tuple[int, int]: + """ + Returns stride used in `torch.nn.Unfold + <https://pytorch.org/docs/stable/generated/torch.nn.Unfold.html#torch.nn.Unfold>`_. + """ + return self._stride - return self._contract_envs_inline(aux_nodes) + @property + def padding(self) -> Tuple[int, int]: + """ + Returns padding used in `torch.nn.Unfold + <https://pytorch.org/docs/stable/generated/torch.nn.Unfold.html#torch.nn.Unfold>`_. + """ + return self._padding -
    [docs] def contract(self, - inline_input: bool = False, - inline_mats: bool = False) -> Node: + @property + def dilation(self) -> Tuple[int, int]: """ - Contracts the whole MPS. - + Returns dilation used in `torch.nn.Unfold + <https://pytorch.org/docs/stable/generated/torch.nn.Unfold.html#torch.nn.Unfold>`_. + """ + return self._dilation + +
    [docs] def copy(self, share_tensors: bool = False) -> 'ConvUMPS': + """ + Creates a copy of the :class:`ConvUMPS`. + Parameters ---------- - inline_input : bool - Boolean indicating whether input ``data`` nodes should be contracted - with the ``MPS`` nodes inline (one contraction at a time) or in a - single stacked contraction. - inline_mats : bool - Boolean indicating whether the sequence of matrices (resultant - after contracting the input ``data`` nodes) should be contracted - inline or as a sequence of pairwise stacked contrations. + share_tensor : bool, optional + Boolean indicating whether the common tensor in the copied ConvUMPS + should be set as the tensor in the current ConvUMPS (``True``), or + cloned (``False``). In the former case, the tensor in both ConvUMPS's + will be the same, which might be useful if one needs more than one + copy of a ConvUMPS, but wants to compute all the gradients with respect + to the same, unique, tensor. Returns ------- - Node + ConvUMPS """ - mats_env = self._input_contraction(inline_input) - - if inline_mats: - result = self._contract_envs_inline(mats_env) + new_mps = ConvUMPS(in_channels=self._in_channels, + bond_dim=self._bond_dim[0], + kernel_size=self._kernel_size, + stride=self._stride, + padding=self._padding, + dilation=self.dilation, + tensor=None, + init_method=None, + device=None) + new_mps.name = self.name + '_copy' + if share_tensors: + new_mps.uniform_memory.tensor = self.uniform_memory.tensor else: - result = self._pairwise_contraction(mats_env) - - return result
    + new_mps.uniform_memory.tensor = self.uniform_memory.tensor.clone() + + return new_mps
    -
    [docs]class ConvMPS(MPS): +
    [docs]class ConvMPSLayer(AbstractConvClass, MPSLayer): # MARK: ConvMPSLayer """ - Class for Matrix Product States, where all nodes are input nodes, and where - the input data is a batch of images. It is the convolutional version of - :class:`MPS`. + Convolutional version of :class:`MPSLayer`, where the input data is assumed to + be a batch of images. Input data as well as initialization parameters are described in `torch.nn.Conv2d <https://pytorch.org/docs/stable/generated/torch.nn.Conv2d.html>`_. @@ -1268,13 +3544,15 @@

    Source code for tensorkrowch.models.mps

         Parameters
         ----------
         in_channels : int
    -        Input channels. Same as ``in_dim`` in :class:`MPS`.
    +        Input channels. Same as ``in_dim`` in :class:`MPSLayer`.
    +    out_channels : int
    +        Output channels. Same as ``out_dim`` in :class:`MPSLayer`.
         bond_dim : int, list[int] or tuple[int]
             Bond dimension(s). If given as a sequence, its length should be equal
    -        to :math:`kernel\_size_0 \cdot kernel\_size_1` (if ``boundary = "pbc"``)
    -        or :math:`kernel\_size_0 \cdot kernel\_size_1 - 1` (if
    -        ``boundary = "obc"``). The i-th bond dimension is always the dimension
    -        of the right edge of the i-th node.
    +        to :math:`kernel\_size_0 \cdot kernel\_size_1 + 1`
    +        (if ``boundary = "pbc"``) or :math:`kernel\_size_0 \cdot kernel\_size_1`
    +        (if ``boundary = "obc"``). The i-th bond dimension is always the dimension
    +        of the right edge of the i-th node (including output node).
         kernel_size : int, list[int] or tuple[int]
             Kernel size used in `torch.nn.Unfold
             <https://pytorch.org/docs/stable/generated/torch.nn.Unfold.html#torch.nn.Unfold>`_.
    @@ -1293,77 +3571,95 @@ 

    Source code for tensorkrowch.models.mps

             <https://pytorch.org/docs/stable/generated/torch.nn.Unfold.html#torch.nn.Unfold>`_.
             If given as an ``int``, the actual kernel size will be
             ``(kernel_size, kernel_size)``.
    +    out_position : int, optional
    +        Position of the output node (label). Should be between 0 and
    +        :math:`kernel\_size_0 \cdot kernel\_size_1`. If ``None``, the output node
    +        will be located at the middle of the MPS.
         boundary : {"obc", "pbc"}
             String indicating whether periodic or open boundary conditions should
             be used.
    +    tensors: list[torch.Tensor] or tuple[torch.Tensor], optional
    +        To initialize MPS nodes, a list of MPS tensors can be provided. All
    +        tensors should be rank-3 tensors, with shape ``(bond_dim, in_channels,
    +        bond_dim)``. If the first and last elements are rank-2 tensors, with
    +        shapes ``(in_channels, bond_dim)``, ``(bond_dim, in_channels)``,
    +        respectively, the inferred boundary conditions will be "obc". Also, if
    +        ``tensors`` contains a single element, it can be rank-1 ("obc") or
    +        rank-3 ("pbc").
    +    init_method : {"zeros", "ones", "copy", "rand", "randn", "randn_eye", "unit"}, optional
    +        Initialization method. Check :meth:`~MPSLayer.initialize` for a more detailed
    +        explanation of the different initialization methods.
    +    device : torch.device, optional
    +        Device where to initialize the tensors if ``init_method`` is provided.
    +    kwargs : float
    +        Keyword arguments for the different initialization methods. See
    +        :meth:`~tensorkrowch.AbstractNode.make_tensor`.
             
         Examples
         --------
    -    >>> conv_mps = tk.models.ConvMPS(in_channels=2,
    -    ...                              bond_dim=5,
    -    ...                              kernel_size=2)
    +    >>> conv_mps_layer = tk.models.ConvMPSLayer(in_channels=2,
    +    ...                                         out_channels=10,
    +    ...                                         bond_dim=5,
    +    ...                                         kernel_size=2)
         >>> data = torch.ones(20, 2, 2, 2) # batch_size x in_channels x height x width
    -    >>> result = conv_mps(data)
    -    >>> print(result.shape)
    -    torch.Size([20, 1, 1])
    +    >>> result = conv_mps_layer(data)
    +    >>> result.shape
    +    torch.Size([20, 10, 1, 1])
         """
     
         def __init__(self,
                      in_channels: int,
    +                 out_channels: int,
                      bond_dim: Union[int, Sequence[int]],
                      kernel_size: Union[int, Sequence],
                      stride: int = 1,
                      padding: int = 0,
                      dilation: int = 1,
    -                 boundary: Text = 'obc'):
    -
    -        if isinstance(kernel_size, int):
    -            kernel_size = (kernel_size, kernel_size)
    -        elif not isinstance(kernel_size, Sequence):
    -            raise TypeError('`kernel_size` must be int or Sequence')
    -
    -        if isinstance(stride, int):
    -            stride = (stride, stride)
    -        elif not isinstance(stride, Sequence):
    -            raise TypeError('`stride` must be int or Sequence')
    -
    -        if isinstance(padding, int):
    -            padding = (padding, padding)
    -        elif not isinstance(padding, Sequence):
    -            raise TypeError('`padding` must be int or Sequence')
    -
    -        if isinstance(dilation, int):
    -            dilation = (dilation, dilation)
    -        elif not isinstance(dilation, Sequence):
    -            raise TypeError('`dilation` must be int or Sequence')
    -
    -        self._in_channels = in_channels
    -        self._kernel_size = kernel_size
    -        self._stride = stride
    -        self._padding = padding
    -        self._dilation = dilation
    -
    -        super().__init__(n_features=kernel_size[0] * kernel_size[1],
    -                         in_dim=in_channels,
    -                         bond_dim=bond_dim,
    -                         boundary=boundary,
    -                         n_batches=2)
    -
    -        self.unfold = nn.Unfold(kernel_size=kernel_size,
    -                                stride=stride,
    -                                padding=padding,
    -                                dilation=dilation)
    -
    +                 out_position: Optional[int] = None,
    +                 boundary: Text = 'obc',
    +                 tensors: Optional[Sequence[torch.Tensor]] = None,
    +                 init_method: Text = 'randn',
    +                 device: Optional[torch.device] = None,
    +                 **kwargs):
    +
    +        unfold = self._set_attributes(in_channels=in_channels,
    +                                      kernel_size=kernel_size,
    +                                      stride=stride,
    +                                      padding=padding,
    +                                      dilation=dilation)
    +
    +        MPSLayer.__init__(self,
    +                          n_features=self._kernel_size[0] * \
    +                              self._kernel_size[1] + 1,
    +                          in_dim=in_channels,
    +                          out_dim=out_channels,
    +                          bond_dim=bond_dim,
    +                          out_position=out_position,
    +                          boundary=boundary,
    +                          tensors=tensors,
    +                          n_batches=2,
    +                          init_method=init_method,
    +                          device=device,
    +                          **kwargs)
    +        
    +        self._out_channels = out_channels
    +        self.unfold = unfold
    +    
         @property
         def in_channels(self) -> int:
    -        """Returns ``in_channels``. Same as ``in_dim`` in :class:`MPS`."""
    +        """Returns ``in_channels``. Same as ``in_dim`` in :class:`MPSLayer`."""
             return self._in_channels
     
    +    @property
    +    def out_channels(self) -> int:
    +        """Returns ``out_channels``. Same as ``out_dim`` in :class:`MPSLayer`."""
    +        return self._out_channels
    +
         @property
         def kernel_size(self) -> Tuple[int, int]:
             """
             Returns ``kernel_size``. Number of nodes is given by
    -        :math:`kernel\_size_0 \cdot kernel\_size_1`.
    +        :math:`kernel\_size_0 \cdot kernel\_size_1 + 1`.
             """
             return self._kernel_size
     
    @@ -1390,83 +3686,51 @@ 

    Source code for tensorkrowch.models.mps

             <https://pytorch.org/docs/stable/generated/torch.nn.Unfold.html#torch.nn.Unfold>`_.
             """
             return self._dilation
    +    
    +
    [docs] def copy(self, share_tensors: bool = False) -> 'ConvMPSLayer': + """ + Creates a copy of the :class:`ConvMPSLayer`. -
    [docs] def forward(self, image, mode='flat', *args, **kwargs): - r""" - Overrides ``torch.nn.Module``'s forward to compute a convolution on the - input image. - Parameters ---------- - image : torch.Tensor - Input batch of images with shape - - .. math:: - - batch\_size \times in\_channels \times height \times width - mode : {"flat", "snake"} - Indicates the order in which MPS should take the pixels in the image. - When ``"flat"``, the image is flattened putting one row of the image - after the other. When ``"snake"``, its row is put in the opposite - orientation as the previous row (like a snake running through the - image). - args : - Arguments that might be used in :meth:`~MPS.contract`. - kwargs : - Keyword arguments that might be used in :meth:`~MPS.contract`, - like ``inline_input`` or ``inline_mats``. + share_tensor : bool, optional + Boolean indicating whether tensors in the copied ConvMPSLayer should + be set as the tensors in the current ConvMPSLayer (``True``), or + cloned (``False``). In the former case, tensors in both ConvMPSLayer's + will be the same, which might be useful if one needs more than one + copy of an ConvMPSLayer, but wants to compute all the gradients with + respect to the same, unique, tensors. + + Returns + ------- + ConvMPSLayer """ - # Input image shape: batch_size x in_channels x height x width - - patches = self.unfold(image).transpose(1, 2) - # batch_size x nb_windows x (in_channels * nb_pixels) - - patches = patches.view(*patches.shape[:-1], self.in_channels, -1) - # batch_size x nb_windows x in_channels x nb_pixels - - patches = patches.transpose(2, 3) - # batch_size x nb_windows x nb_pixels x in_channels - - if mode == 'snake': - new_patches = patches[..., :self._kernel_size[1], :] - for i in range(1, self._kernel_size[0]): - if i % 2 == 0: - aux = patches[..., (i * self._kernel_size[1]): - ((i + 1) * self._kernel_size[1]), :] - else: - aux = patches[..., - (i * self._kernel_size[1]): - ((i + 1) * self._kernel_size[1]), :].flip(dims=[0]) - new_patches = torch.cat([new_patches, aux], dim=2) - - patches = new_patches - - elif mode != 'flat': - raise ValueError('`mode` can only be "flat" or "snake"') - - result = super().forward(patches, *args, **kwargs) - # batch_size x nb_windows - - h_in = image.shape[2] - w_in = image.shape[3] - - h_out = int((h_in + 2 * self.padding[0] - self.dilation[0] * - (self.kernel_size[0] - 1) - 1) / self.stride[0] + 1) - w_out = int((w_in + 2 * self.padding[1] - self.dilation[1] * - (self.kernel_size[1] - 1) - 1) / self.stride[1] + 1) - - result = result.view(*result.shape[:-1], h_out, w_out) - # batch_size x height_out x width_out - - return result
    + new_mps = ConvMPSLayer(in_channels=self._in_channels, + out_channels=self._out_channels, + bond_dim=self._bond_dim, + kernel_size=self._kernel_size, + stride=self._stride, + padding=self._padding, + dilation=self.dilation, + boundary=self._boundary, + tensors=None, + init_method=None, + device=None) + new_mps.name = self.name + '_copy' + if share_tensors: + for new_node, node in zip(new_mps._mats_env, self._mats_env): + new_node.tensor = node.tensor + else: + for new_node, node in zip(new_mps._mats_env, self._mats_env): + new_node.tensor = node.tensor.clone() + + return new_mps
    -
    [docs]class ConvUMPS(UMPS): +
    [docs]class ConvUMPSLayer(AbstractConvClass, UMPSLayer): # MARK: ConvUMPSLayer """ - Class for Uniform Matrix Product States, where all nodes are input nodes, - and where the input data is a batch of images. It is the convolutional - version of :class:`UMPS`. This class cannot have different bond dimensions - for each site and boundary conditions are always periodic. + Convolutional version of :class:`UMPSLayer`, where the input data is assumed to + be a batch of images. Input data as well as initialization parameters are described in `torch.nn.Conv2d <https://pytorch.org/docs/stable/generated/torch.nn.Conv2d.html>`_. @@ -1474,7 +3738,9 @@

    Source code for tensorkrowch.models.mps

         Parameters
         ----------
         in_channels : int
    -        Input channels. Same as ``in_dim`` in :class:`UMPS`.
    +        Input channels. Same as ``in_dim`` in :class:`UMPSLayer`.
    +    out_channels : int
    +        Output channels. Same as ``out_dim`` in :class:`UMPSLayer`.
         bond_dim : int
             Bond dimension.
         kernel_size : int, list[int] or tuple[int]
    @@ -1495,75 +3761,92 @@ 

    Source code for tensorkrowch.models.mps

             <https://pytorch.org/docs/stable/generated/torch.nn.Unfold.html#torch.nn.Unfold>`_.
             If given as an ``int``, the actual kernel size will be
             ``(kernel_size, kernel_size)``.
    -    
    +    out_position : int, optional
    +        Position of the output node (label). Should be between 0 and
    +        :math:`kernel\_size_0 \cdot kernel\_size_1`. If ``None``, the output node
    +        will be located at the middle of the MPS.
    +        
    +    tensors: list[torch.Tensor] or tuple[torch.Tensor], optional
    +        To initialize MPS nodes, a sequence of 2 tensors can be provided, the
    +        first one will be the uniform tensor, and the second one will be the
    +        output node's tensor. Both tensors should be rank-3, with all their
    +        first and last dimensions being equal.
    +    init_method : {"zeros", "ones", "copy", "rand", "randn", "randn_eye", "unit"}, optional
    +        Initialization method. Check :meth:`~UMPSLayer.initialize` for a more
    +        detailed explanation of the different initialization methods.
    +    device : torch.device, optional
    +        Device where to initialize the tensors if ``init_method`` is provided.
    +    kwargs : float
    +        Keyword arguments for the different initialization methods. See
    +        :meth:`~tensorkrowch.AbstractNode.make_tensor`.
    +        
         Examples
         --------
    -    >>> conv_mps = tk.models.ConvMPS(in_channels=2,
    -    ...                              bond_dim=5,
    -    ...                              kernel_size=2)
    -    >>> for node in mps.mats_env:
    -    ...     assert node.tensor_address() == 'virtual_uniform'
    +    >>> conv_mps_layer = tk.models.ConvUMPSLayer(in_channels=2,
    +    ...                                          out_channels=10,
    +    ...                                          bond_dim=5,
    +    ...                                          kernel_size=2)
    +    >>> for i, node in enumerate(conv_mps_layer.mats_env):
    +    ...     if i != conv_mps_layer.out_position:
    +    ...         assert node.tensor_address() == 'virtual_uniform'
         ...
         >>> data = torch.ones(20, 2, 2, 2) # batch_size x in_channels x height x width
    -    >>> result = conv_mps(data)
    -    >>> print(result.shape)
    -    torch.Size([20, 1, 1])
    +    >>> result = conv_mps_layer(data)
    +    >>> result.shape
    +    torch.Size([20, 10, 1, 1])
         """
     
         def __init__(self,
                      in_channels: int,
    -                 bond_dim: int,
    +                 out_channels: int,
    +                 bond_dim: Union[int, Sequence[int]],
                      kernel_size: Union[int, Sequence],
                      stride: int = 1,
                      padding: int = 0,
    -                 dilation: int = 1):
    -
    -        if isinstance(kernel_size, int):
    -            kernel_size = (kernel_size, kernel_size)
    -        elif not isinstance(kernel_size, Sequence):
    -            raise TypeError('`kernel_size` must be int or Sequence')
    -
    -        if isinstance(stride, int):
    -            stride = (stride, stride)
    -        elif not isinstance(stride, Sequence):
    -            raise TypeError('`stride` must be int or Sequence')
    -
    -        if isinstance(padding, int):
    -            padding = (padding, padding)
    -        elif not isinstance(padding, Sequence):
    -            raise TypeError('`padding` must be int or Sequence')
    -
    -        if isinstance(dilation, int):
    -            dilation = (dilation, dilation)
    -        elif not isinstance(dilation, Sequence):
    -            raise TypeError('`dilation` must be int or Sequence')
    -
    -        self._in_channels = in_channels
    -        self._kernel_size = kernel_size
    -        self._stride = stride
    -        self._padding = padding
    -        self._dilation = dilation
    -
    -        super().__init__(n_features=kernel_size[0] * kernel_size[1],
    -                         in_dim=in_channels,
    -                         bond_dim=bond_dim,
    -                         n_batches=2)
    -
    -        self.unfold = nn.Unfold(kernel_size=kernel_size,
    -                                stride=stride,
    -                                padding=padding,
    -                                dilation=dilation)
    -
    +                 dilation: int = 1,
    +                 out_position: Optional[int] = None,
    +                 tensors: Optional[Sequence[torch.Tensor]] = None,
    +                 init_method: Text = 'randn',
    +                 device: Optional[torch.device] = None,
    +                 **kwargs):
    +
    +        unfold = self._set_attributes(in_channels=in_channels,
    +                                      kernel_size=kernel_size,
    +                                      stride=stride,
    +                                      padding=padding,
    +                                      dilation=dilation)
    +
    +        UMPSLayer.__init__(self,
    +                           n_features=self._kernel_size[0] * \
    +                               self._kernel_size[1] + 1,
    +                           in_dim=in_channels,
    +                           out_dim=out_channels,
    +                           bond_dim=bond_dim,
    +                           out_position=out_position,
    +                           tensors=tensors,
    +                           n_batches=2,
    +                           init_method=init_method,
    +                           device=device,
    +                           **kwargs)
    +        
    +        self._out_channels = out_channels
    +        self.unfold = unfold
    +    
         @property
         def in_channels(self) -> int:
    -        """Returns ``in_channels``. Same as ``in_dim`` in :class:`UMPS`."""
    +        """Returns ``in_channels``. Same as ``in_dim`` in :class:`UMPSLayer`."""
             return self._in_channels
     
    +    @property
    +    def out_channels(self) -> int:
    +        """Returns ``out_channels``. Same as ``out_dim`` in :class:`UMPSLayer`."""
    +        return self._out_channels
    +
         @property
         def kernel_size(self) -> Tuple[int, int]:
             """
             Returns ``kernel_size``. Number of nodes is given by
    -        :math:`kernel\_size_0 \cdot kernel\_size_1`.
    +        :math:`kernel\_size_0 \cdot kernel\_size_1 + 1`.
             """
             return self._kernel_size
     
    @@ -1590,75 +3873,49 @@ 

    Source code for tensorkrowch.models.mps

             <https://pytorch.org/docs/stable/generated/torch.nn.Unfold.html#torch.nn.Unfold>`_.
             """
             return self._dilation
    +    
    +    @property
    +    def out_channels(self) -> int:
    +        """Returns ``out_channels``. Same as ``phys_dim`` in :class:`MPS`."""
    +        return self._out_channels
    +
    +
    [docs] def copy(self, share_tensors: bool = False) -> 'ConvUMPSLayer': + """ + Creates a copy of the :class:`ConvUMPSLayer`. -
    [docs] def forward(self, image, mode='flat', *args, **kwargs): - r""" - Overrides ``torch.nn.Module``'s forward to compute a convolution on the - input image. - Parameters ---------- - image : torch.Tensor - Input batch of images with shape - - .. math:: - - batch\_size \times in\_channels \times height \times width - mode : {"flat", "snake"} - Indicates the order in which MPS should take the pixels in the image. - When ``"flat"``, the image is flattened putting one row of the image - after the other. When ``"snake"``, its row is put in the opposite - orientation as the previous row (like a snake running through the - image). - args : - Arguments that might be used in :meth:`~UMPS.contract`. - kwargs : - Keyword arguments that might be used in :meth:`~UMPS.contract`, - like ``inline_input`` or ``inline_mats``. + share_tensor : bool, optional + Boolean indicating whether tensors in the copied ConvUMPSLayer should + be set as the tensors in the current ConvUMPSLayer (``True``), or + cloned (``False``). In the former case, tensors in both ConvUMPSLayer's + will be the same, which might be useful if one needs more than one + copy of an ConvUMPSLayer, but wants to compute all the gradients with + respect to the same, unique, tensors. + + Returns + ------- + ConvUMPSLayer """ - # Input image shape: batch_size x in_channels x height x width - - patches = self.unfold(image).transpose(1, 2) - # batch_size x nb_windows x (in_channels * nb_pixels) - - patches = patches.view(*patches.shape[:-1], self.in_channels, -1) - # batch_size x nb_windows x in_channels x nb_pixels - - patches = patches.transpose(2, 3) - # batch_size x nb_windows x nb_pixels x in_channels - - if mode == 'snake': - new_patches = patches[..., :self._kernel_size[1], :] - for i in range(1, self._kernel_size[0]): - if i % 2 == 0: - aux = patches[..., (i * self._kernel_size[1]): - ((i + 1) * self._kernel_size[1]), :] - else: - aux = patches[..., - (i * self._kernel_size[1]): - ((i + 1) * self._kernel_size[1]), :].flip(dims=[0]) - new_patches = torch.cat([new_patches, aux], dim=2) - - patches = new_patches - - elif mode != 'flat': - raise ValueError('`mode` can only be "flat" or "snake"') - - result = super().forward(patches, *args, **kwargs) - # batch_size x nb_windows - - h_in = image.shape[2] - w_in = image.shape[3] - - h_out = int((h_in + 2 * self.padding[0] - self.dilation[0] * - (self.kernel_size[0] - 1) - 1) / self.stride[0] + 1) - w_out = int((w_in + 2 * self.padding[1] - self.dilation[1] * - (self.kernel_size[1] - 1) - 1) / self.stride[1] + 1) - - result = result.view(*result.shape[:-1], h_out, w_out) - # batch_size x height_out x width_out - - return result
    + new_mps = ConvUMPSLayer(in_channels=self._in_channels, + out_channels=self._out_channels, + bond_dim=self._bond_dim[0], + kernel_size=self._kernel_size, + stride=self._stride, + padding=self._padding, + dilation=self.dilation, + tensor=None, + init_method=None, + device=None) + new_mps.name = self.name + '_copy' + if share_tensors: + new_mps.uniform_memory.tensor = self.uniform_memory.tensor + new_mps.out_node.tensor = self.out_node.tensor + else: + new_mps.uniform_memory.tensor = self.uniform_memory.tensor.clone() + new_mps.out_node.tensor = self.out_node.tensor.clone() + + return new_mps
    diff --git a/docs/_build/html/_modules/tensorkrowch/models/mps_data.html b/docs/_build/html/_modules/tensorkrowch/models/mps_data.html new file mode 100644 index 0000000..c3727e0 --- /dev/null +++ b/docs/_build/html/_modules/tensorkrowch/models/mps_data.html @@ -0,0 +1,786 @@ + + + + + + + + tensorkrowch.models.mps_data — TensorKrowch 1.0.1 documentation + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    +
    + + + + + + +
    +
    + + + + + + + + + + +
    + +
    + +
    + + + + +
    +
    + + + + +
    +
    + + + + + + + + + + +
    +
    + + +
    +
    +
    +
    +
    + +
    +

    + +
    +
    + +
    +
    +
    +
    + +
    + +

    Source code for tensorkrowch.models.mps_data

    +"""
    +This script contains:
    +    * MPSData
    +"""
    +
    +from abc import abstractmethod, ABC
    +from typing import (List, Optional, Sequence,
    +                    Text, Tuple, Union)
    +
    +from math import sqrt
    +
    +import torch
    +import torch.nn as nn
    +
    +import tensorkrowch.operations as op
    +from tensorkrowch.components import AbstractNode, Node, ParamNode
    +from tensorkrowch.components import TensorNetwork
    +
    +from tensorkrowch.utils import split_sequence_into_regions, random_unitary
    +
    +
    +
    [docs]class MPSData(TensorNetwork): # MARK: MPSData + """ + Class for data vectors in the form of Matrix Product States. That is, this + is a class similar to :class:`MPS`, but where all nodes can have additional + batch edges. + + Besides, since this class is intended to store data vectors, all + :class:`nodes <tensorkrowch.Node>` are non-parametric, and are ``data`` + nodes. Also, this class does not have an inherited ``contract`` method, + since it is not intended to be contracted with input data, but rather + act itself as input data of another tensor network model. + + Similar to :class:`MPS`, ``MPSData`` is formed by: + + * ``mats_env``: Environment of `matrix` nodes with axes + ``("batch_0", ..., "batch_n", "left", "feature", "right")``. + + * ``left_node``, ``right_node``: `Vector` nodes with axes ``("right",)`` + and ``("left",)``, respectively. These are used to close the boundary + in the case ``boudary`` is ``"obc"``. Otherwise, both are ``None``. + + Since ``MPSData`` is designed to store input data vectors, this can be + accomplished by calling the custom :meth:`add_data` method with a given + list of tensors. This is in contrast to the usual way of setting nodes' + tensors in :class:`MPS` and its derived classes via :meth:`MPS.initialize`. + + Parameters + ---------- + n_features : int, optional + Number of nodes that will be in ``mats_env``. That is, number of nodes + without taking into account ``left_node`` and ``right_node``. + phys_dim : int, list[int] or tuple[int], optional + Physical dimension(s). If given as a sequence, its length should be + equal to ``n_features``. + bond_dim : int, list[int] or tuple[int], optional + Bond dimension(s). If given as a sequence, its length should be equal + to ``n_features`` (if ``boundary = "pbc"``) or ``n_features - 1`` (if + ``boundary = "obc"``). The i-th bond dimension is always the dimension + of the right edge of the i-th node. + boundary : {"obc", "pbc"} + String indicating whether periodic or open boundary conditions should + be used. + n_batches : int + Number of batch edges of the MPS nodes. Usually ``n_batches = 1`` + (where the batch edge is used for the data batched) but it could also + be ``n_batches = 2`` (one edge for data batched, other edge for image + patches in convolutional layers). + tensors: list[torch.Tensor] or tuple[torch.Tensor], optional + Instead of providing ``n_features``, ``phys_dim``, ``bond_dim`` and + ``boundary``, a list of MPS tensors can be provided. In such case, all + mentioned attributes will be inferred from the given tensors. All + tensors should be rank-(n+3) tensors, with shape + ``(batch_1, ..., batch_n, bond_dim, phys_dim, bond_dim)``. If the first + and last elements are rank-(n+2) tensors, with shapes + ``(batch_1, ..., batch_n, phys_dim, bond_dim)``, + ``(batch_1, ..., batch_n, bond_dim, phys_dim)``, respectively, + the inferred boundary conditions will be "obc". Also, if ``tensors`` + contains a single element, it can be rank-(n+1) ("obc") or rank-(n+3) + ("pbc"). + init_method : {"zeros", "ones", "copy", "rand", "randn"}, optional + Initialization method. Check :meth:`initialize` for a more detailed + explanation of the different initialization methods. By default it is + ``None``, since ``MPSData`` is intended to store input data vectors in + MPS form, rather than initializing its own random tensors. Check + :meth:`add_data` to see how to initialize MPS nodes with data tensors. + device : torch.device, optional + Device where to initialize the tensors if ``init_method`` is provided. + kwargs : float + Keyword arguments for the different initialization methods. See + :meth:`~tensorkrowch.AbstractNode.make_tensor`. + + Examples + -------- + >>> mps = tk.models.MPSData(n_features=5, + ... phys_dim=2, + ... bond_dim=5, + ... boundary="pbc") + >>> # n_features * (batch_size x bond_dim x feature_size x bond_dim) + >>> data = [torch.ones(20, 5, 2, 5) for _ in range(5)] + >>> mps.add_data(data) + >>> for node in mps.mats_env: + ... assert node.shape == (20, 5, 2, 5) + """ + + def __init__(self, + n_features: Optional[int] = None, + phys_dim: Optional[Union[int, Sequence[int]]] = None, + bond_dim: Optional[Union[int, Sequence[int]]] = None, + boundary: Text = 'obc', + n_batches: int = 1, + tensors: Optional[Sequence[torch.Tensor]] = None, + init_method: Optional[Text] = None, + device: Optional[torch.device] = None, + **kwargs) -> None: + + super().__init__(name='mps_data') + + # n_batches + if not isinstance(n_batches, int): + raise TypeError('`n_batches` should be int type') + self._n_batches = n_batches + + if tensors is None: + # boundary + if boundary not in ['obc', 'pbc']: + raise ValueError('`boundary` should be one of "obc" or "pbc"') + self._boundary = boundary + + # n_features + if not isinstance(n_features, int): + raise TypeError('`n_features` should be int type') + elif n_features < 1: + raise ValueError('`n_features` should be at least 1') + self._n_features = n_features + + # phys_dim + if isinstance(phys_dim, (list, tuple)): + if len(phys_dim) != n_features: + raise ValueError('If `phys_dim` is given as a sequence of int, ' + 'its length should be equal to `n_features`') + self._phys_dim = list(phys_dim) + elif isinstance(phys_dim, int): + self._phys_dim = [phys_dim] * n_features + else: + raise TypeError('`phys_dim` should be int, tuple[int] or list[int] ' + 'type') + + # bond_dim + if isinstance(bond_dim, (list, tuple)): + if boundary == 'obc': + if len(bond_dim) != n_features - 1: + raise ValueError( + 'If `bond_dim` is given as a sequence of int, and ' + '`boundary` is "obc", its length should be equal ' + 'to `n_features` - 1') + elif boundary == 'pbc': + if len(bond_dim) != n_features: + raise ValueError( + 'If `bond_dim` is given as a sequence of int, and ' + '`boundary` is "pbc", its length should be equal ' + 'to `n_features`') + self._bond_dim = list(bond_dim) + elif isinstance(bond_dim, int): + if boundary == 'obc': + self._bond_dim = [bond_dim] * (n_features - 1) + elif boundary == 'pbc': + self._bond_dim = [bond_dim] * n_features + else: + raise TypeError('`bond_dim` should be int, tuple[int] or list[int]' + ' type') + + else: + if not isinstance(tensors, Sequence): + raise TypeError('`tensors` should be a tuple[torch.Tensor] or ' + 'list[torch.Tensor] type') + else: + self._n_features = len(tensors) + self._phys_dim = [] + self._bond_dim = [] + for i, t in enumerate(tensors): + if not isinstance(t, torch.Tensor): + raise TypeError('`tensors` should be a tuple[torch.Tensor]' + ' or list[torch.Tensor] type') + + if i == 0: + if len(t.shape) not in [n_batches + 1, + n_batches + 2, + n_batches + 3]: + raise ValueError( + 'The first and last elements in `tensors` ' + 'should be both rank-(n+2) or rank-(n+3) tensors.' + ' If the first element is also the last one,' + ' it should be a rank-(n+1) tensor') + if len(t.shape) == n_batches + 1: + self._boundary = 'obc' + self._phys_dim.append(t.shape[-1]) + elif len(t.shape) == n_batches + 2: + self._boundary = 'obc' + self._phys_dim.append(t.shape[-2]) + self._bond_dim.append(t.shape[-1]) + else: + self._boundary = 'pbc' + self._phys_dim.append(t.shape[-2]) + self._bond_dim.append(t.shape[-1]) + elif i == (self._n_features - 1): + if len(t.shape) != len(tensors[0].shape): + raise ValueError( + 'The first and last elements in `tensors` ' + 'should have the same rank. Both should be ' + 'rank-(n+2) or rank-(n+3) tensors. If the first' + ' element is also the last one, it should ' + 'be a rank-(n+1) tensor') + if len(t.shape) == n_batches + 2: + self._phys_dim.append(t.shape[-1]) + else: + if t.shape[-1] != tensors[0].shape[-3]: + raise ValueError( + 'If the first and last elements in `tensors`' + ' are rank-(n+3) tensors, the first dimension' + ' of the first element should coincide with' + ' the last dimension of the last element ' + '(ignoring batch dimensions)') + self._phys_dim.append(t.shape[-2]) + self._bond_dim.append(t.shape[-1]) + else: + if len(t.shape) != n_batches + 3: + raise ValueError( + 'The elements of `tensors` should be rank-(n+3) ' + 'tensors, except the first and lest elements' + ' if boundary is "obc"') + self._phys_dim.append(t.shape[-2]) + self._bond_dim.append(t.shape[-1]) + + # Properties + self._left_node = None + self._right_node = None + self._mats_env = [] + + # Create Tensor Network + self._make_nodes() + self.initialize(init_method=init_method, + device=device, + **kwargs) + + if tensors is not None: + self.add_data(data=tensors) + + # ---------- + # Properties + # ---------- + @property + def n_features(self) -> int: + """Returns number of nodes.""" + return self._n_features + + @property + def phys_dim(self) -> List[int]: + """Returns physical dimensions.""" + return self._phys_dim + + @property + def bond_dim(self) -> List[int]: + """Returns bond dimensions.""" + return self._bond_dim + + @property + def boundary(self) -> Text: + """Returns boundary condition ("obc" or "pbc").""" + return self._boundary + + @property + def n_batches(self) -> int: + """Returns number of batch edges of the MPS nodes.""" + return self._n_batches + + @property + def left_node(self) -> Optional[AbstractNode]: + """Returns the ``left_node``.""" + return self._left_node + + @property + def right_node(self) -> Optional[AbstractNode]: + """Returns the ``right_node``.""" + return self._right_node + + @property + def mats_env(self) -> List[AbstractNode]: + """Returns the list of nodes in ``mats_env``.""" + return self._mats_env + + # ------- + # Methods + # ------- + def _make_nodes(self) -> None: + """Creates all the nodes of the MPS.""" + if self._leaf_nodes: + raise ValueError('Cannot create MPS nodes if the MPS already has ' + 'nodes') + + aux_bond_dim = self._bond_dim + + if self._boundary == 'obc': + if not aux_bond_dim: + aux_bond_dim = [1] + + self._left_node = ParamNode(shape=(aux_bond_dim[0],), + axes_names=('right',), + name='left_node', + network=self) + self._right_node = ParamNode(shape=(aux_bond_dim[-1],), + axes_names=('left',), + name='right_node', + network=self) + + aux_bond_dim = aux_bond_dim + [aux_bond_dim[-1]] + [aux_bond_dim[0]] + + for i in range(self._n_features): + node = Node(shape=(*([1] * self._n_batches), + aux_bond_dim[i - 1], + self._phys_dim[i], + aux_bond_dim[i]), + axes_names=(*(['batch'] * self._n_batches), + 'left', + 'feature', + 'right'), + name=f'mats_env_data_node_({i})', + data=True, + network=self) + self._mats_env.append(node) + + if i != 0: + self._mats_env[-2]['right'] ^ self._mats_env[-1]['left'] + + if self._boundary == 'pbc': + if i == 0: + periodic_edge = self._mats_env[-1]['left'] + if i == self._n_features - 1: + self._mats_env[-1]['right'] ^ periodic_edge + else: + if i == 0: + self._left_node['right'] ^ self._mats_env[-1]['left'] + if i == self._n_features - 1: + self._mats_env[-1]['right'] ^ self._right_node['left'] + +
    [docs] def initialize(self, + init_method: Optional[Text] = 'randn', + device: Optional[torch.device] = None, + **kwargs: float) -> None: + """ + Initializes all the nodes of the :class:`MPSData`. It can be called when + instantiating the model, or to override the existing nodes' tensors. + + There are different methods to initialize the nodes: + + * ``{"zeros", "ones", "copy", "rand", "randn"}``: Each node is + initialized calling :meth:`~tensorkrowch.AbstractNode.set_tensor` with + the given method, ``device`` and ``kwargs``. + + Parameters + ---------- + init_method : {"zeros", "ones", "copy", "rand", "randn"}, optional + Initialization method. Check :meth:`add_data` to see how to + initialize MPS nodes with data tensors. + device : torch.device, optional + Device where to initialize the tensors if ``init_method`` is provided. + kwargs : float + Keyword arguments for the different initialization methods. See + :meth:`~tensorkrowch.AbstractNode.make_tensor`. + """ + if self._boundary == 'obc': + self._left_node.set_tensor(init_method='copy', device=device) + self._right_node.set_tensor(init_method='copy', device=device) + + if init_method is not None: + + for i, node in enumerate(self._mats_env): + node.set_tensor(init_method=init_method, + device=device, + **kwargs) + + if self._boundary == 'obc': + aux_tensor = torch.zeros(*node.shape, device=device) + if i == 0: + # Left node + aux_tensor[..., 0, :, :] = node.tensor[..., 0, :, :] + node.tensor = aux_tensor + elif i == (self._n_features - 1): + # Right node + aux_tensor[..., 0] = node.tensor[..., 0] + node.tensor = aux_tensor
    + +
    [docs] def add_data(self, data: Sequence[torch.Tensor]) -> None: + """ + Adds data to MPS data nodes. Input is a list of mps tensors. + + The physical dimensions of the given data tensors should coincide with + the physical dimensions of the MPS. The bond dimensions can be different. + + Parameters + ---------- + data : list[torch.Tensor] or tuple[torch.Tensor] + A sequence of tensors, one for each of the MPS nodes. If ``boundary`` + is ``"pbc"``, all tensors should have the same rank, with shapes + ``(batch_0, ..., batch_n, bond_dim, phys_dim, bond_dim)``. If + ``boundary`` is ``"obc"``, the first and last tensors should have + shapes ``(batch_0, ..., batch_n, phys_dim, bond_dim)`` and + ``(batch_0, ..., batch_n, bond_dim, phys_dim)``, respectively. + """ + if not isinstance(data, Sequence): + raise TypeError( + '`data` should be list[torch.Tensor] or tuple[torch.Tensor] type') + if len(data) != self._n_features: + raise ValueError('`data` should be a sequence of tensors of length' + ' equal to `n_features`') + if any([not isinstance(x, torch.Tensor) for x in data]): + raise TypeError( + '`data` should be list[torch.Tensor] or tuple[torch.Tensor] type') + + # Check physical dimensions coincide + for i, (data_tensor, node) in enumerate(zip(data, self._mats_env)): + if (self._boundary == 'obc') and (i == (self._n_features - 1)): + if data_tensor.shape[-1] != node.shape[-2]: + raise ValueError( + f'Physical dimension {data_tensor.shape[-1]} of ' + f'data tensor at position {i} does not coincide ' + f'with the corresponding physical dimension ' + f'{node.shape[-2]} of the MPS') + else: + if data_tensor.shape[-2] != node.shape[-2]: + raise ValueError( + f'Physical dimension {data_tensor.shape[-2]} of ' + f'data tensor at position {i} does not coincide ' + f'with the corresponding physical dimension ' + f'{node.shape[-2]} of the MPS') + + data = data[:] + for i, node in enumerate(self._mats_env): + if self._boundary == 'obc': + aux_tensor = torch.zeros(*node.shape, + device=data[i].device) + if (i == 0) and (i == (self._n_features - 1)): + aux_tensor = torch.zeros(*data[i].shape[:-1], + *node.shape[-3:], + device=data[i].device) + aux_tensor[..., 0, :, 0] = data[i] + data[i] = aux_tensor + elif i == 0: + aux_tensor = torch.zeros(*data[i].shape[:-2], + *node.shape[-3:-1], + data[i].shape[-1], + device=data[i].device) + aux_tensor[..., 0, :, :] = data[i] + data[i] = aux_tensor + elif i == (self._n_features - 1): + aux_tensor = torch.zeros(*data[i].shape[:-1], + *node.shape[-2:], + device=data[i].device) + aux_tensor[..., 0] = data[i] + data[i] = aux_tensor + + node._direct_set_tensor(data[i])
    +
    + +
    + +
    +
    + + +
    +
    +
    +
    +
    + + +
    + + +
    +
    + + + + + + + \ No newline at end of file diff --git a/docs/_build/html/_modules/tensorkrowch/models/mps_layer.html b/docs/_build/html/_modules/tensorkrowch/models/mps_layer.html deleted file mode 100644 index ee65000..0000000 --- a/docs/_build/html/_modules/tensorkrowch/models/mps_layer.html +++ /dev/null @@ -1,2139 +0,0 @@ - - - - - - - - tensorkrowch.models.mps_layer — TensorKrowch 1.0.0 documentation - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    -
    - - - - - - -
    -
    - - - - - - - - - - -
    - -
    - -
    - - - - -
    -
    - - - - -
    -
    - - - - - - - - - - -
    -
    - - -
    -
    -
    -
    -
    - -
    -

    - -
    -
    - -
    -
    -
    -
    - -
    - -

    Source code for tensorkrowch.models.mps_layer

    -"""
    -This script contains:
    -    * MPSLayer
    -    * UMPSLayer
    -    * ConvMPSLayer
    -    * ConvUMPSLayer
    -"""
    -
    -from typing import (List, Optional, Sequence,
    -                    Text, Tuple, Union)
    -
    -import torch
    -import torch.nn as nn
    -
    -import tensorkrowch.operations as op
    -from tensorkrowch.components import AbstractNode, Node, ParamNode
    -from tensorkrowch.components import TensorNetwork
    -
    -
    -
    [docs]class MPSLayer(TensorNetwork): - """ - Class for Matrix Product States with an extra node that is dedicated to the - output. That is, this MPS has :math:`n` nodes, being :math:`n-1` input nodes - connected to ``data`` nodes (nodes that will contain the data tensors), and - one output node, whose physical dimension (``out_dim``) is used as the label - (for classification tasks). - - Besides, since this class has an output edge, when contracting the whole - tensor network (with input data), the result will be a vector that can be - plugged into the next layer (being this other tensor network or a neural - network layer). - - If the physical dimensions of all the input nodes (``in_dim``) are equal, - the input data tensor can be passed as a single tensor. Otherwise, it would - have to be passed as a list of tensors with different sizes. - - An ``MPSLayer`` is formed by the following nodes: - - * ``left_node``, ``right_node``: `Vector` nodes with axes ``("input", "right")`` - and ``("left", "input")``, respectively. These are the nodes at the - extremes of the ``MPSLayer``. If ``boundary`` is ``"pbc""``, both are - ``None``. - - * ``left_env``, ``right_env``: Environments of `matrix` nodes that are at - the left or right side of the ``output_node``. These nodes have axes - ``("left", "input", "right")``. - - * ``output_node``: Node dedicated to the output. It has axes - ``("left", "output", "right")``. - - Parameters - ---------- - n_features : int - Number of input nodes. The total number of nodes (including the output - node) will be ``n_features + 1``. - in_dim : int, list[int] or tuple[int] - Input dimension. Equivalent to the physical dimension. If given as a - sequence, its length should be equal to ``n_features``, since these are - the input dimensions of the input nodes. - out_dim : int - Output dimension (labels) for the output node. Plays the same role as - ``in_dim`` for input nodes. - bond_dim : int, list[int] or tuple[int] - Bond dimension(s). If given as a sequence, its length should be equal - to ``n_features + 1`` (if ``boundary = "pbc"``) or ``n_features`` (if - ``boundary = "obc"``). The i-th bond dimension is always the dimension - of the right edge of the i-th node (including output node). - out_position : int, optional - Position of the output node (label). Should be between 0 and - ``n_features``. If ``None``, the output node will be located at the - middle of the MPS. - boundary : {"obc", "pbc"} - String indicating whether periodic or open boundary conditions should - be used. - n_batches : int - Number of batch edges of input ``data`` nodes. Usually ``n_batches = 1`` - (where the batch edge is used for the data batched) but it could also - be ``n_batches = 2`` (e.g. one edge for data batched, other edge for - image patches in convolutional layers). - - Examples - -------- - ``MPSLayer`` with same input dimensions: - - >>> mps_layer = tk.models.MPSLayer(n_features=4, - ... in_dim=2, - ... out_dim=10, - ... bond_dim=5) - >>> data = torch.ones(20, 4, 2) # batch_size x n_features x feature_size - >>> result = mps_layer(data) - >>> result.shape - torch.Size([20, 10]) - - ``MPSLayer`` with different input dimensions: - - >>> mps_layer = tk.models.MPSLayer(n_features=4, - ... in_dim=list(range(2, 6)), - ... out_dim=10, - ... bond_dim=5) - >>> data = [torch.ones(20, i) - ... for i in range(2, 6)] # n_features * [batch_size x feature_size] - >>> result = mps_layer(data) - >>> result.shape - torch.Size([20, 10]) - """ - - def __init__(self, - n_features: int, - in_dim: Union[int, Sequence[int]], - out_dim: int, - bond_dim: Union[int, Sequence[int]], - out_position: Optional[int] = None, - boundary: Text = 'obc', - n_batches: int = 1) -> None: - - super().__init__(name='mps') - - # boundary - if boundary not in ['obc', 'pbc']: - raise ValueError('`boundary` should be one of "obc" or "pbc"') - self._boundary = boundary - - # out_position - if out_position is None: - out_position = (n_features + 1) // 2 - elif (out_position < 0) or (out_position > n_features): - raise ValueError('`out_position` should be between 0 and ' - f'{n_features}') - self._out_position = out_position - - # n_features - if n_features < 0: - raise ValueError('`n_features` cannot be lower than 0') - elif (boundary == 'obc') and (n_features < 1): - raise ValueError('If `boundary` is "obc", at least ' - 'there has to be 1 input node') - self._n_features = n_features - - # in_dim - if isinstance(in_dim, (list, tuple)): - if len(in_dim) != n_features: - raise ValueError('If `in_dim` is given as a sequence of int, ' - 'its length should be equal to `n_features`') - else: - for dim in in_dim: - if not isinstance(dim, int): - raise TypeError('`in_dim` should be int, tuple[int] or ' - 'list[int] type') - self._in_dim = list(in_dim) - elif isinstance(in_dim, int): - self._in_dim = [in_dim] * n_features - else: - raise TypeError('`in_dim` should be int, tuple[int] or list[int] ' - 'type') - - # out_dim - if not isinstance(out_dim, int): - raise TypeError('`out_dim` should be int type') - self._out_dim = out_dim - - # phys_dim - if isinstance(in_dim, (list, tuple)): - self._phys_dim = list(in_dim[:out_position]) + [out_dim] + \ - list(in_dim[out_position:]) - elif isinstance(in_dim, int): - self._phys_dim = [in_dim] * out_position + [out_dim] + \ - [in_dim] * (n_features - out_position) - - # bond_dim - if isinstance(bond_dim, (list, tuple)): - if boundary == 'obc': - if len(bond_dim) != n_features: - raise ValueError('If `bond_dim` is given as a sequence of ' - 'int, and `boundary` is "obc", its length ' - 'should be equal to `n_features`') - elif boundary == 'pbc': - if len(bond_dim) != (n_features + 1): - raise ValueError('If `bond_dim` is given as a sequence of ' - 'int, and `boundary` is "pbc", its length ' - 'should be equal to `n_features + 1`') - self._bond_dim = list(bond_dim) - elif isinstance(bond_dim, int): - self._bond_dim = [bond_dim] * (n_features + (boundary == 'pbc')) - else: - raise TypeError('`bond_dim` should be int, tuple[int] or list[int]' - ' type') - - # n_batches - if not isinstance(n_batches, int): - raise TypeError('`n_batches should be int type') - self._n_batches = n_batches - - # Create Tensor Network - self._make_nodes() - self.initialize() - - @property - def n_features(self) -> int: - """ - Returns number of input nodes. The total number of nodes (including the - output node) will be ``n_features + 1``. - """ - return self._n_features - - @property - def in_dim(self) -> List[int]: - """Returns input dimensions.""" - return self._in_dim - - @property - def out_dim(self) -> int: - """ - Returns the output dimension, that is, the number of labels in the - output node. Same as ``in_dim`` for input nodes. - """ - return self._out_dim - - @property - def phys_dim(self) -> List[int]: - """Returns ``in_dim`` list with ``out_dim`` in the ``out_position``.""" - return self._phys_dim - - @property - def bond_dim(self) -> List[int]: - """Returns bond dimensions.""" - return self._bond_dim - - @property - def out_position(self) -> int: - """Returns position of the output node (label).""" - return self._out_position - - @property - def boundary(self) -> Text: - """Returns boundary condition ("obc" or "pbc").""" - return self._boundary - - @property - def n_batches(self) -> int: - """Returns number of batch edges of the ``data`` nodes.""" - return self._n_batches - - def _make_nodes(self) -> None: - """Creates all the nodes of the MPS.""" - if self.leaf_nodes: - raise ValueError('Cannot create MPS nodes if the MPS already has ' - 'nodes') - - self.left_node = None - self.right_node = None - self.left_env = [] - self.right_env = [] - - # Open Boundary Conditions - if self.boundary == 'obc': - # Left node - if self.out_position > 0: - self.left_node = ParamNode(shape=(self.in_dim[0], - self.bond_dim[0]), - axes_names=('input', 'right'), - name='left_node', - network=self) - - # Left environment - if self.out_position > 1: - for i in range(1, self.out_position): - node = ParamNode(shape=(self.bond_dim[i - 1], - self.in_dim[i], - self.bond_dim[i]), - axes_names=('left', 'input', 'right'), - name=f'left_env_node_({i - 1})', - network=self) - self.left_env.append(node) - if i == 1: - self.left_node['right'] ^ self.left_env[-1]['left'] - else: - self.left_env[-2]['right'] ^ self.left_env[-1]['left'] - - # Output node - if self.out_position == 0: - self.output_node = ParamNode(shape=(self.out_dim, - self.bond_dim[0]), - axes_names=('output', 'right'), - name='output_node', - network=self) - - if (self.out_position > 0) and (self.out_position < self.n_features): - self.output_node = ParamNode( - shape=(self.bond_dim[self.out_position - 1], - self.out_dim, - self.bond_dim[self.out_position]), - axes_names=('left', 'output', 'right'), - name='output_node', - network=self) - if self.left_env: - self.left_env[-1]['right'] ^ self.output_node['left'] - else: - self.left_node['right'] ^ self.output_node['left'] - - if self.out_position == self.n_features: - self.output_node = ParamNode(shape=(self.bond_dim[-1], - self.out_dim), - axes_names=('left', - 'output'), - name='output_node', - network=self) - if self.left_env: - self.left_env[-1]['right'] ^ self.output_node['left'] - elif self.left_node: - self.left_node['right'] ^ self.output_node['left'] - - # Right environment - if self.out_position < self.n_features - 1: - for i in range(self.out_position + 1, self.n_features): - node = ParamNode(shape=(self.bond_dim[i - 1], - self.in_dim[i - 1], - self.bond_dim[i]), - axes_names=('left', 'input', 'right'), - name=f'right_env_node_({i - self.out_position - 1})', - network=self) - self.right_env.append(node) - if i == self.out_position + 1: - self.output_node['right'] ^ self.right_env[-1]['left'] - else: - self.right_env[-2]['right'] ^ self.right_env[-1]['left'] - - # Right node - if self.out_position < self.n_features: - self.right_node = ParamNode(shape=(self.bond_dim[-1], - self.in_dim[-1]), - axes_names=('left', 'input'), - name='right_node', - network=self) - if self.right_env: - self.right_env[-1]['right'] ^ self.right_node['left'] - else: - self.output_node['right'] ^ self.right_node['left'] - - # Periodic Boundary Conditions - else: - # Left environment - if self.out_position > 0: - for i in range(self.out_position): - node = ParamNode(shape=(self.bond_dim[i - 1], - self.in_dim[i], - self.bond_dim[i]), - axes_names=('left', 'input', 'right'), - name=f'left_env_node_({i})', - network=self) - self.left_env.append(node) - if i == 0: - periodic_edge = self.left_env[-1]['left'] - else: - self.left_env[-2]['right'] ^ self.left_env[-1]['left'] - - # Output node - self.output_node = ParamNode( - shape=(self.bond_dim[self.out_position - 1], - self.out_dim, - self.bond_dim[self.out_position]), - axes_names=('left', 'output', 'right'), - name='output_node', - network=self) - if self.left_env: - self.left_env[-1]['right'] ^ self.output_node['left'] - else: - periodic_edge = self.output_node['left'] - if self.out_position == self.n_features: - self.output_node['right'] ^ periodic_edge - - # Right environment - if self.out_position < self.n_features: - for i in range(self.out_position + 1, self.n_features + 1): - node = ParamNode(shape=(self.bond_dim[i - 1], - self.in_dim[i - 1], - self.bond_dim[i]), - axes_names=('left', 'input', 'right'), - name=f'right_env_node_({i - self.out_position - 1})', - network=self) - self.right_env.append(node) - if i == self.out_position + 1: - self.output_node['right'] ^ self.right_env[-1]['left'] - else: - self.right_env[-2]['right'] ^ self.right_env[-1]['left'] - if i == self.n_features: - self.right_env[-1]['right'] ^ periodic_edge - -
    [docs] def initialize(self, std: float = 1e-9) -> None: - """ - Initializes all the nodes as explained `here <https://arxiv.org/abs/1605.03795>`_. - It can be overriden for custom initializations. - """ - # Left node - if self.left_node is not None: - tensor = torch.randn(self.left_node.shape) * std - aux = torch.zeros(tensor.shape[1]) * std - aux[0] = 1. - tensor[0, :] = aux - self.left_node.tensor = tensor - - # Right node - if self.right_node is not None: - tensor = torch.randn(self.right_node.shape) * std - aux = torch.zeros(tensor.shape[0]) * std - aux[0] = 1. - tensor[:, 0] = aux - self.right_node.tensor = tensor - - # Left env + Right env - for node in self.left_env + self.right_env: - tensor = torch.randn(node.shape) * std - aux = torch.eye(tensor.shape[0], tensor.shape[2]) - tensor[:, 0, :] = aux - node.tensor = tensor - - # Output node - if (self.boundary == 'obc') and (self.out_position == 0): - eye_tensor = torch.eye(self.output_node.shape[1])[0, :] - eye_tensor = eye_tensor.view([1, self.output_node.shape[1]]) - eye_tensor = eye_tensor.expand(self.output_node.shape) - elif (self.boundary == 'obc') and (self.out_position == self.n_features): - eye_tensor = torch.eye(self.output_node.shape[0])[0, :] - eye_tensor = eye_tensor.view([self.output_node.shape[0], 1]) - eye_tensor = eye_tensor.expand(self.output_node.shape) - else: - eye_tensor = torch.eye(self.output_node.shape[0], - self.output_node.shape[2]) - eye_tensor = eye_tensor.view([self.output_node.shape[0], 1, - self.output_node.shape[2]]) - eye_tensor = eye_tensor.expand(self.output_node.shape) - - # Add on a bit of random noise - tensor = eye_tensor + std * torch.randn(self.output_node.shape) - self.output_node.tensor = tensor
    - -
    [docs] def set_data_nodes(self) -> None: - """ - Creates ``data`` nodes and connects each of them to the input edge of - each input node. - """ - input_edges = [] - if self.left_node is not None: - input_edges.append(self.left_node['input']) - input_edges += list(map(lambda node: node['input'], - self.left_env + self.right_env)) - if self.right_node is not None: - input_edges.append(self.right_node['input']) - - super().set_data_nodes(input_edges=input_edges, - num_batch_edges=self.n_batches) - - if self.left_env + self.right_env: - self.lr_env_data = list(map(lambda node: node.neighbours('input'), - self.left_env + self.right_env))
    - - def _input_contraction(self, - inline_input: bool = False) -> Tuple[ - Optional[List[Node]], - Optional[List[Node]]]: - """Contracts input data nodes with MPS nodes.""" - if inline_input: - left_result = list(map(lambda node: node @ node.neighbours('input'), - self.left_env)) - right_result = list(map(lambda node: node @ node.neighbours('input'), - self.right_env)) - - return left_result, right_result - - else: - if self.left_env + self.right_env: - stack = op.stack(self.left_env + self.right_env) - stack_data = op.stack(self.lr_env_data) - - stack['input'] ^ stack_data['feature'] - - result = stack_data @ stack - result = op.unbind(result) - - left_result = result[:len(self.left_env)] - right_result = result[len(self.left_env):] - - return left_result, right_result - else: - return [], [] - - @staticmethod - def _inline_contraction(nodes: List[Node], left) -> Node: - """Contracts sequence of MPS nodes (matrices) inline.""" - if left: - result_node = nodes[0] - for node in nodes[1:]: - result_node @= node - return result_node - else: - result_node = nodes[0] - for node in nodes[1:]: - result_node = node @ result_node - return result_node - - def _contract_envs_inline(self, - left_env: List[Node], - right_env: List[Node]) -> Tuple[List[Node], - List[Node]]: - """Contracts the left and right environments inline.""" - if self.boundary == 'obc': - if left_env: - left_node = (self.left_node @ self.left_node.neighbours('input')) - left_env = [self._inline_contraction([left_node] + left_env, True)] - elif self.left_node is not None: - left_env = [self.left_node @ self.left_node.neighbours('input')] - - if right_env: - right_node = self.right_node @ self.right_node.neighbours('input') - lst = right_env + [right_node] - lst.reverse() - right_env = [self._inline_contraction(lst, False)] - elif self.right_node is not None: - right_env = [self.right_node @ self.right_node.neighbours('input')] - - # pbc - else: - if left_env: - left_env = [self._inline_contraction(left_env, True)] - - if right_env: - lst = right_env[:] - lst.reverse() - right_env = [self._inline_contraction(lst, False)] - - return left_env, right_env - - def _aux_pairwise(self, nodes: List[Node]) -> Tuple[List[Node], - List[Node]]: - """Contracts a sequence of MPS nodes (matrices) pairwise.""" - length = len(nodes) - aux_nodes = nodes - if length > 1: - half_length = length // 2 - nice_length = 2 * half_length - - even_nodes = aux_nodes[0:nice_length:2] - odd_nodes = aux_nodes[1:nice_length:2] - leftover = aux_nodes[nice_length:] - - stack1 = op.stack(even_nodes) - stack2 = op.stack(odd_nodes) - - stack1['right'] ^ stack2['left'] - - aux_nodes = stack1 @ stack2 - aux_nodes = op.unbind(aux_nodes) - - return aux_nodes, leftover - return nodes, [] - - def _pairwise_contraction(self, - left_nodes: List[Node], - right_nodes: List[Node]) -> Tuple[List[Node], - List[Node]]: - """Contracts the left and right environments pairwise.""" - left_length = len(left_nodes) - left_aux_nodes = left_nodes - right_length = len(right_nodes) - right_aux_nodes = right_nodes - if left_length > 1 or right_length > 1: - left_leftovers = [] - right_leftovers = [] - while left_length > 1 or right_length > 1: - aux1, aux2 = self._aux_pairwise(left_aux_nodes) - left_aux_nodes = aux1 - left_leftovers = aux2 + left_leftovers - left_length = len(aux1) - - aux1, aux2 = self._aux_pairwise(right_aux_nodes) - right_aux_nodes = aux1 - right_leftovers = aux2 + right_leftovers - right_length = len(aux1) - - left_aux_nodes = left_aux_nodes + left_leftovers - right_aux_nodes = right_aux_nodes + right_leftovers - return self._pairwise_contraction(left_aux_nodes, right_aux_nodes) - - return self._contract_envs_inline(left_aux_nodes, right_aux_nodes) - -
    [docs] def contract(self, - inline_input: bool = False, - inline_mats: bool = False) -> Node: - """ - Contracts the whole MPS. - - Parameters - ---------- - inline_input : bool - Boolean indicating whether input ``data`` nodes should be contracted - with the ``MPS`` nodes inline (one contraction at a time) or in a - single stacked contraction. - inline_mats : bool - Boolean indicating whether the sequence of matrices (resultant - after contracting the input ``data`` nodes) should be contracted - inline or as a sequence of pairwise stacked contrations. - - Returns - ------- - Node - """ - left_env, right_env = self._input_contraction(inline_input) - - if inline_mats: - left_env_contracted, right_env_contracted = \ - self._contract_envs_inline(left_env, right_env) - else: - left_env_contracted, right_env_contracted = \ - self._pairwise_contraction(left_env, right_env) - - result = self.output_node - if left_env_contracted and right_env_contracted: - result = left_env_contracted[0] @ result @ right_env_contracted[0] - elif left_env_contracted: - result = left_env_contracted[0] @ result - elif right_env_contracted: - result = right_env_contracted[0] @ result - else: - result @= result - - return result
    - -
    [docs] def canonicalize(self, - mode: Text = 'svd', - rank: Optional[int] = None, - cum_percentage: Optional[float] = None, - cutoff: Optional[float] = None) -> None: - r""" - Turns MPS into canonical form via local SVD/QR decompositions. - - Parameters - ---------- - mode : {"svd", "svdr", "qr"} - Indicates which decomposition should be used to split a node after - contracting it. See more at :func:`svd_`, :func:`svdr_`, :func:`qr_`. - If mode is "qr", operation :func:`qr_` will be performed on nodes at - the left of the output node, whilst operation :func:`rq_` will be - used for nodes at the right. - rank : int, optional - Number of singular values to keep. - cum_percentage : float, optional - Proportion that should be satisfied between the sum of all singular - values kept and the total sum of all singular values. - - .. math:: - - \frac{\sum_{i \in \{kept\}}{s_i}}{\sum_{i \in \{all\}}{s_i}} \ge - cum\_percentage - cutoff : float, optional - Quantity that lower bounds singular values in order to be kept. - - Examples - -------- - >>> mps_layer = tk.models.MPSLayer(n_features=4, - ... in_dim=2, - ... out_dim=10, - ... bond_dim=5) - >>> mps_layer.canonicalize(rank=3) - >>> mps_layer.bond_dim - [2, 3, 3, 2] - """ - self.reset() - - prev_auto_stack = self.auto_stack - self.auto_stack = False - - # Left - left_nodes = [] - if self.left_node is not None: - left_nodes.append(self.left_node) - left_nodes += self.left_env - - if left_nodes: - new_left_nodes = [] - node = left_nodes[0] - for _ in range(len(left_nodes)): - if mode == 'svd': - result1, result2 = node['right'].svd_( - side='right', - rank=rank, - cum_percentage=cum_percentage, - cutoff=cutoff) - elif mode == 'svdr': - result1, result2 = node['right'].svdr_( - side='right', - rank=rank, - cum_percentage=cum_percentage, - cutoff=cutoff) - elif mode == 'qr': - result1, result2 = node['right'].qr_() - else: - raise ValueError('`mode` can only be "svd", "svdr" or "qr"') - - node = result2 - result1 = result1.parameterize() - new_left_nodes.append(result1) - - output_node = node - - if self.boundary == 'obc': - if new_left_nodes: - self.left_node = new_left_nodes[0] - self.left_env = new_left_nodes[1:] - else: - self.left_env = new_left_nodes - - # Right - right_nodes = self.right_env[:] - right_nodes.reverse() - if self.right_node is not None: - right_nodes = [self.right_node] + right_nodes - - if right_nodes: - new_right_nodes = [] - node = right_nodes[0] - for _ in range(len(right_nodes)): - if mode == 'svd': - result1, result2 = node['left'].svd_( - side='left', - rank=rank, - cum_percentage=cum_percentage, - cutoff=cutoff) - elif mode == 'svdr': - result1, result2 = node['left'].svdr_( - side='left', - rank=rank, - cum_percentage=cum_percentage, - cutoff=cutoff) - elif mode == 'qr': - result1, result2 = node['left'].rq_() - else: - raise ValueError('`mode` can only be "svd", "svdr" or "qr"') - - node = result1 - result2 = result2.parameterize() - new_right_nodes = [result2] + new_right_nodes - - output_node = node - - if self.boundary == 'obc': - if new_right_nodes: - self.right_node = new_right_nodes[-1] - self.right_env = new_right_nodes[:-1] - else: - self.right_env = new_right_nodes - - self.output_node = output_node.parameterize() - - all_nodes = [] - if left_nodes: - all_nodes += new_left_nodes - all_nodes += [self.output_node] - if right_nodes: - all_nodes += new_right_nodes - - bond_dim = [] - for node in all_nodes: - if 'right' in node.axes_names: - bond_dim.append(node['right'].size()) - self._bond_dim = bond_dim - - self.auto_stack = prev_auto_stack
    - - def _project_to_bond_dim(self, - nodes: List[AbstractNode], - bond_dim: int, - side: Text = 'right'): - """Projects all nodes into a space of dimension ``bond_dim``.""" - device = nodes[0].tensor.device - - if side == 'left': - nodes.reverse() - elif side != 'right': - raise ValueError('`side` can only be "left" or "right"') - - for node in nodes: - if not node['input'].is_dangling(): - self.delete_node(node.neighbours('input')) - - line_mat_nodes = [] - in_dim_lst = [] - proj_mat_node = None - for j in range(len(nodes)): - in_dim_lst.append(nodes[j]['input'].size()) - if bond_dim <= torch.tensor(in_dim_lst).prod().item(): - proj_mat_node = Node(shape=(*in_dim_lst, bond_dim), - axes_names=(*(['input'] * len(in_dim_lst)), - 'bond_dim'), - name=f'proj_mat_node_{side}', - network=self) - - proj_mat_node.tensor = torch.eye( - torch.tensor(in_dim_lst).prod().int().item(), - bond_dim).view(*in_dim_lst, -1).to(device) - for k in range(j + 1): - nodes[k]['input'] ^ proj_mat_node[k] - - aux_result = proj_mat_node - for k in range(j + 1): - aux_result @= nodes[k] - line_mat_nodes.append(aux_result) # bond_dim x left x right - break - - if proj_mat_node is None: - bond_dim = torch.tensor(in_dim_lst).prod().int().item() - proj_mat_node = Node(shape=(*in_dim_lst, bond_dim), - axes_names=(*(['input'] * len(in_dim_lst)), - 'bond_dim'), - name=f'proj_mat_node_{side}', - network=self) - - proj_mat_node.tensor = torch.eye( - torch.tensor(in_dim_lst).prod().int().item(), - bond_dim).view(*in_dim_lst, -1).to(device) - for k in range(j + 1): - nodes[k]['input'] ^ proj_mat_node[k] - - aux_result = proj_mat_node - for k in range(j + 1): - aux_result @= nodes[k] - line_mat_nodes.append(aux_result) - - k = j + 1 - while k < len(nodes): - in_dim = nodes[k]['input'].size() - proj_vec_node = Node(shape=(in_dim,), - axes_names=('input',), - name=f'proj_vec_node_{side}_({k})', - network=self) - - proj_vec_node.tensor = torch.eye(in_dim, 1).squeeze().to(device) - nodes[k]['input'] ^ proj_vec_node['input'] - line_mat_nodes.append(proj_vec_node @ nodes[k]) - - k += 1 - - line_mat_nodes.reverse() - result = line_mat_nodes[0] - for node in line_mat_nodes[1:]: - result @= node - - return result # bond_dim x left/right - - def _aux_canonicalize_univocal(self, - nodes: List[AbstractNode], - idx: int, - left_nodeL: AbstractNode): - """Returns canonicalize version of the tensor at site ``idx``.""" - L = nodes[idx] # left x input x right - left_nodeC = None - - if idx > 0: - # bond_dim[-1] x input x right / bond_dim[-1] x input - L = left_nodeL @ L - - L = L.tensor - - if idx < self.n_features: - bond_dim = self.bond_dim[idx] - - prod_phys_dim_left = 1 - for i in range(idx + 1): - prod_phys_dim_left *= self.phys_dim[i] - bond_dim = min(bond_dim, prod_phys_dim_left) - - prod_phys_dim_right = 1 - for i in range(idx + 1, self._n_features): - prod_phys_dim_right *= self.phys_dim[i] - bond_dim = min(bond_dim, prod_phys_dim_right) - - if bond_dim < self._bond_dim[idx]: - self._bond_dim[idx] = bond_dim - - left_nodeC = self._project_to_bond_dim(nodes=nodes[:idx + 1], - bond_dim=bond_dim, - side='left') # bond_dim x right - right_node = self._project_to_bond_dim(nodes=nodes[idx + 1:], - bond_dim=bond_dim, - side='right') # bond_dim x left - - C = left_nodeC @ right_node # bond_dim x bond_dim - C = torch.linalg.inv(C.tensor) - - if idx == 0: - L @= right_node.tensor.t() # input x bond_dim - L @= C - else: - shape_L = L.shape - # (bond_dim[-1] * input) x bond_dim - L = (L.view(-1, L.shape[-1]) @ right_node.tensor.t()) - L @= C - L = L.view(*shape_L[:-1], right_node.shape[0]) - - return L, left_nodeC - -
    [docs] def canonicalize_univocal(self): - """ - Turns MPS into the univocal canonical form defined `here - <https://arxiv.org/abs/2202.12319>`_. - """ - if self.boundary != 'obc': - raise ValueError('`canonicalize_univocal` can only be used if ' - 'boundary is "obc"') - - self.reset() - - prev_auto_stack = self.auto_stack - self.auto_stack = False - - self.output_node.get_axis('output').name = 'input' - - if self.boundary == 'obc': - nodes = [self.left_node] + self.left_env + \ - [self.output_node] + self.right_env + [self.right_node] - else: - nodes = self.left_env + [self.output_node] + self.right_env - - for node in nodes: - if not node['input'].is_dangling(): - node['input'].disconnect() - - new_tensors = [] - left_nodeC = None - for i in range(self.n_features + 1): - tensor, left_nodeC = self._aux_canonicalize_univocal( - nodes=nodes, - idx=i, - left_nodeL=left_nodeC) - new_tensors.append(tensor) - - for i, (node, tensor) in enumerate(zip(nodes, new_tensors)): - if i < self.n_features: - if self.bond_dim[i] < node['right'].size(): - node['right'].change_size(self.bond_dim[i]) - node.tensor = tensor - - if not node['input'].is_dangling(): - self.delete_node(node.neighbours('input')) - self.reset() - - self.output_node.get_axis('input').name = 'output' - - l = self.out_position - for node, data_node in zip(nodes[:l], - list(self.data_nodes.values())[:l]): - node['input'] ^ data_node['feature'] - for node, data_node in zip(nodes[l + 1:], - list(self.data_nodes.values())[l:]): - node['input'] ^ data_node['feature'] - - self.auto_stack = prev_auto_stack
    - - -
    [docs]class UMPSLayer(TensorNetwork): - """ - Class for Uniform (translationally invariant) Matrix Product States with an - extra node that is dedicated to the output. It is the uniform version of - :class:`MPSLayer`, that is, all input nodes share the same tensor. Thus - this class cannot have different input or bond dimensions for each node, - and boundary conditions are always periodic (``"pbc"``). - - A ``UMPSLayer`` is formed by the following nodes: - - * ``left_env``, ``right_env``: Environments of `matrix` nodes that are at - the left or right side of the ``output_node``. These nodes have axes - ``("left", "input", "right")``. - - * ``output_node``: Node dedicated to the output. It has axes - ``("left", "output", "right")``. - - Parameters - ---------- - n_features : int - Number of input nodes. The total number of nodes (including the output - node) will be ``n_features + 1`` - in_dim : int - Input dimension. Equivalent to the physical dimension. - out_dim : int - Output dimension (labels) for the output node. Plays the same role as - ``in_dim`` for input nodes. - bond_dim : int - Bond dimension. - out_position : int, optional - Position of the output node (label). Should be between 0 and - ``n_features``. If ``None``, the output node will be located at the - middle of the MPS. - n_batches : int - Number of batch edges of input ``data`` nodes. Usually ``n_batches = 1`` - (where the batch edge is used for the data batched) but it could also - be ``n_batches = 2`` (one edge for data batched, other edge for image - patches in convolutional layers). - - Examples - -------- - >>> mps_layer = tk.models.UMPSLayer(n_features=4, - ... in_dim=2, - ... out_dim=10, - ... bond_dim=5) - >>> for node in mps_layer.left_env + mps_layer.right_env: - ... assert node.tensor_address() == 'virtual_uniform' - ... - >>> data = torch.ones(20, 4, 2) # batch_size x n_features x feature_size - >>> result = mps_layer(data) - >>> result.shape - torch.Size([20, 10]) - """ - - def __init__(self, - n_features: int, - in_dim: int, - out_dim: int, - bond_dim: int, - out_position: Optional[int] = None, - n_batches: int = 1) -> None: - - super().__init__(name='mps') - - # n_features - if n_features < 0: - raise ValueError('`n_features` cannot be lower than 0') - self._n_features = n_features - - # out_position - if out_position is None: - out_position = n_features // 2 - self._out_position = out_position - - # in_dim - if isinstance(in_dim, int): - self._in_dim = in_dim - else: - raise TypeError('`in_dim` should be int type') - - # out_dim - if isinstance(out_dim, int): - self._out_dim = out_dim - else: - raise TypeError('`out_dim` should be int type') - - # bond_dim - if isinstance(bond_dim, int): - self._bond_dim = bond_dim - else: - raise TypeError('`bond_dim` should be int type') - - # n_batches - if not isinstance(n_batches, int): - raise TypeError('`n_batches should be int type') - self._n_batches = n_batches - - # Create Tensor Network - self._make_nodes() - self.initialize() - - @property - def n_features(self) -> int: - """ - Returns number of input nodes. The total number of nodes (including the - output node) will be ``n_features + 1``. - """ - return self._n_features - - @property - def in_dim(self) -> int: - """Returns input/physical dimension.""" - return self._in_dim - - @property - def out_dim(self) -> int: - """ - Returns the output dimension, that is, the number of labels in the - output node. Same as ``in_dim`` for input nodes. - """ - return self._out_dim - - @property - def bond_dim(self) -> int: - """Returns bond dimensions.""" - return self._bond_dim - - @property - def out_position(self) -> int: - """Returns position of the output node (label).""" - return self._out_position - - @property - def boundary(self) -> Text: - """Returns boundary condition ("obc" or "pbc").""" - return self._boundary - - @property - def n_batches(self) -> int: - """Returns number of batch edges of the ``data`` nodes.""" - return self._n_batches - - def _make_nodes(self) -> None: - """Creates all the nodes of the MPS.""" - if self.leaf_nodes: - raise ValueError('Cannot create MPS nodes if the MPS already has ' - 'nodes') - - self.left_env = [] - self.right_env = [] - - # Left environment - if self.out_position > 0: - for i in range(self.out_position): - node = ParamNode(shape=(self.bond_dim, - self.in_dim, - self.bond_dim), - axes_names=('left', 'input', 'right'), - name=f'left_env_node_({i})', - network=self) - self.left_env.append(node) - if i == 0: - periodic_edge = node['left'] - else: - self.left_env[-2]['right'] ^ self.left_env[-1]['left'] - - # Output - if self.out_position == 0: - self.output_node = ParamNode(shape=(self.bond_dim, - self.out_dim, - self.bond_dim), - axes_names=('left', - 'output', - 'right'), - name='output_node', - network=self) - periodic_edge = self.output_node['left'] - - if self.out_position == self.n_features: - if self.n_features != 0: - self.output_node = ParamNode(shape=(self.bond_dim, - self.out_dim, - self.bond_dim), - axes_names=('left', - 'output', - 'right'), - name='output_node', - network=self) - self.output_node['right'] ^ periodic_edge - - if self.left_env: - self.left_env[-1]['right'] ^ self.output_node['left'] - - if (self.out_position > 0) and (self.out_position < self.n_features): - self.output_node = ParamNode(shape=(self.bond_dim, - self.out_dim, - self.bond_dim), - axes_names=('left', - 'output', - 'right'), - name='output_node', - network=self) - if self.left_env: - self.left_env[-1]['right'] ^ self.output_node['left'] - - # Right environment - if self.out_position < self.n_features: - for i in range(self.out_position + 1, self.n_features + 1): - node = ParamNode(shape=(self.bond_dim, - self.in_dim, - self.bond_dim), - axes_names=('left', 'input', 'right'), - name=f'right_env_node_({i - self.out_position - 1})', - network=self) - self.right_env.append(node) - if i == self.out_position + 1: - self.output_node['right'] ^ self.right_env[-1]['left'] - else: - self.right_env[-2]['right'] ^ self.right_env[-1]['left'] - - if i == self.n_features: - self.right_env[-1]['right'] ^ periodic_edge - - # Virtual node - uniform_memory = ParamNode(shape=(self.bond_dim, - self.in_dim, - self.bond_dim), - axes_names=('left', - 'input', - 'right'), - name='virtual_uniform', - network=self, - virtual=True) - self.uniform_memory = uniform_memory - -
    [docs] def initialize(self, std: float = 1e-9) -> None: - """ - Initializes output and uniform nodes as explained `here - <https://arxiv.org/abs/1605.03795>`_. - It can be overriden for custom initializations. - """ - # Virtual node - tensor = torch.randn(self.uniform_memory.shape) * std - random_eye = torch.randn(tensor.shape[0], tensor.shape[2]) * std - random_eye = random_eye + torch.eye(tensor.shape[0], tensor.shape[2]) - tensor[:, 0, :] = random_eye - - self.uniform_memory.tensor = tensor - - for node in self.left_env + self.right_env: - node.set_tensor_from(self.uniform_memory) - - # Output node - eye_tensor = torch.eye(self.output_node.shape[0], - self.output_node.shape[2]) - eye_tensor = eye_tensor.view([self.output_node.shape[0], 1, - self.output_node.shape[2]]) - eye_tensor = eye_tensor.expand(self.output_node.shape) - - # Add on a bit of random noise - tensor = eye_tensor + std * torch.randn(self.output_node.shape) - self.output_node.tensor = tensor
    - -
    [docs] def set_data_nodes(self) -> None: - """ - Creates ``data`` nodes and connects each of them to the physical edge of - each input node. - """ - input_edges = list(map(lambda node: node['input'], - self.left_env + self.right_env)) - - super().set_data_nodes(input_edges=input_edges, - num_batch_edges=self._n_batches) - - if self.left_env + self.right_env: - self.lr_env_data = list(map(lambda node: node.neighbours('input'), - self.left_env + self.right_env))
    - - def _input_contraction(self, - inline_input: bool = False) -> Tuple[ - Optional[List[Node]], - Optional[List[Node]]]: - """Contracts input data nodes with MPS nodes.""" - if inline_input: - left_result = [] - for node in self.left_env: - left_result.append(node @ node.neighbours('input')) - right_result = [] - for node in self.right_env: - right_result.append(node @ node.neighbours('input')) - return left_result, right_result - - else: - if self.left_env + self.right_env: - stack = op.stack(self.left_env + self.right_env) - stack_data = op.stack(self.lr_env_data) - - stack['input'] ^ stack_data['feature'] - - result = stack_data @ stack - result = op.unbind(result) - - left_result = result[:len(self.left_env)] - right_result = result[len(self.left_env):] - return left_result, right_result - else: - return [], [] - - @staticmethod - def _inline_contraction(nodes: List[Node], left) -> Node: - """Contracts sequence of MPS nodes (matrices) inline.""" - if left: - result_node = nodes[0] - for node in nodes[1:]: - result_node @= node - return result_node - else: - result_node = nodes[0] - for node in nodes[1:]: - result_node = node @ result_node - return result_node - - def _contract_envs_inline(self, - left_env: List[Node], - right_env: List[Node]) -> Tuple[List[Node], - List[Node]]: - """Contracts the left and right environments inline.""" - if left_env: - left_env = [self._inline_contraction(left_env, True)] - - if right_env: - right_env = [self._inline_contraction(right_env, False)] - - return left_env, right_env - - def _aux_pairwise(self, nodes: List[Node]) -> Tuple[List[Node], - List[Node]]: - """Contracts a sequence of MPS nodes (matrices) pairwise.""" - length = len(nodes) - aux_nodes = nodes - if length > 1: - half_length = length // 2 - nice_length = 2 * half_length - - even_nodes = aux_nodes[0:nice_length:2] - odd_nodes = aux_nodes[1:nice_length:2] - leftover = aux_nodes[nice_length:] - - stack1 = op.stack(even_nodes) - stack2 = op.stack(odd_nodes) - - stack1['right'] ^ stack2['left'] - aux_nodes = stack1 @ stack2 - - aux_nodes = op.unbind(aux_nodes) - - return aux_nodes, leftover - return nodes, [] - - def _pairwise_contraction(self, - left_nodes: List[Node], - right_nodes: List[Node]) -> Tuple[List[Node], - List[Node]]: - """Contracts the left and right environments pairwise.""" - left_length = len(left_nodes) - left_aux_nodes = left_nodes - right_length = len(right_nodes) - right_aux_nodes = right_nodes - if left_length > 1 or right_length > 1: - left_leftovers = [] - right_leftovers = [] - while left_length > 1 or right_length > 1: - aux1, aux2 = self._aux_pairwise(left_aux_nodes) - left_aux_nodes = aux1 - left_leftovers = aux2 + left_leftovers - left_length = len(aux1) - - aux1, aux2 = self._aux_pairwise(right_aux_nodes) - right_aux_nodes = aux1 - right_leftovers = aux2 + right_leftovers - right_length = len(aux1) - - left_aux_nodes = left_aux_nodes + left_leftovers - right_aux_nodes = right_aux_nodes + right_leftovers - return self._pairwise_contraction(left_aux_nodes, right_aux_nodes) - - return self._contract_envs_inline(left_aux_nodes, right_aux_nodes) - -
    [docs] def contract(self, - inline_input: bool = False, - inline_mats: bool = False) -> Node: - """ - Contracts the whole MPS. - - Parameters - ---------- - inline_input : bool - Boolean indicating whether input ``data`` nodes should be contracted - with the ``MPS`` nodes inline (one contraction at a time) or in a - single stacked contraction. - inline_mats : bool - Boolean indicating whether the sequence of matrices (resultant - after contracting the input ``data`` nodes) should be contracted - inline or as a sequence of pairwise stacked contrations. - - Returns - ------- - Node - """ - left_env, right_env = self._input_contraction(inline_input) - - if inline_mats: - left_env_contracted, right_env_contracted = \ - self._contract_envs_inline(left_env, right_env) - else: - left_env_contracted, right_env_contracted = \ - self._pairwise_contraction(left_env, right_env) - - result = self.output_node - if left_env_contracted and right_env_contracted: - result = left_env_contracted[0] @ result @ right_env_contracted[0] - elif left_env_contracted: - result = left_env_contracted[0] @ result - elif right_env_contracted: - result = right_env_contracted[0] @ result - else: - result @= result - return result
    - - -
    [docs]class ConvMPSLayer(MPSLayer): - """ - Class for Matrix Product States with an extra node that is dedicated to the - output, and where the input data is a batch of images. It is the convolutional - version of :class:`MPSLayer`. - - Input data as well as initialization parameters are described in `torch.nn.Conv2d - <https://pytorch.org/docs/stable/generated/torch.nn.Conv2d.html>`_. - - Parameters - ---------- - in_channels : int - Input channels. Same as ``in_dim`` in :class:`MPSLayer`. - out_channels : int - Output channels. Same as ``out_dim`` in :class:`MPSLayer`. - bond_dim : int, list[int] or tuple[int] - Bond dimension(s). If given as a sequence, its length should be equal - to :math:`kernel\_size_0 \cdot kernel\_size_1 + 1` - (if ``boundary = "pbc"``) or :math:`kernel\_size_0 \cdot kernel\_size_1` - (if ``boundary = "obc"``). The i-th bond dimension is always the dimension - of the right edge of the i-th node (including output node). - kernel_size : int, list[int] or tuple[int] - Kernel size used in `torch.nn.Unfold - <https://pytorch.org/docs/stable/generated/torch.nn.Unfold.html#torch.nn.Unfold>`_. - If given as an ``int``, the actual kernel size will be - ``(kernel_size, kernel_size)``. - stride : int - Stride used in `torch.nn.Unfold - <https://pytorch.org/docs/stable/generated/torch.nn.Unfold.html#torch.nn.Unfold>`_. - padding : int - Padding used in `torch.nn.Unfold - <https://pytorch.org/docs/stable/generated/torch.nn.Unfold.html#torch.nn.Unfold>`_. - If given as an ``int``, the actual kernel size will be - ``(kernel_size, kernel_size)``. - dilation : int - Dilation used in `torch.nn.Unfold - <https://pytorch.org/docs/stable/generated/torch.nn.Unfold.html#torch.nn.Unfold>`_. - If given as an ``int``, the actual kernel size will be - ``(kernel_size, kernel_size)``. - out_position : int, optional - Position of the output node (label). Should be between 0 and - :math:`kernel\_size_0 \cdot kernel\_size_1`. If ``None``, the output node - will be located at the middle of the MPS. - boundary : {"obc", "pbc"} - String indicating whether periodic or open boundary conditions should - be used. - - Examples - -------- - >>> conv_mps_layer = tk.models.ConvMPSLayer(in_channels=2, - ... out_channels=10, - ... bond_dim=5, - ... kernel_size=2) - >>> data = torch.ones(20, 2, 2, 2) # batch_size x in_channels x height x width - >>> result = conv_mps_layer(data) - >>> result.shape - torch.Size([20, 10, 1, 1]) - """ - - def __init__(self, - in_channels: int, - out_channels: int, - bond_dim: Union[int, Sequence[int]], - kernel_size: Union[int, Sequence], - stride: int = 1, - padding: int = 0, - dilation: int = 1, - out_position: Optional[int] = None, - boundary: Text = 'obc'): - - if isinstance(kernel_size, int): - kernel_size = (kernel_size, kernel_size) - elif not isinstance(kernel_size, Sequence): - raise TypeError('`kernel_size` must be int or Sequence') - - if isinstance(stride, int): - stride = (stride, stride) - elif not isinstance(stride, Sequence): - raise TypeError('`stride` must be int or Sequence') - - if isinstance(padding, int): - padding = (padding, padding) - elif not isinstance(padding, Sequence): - raise TypeError('`padding` must be int or Sequence') - - if isinstance(dilation, int): - dilation = (dilation, dilation) - elif not isinstance(dilation, Sequence): - raise TypeError('`dilation` must be int or Sequence') - - self._in_channels = in_channels - self._kernel_size = kernel_size - self._stride = stride - self._padding = padding - self._dilation = dilation - - super().__init__(n_features=kernel_size[0] * kernel_size[1], - in_dim=in_channels, - out_dim=out_channels, - bond_dim=bond_dim, - out_position=out_position, - boundary=boundary, - n_batches=2) - - self.unfold = nn.Unfold(kernel_size=kernel_size, - stride=stride, - padding=padding, - dilation=dilation) - - @property - def in_channels(self) -> int: - """Returns ``in_channels``. Same as ``in_dim`` in :class:`MPSLayer`.""" - return self._in_channels - - @property - def kernel_size(self) -> Tuple[int, int]: - """ - Returns ``kernel_size``. Number of nodes is given by - :math:`kernel\_size_0 \cdot kernel\_size_1 + 1`. - """ - return self._kernel_size - - @property - def stride(self) -> Tuple[int, int]: - """ - Returns stride used in `torch.nn.Unfold - <https://pytorch.org/docs/stable/generated/torch.nn.Unfold.html#torch.nn.Unfold>`_. - """ - return self._stride - - @property - def padding(self) -> Tuple[int, int]: - """ - Returns padding used in `torch.nn.Unfold - <https://pytorch.org/docs/stable/generated/torch.nn.Unfold.html#torch.nn.Unfold>`_. - """ - return self._padding - - @property - def dilation(self) -> Tuple[int, int]: - """ - Returns dilation used in `torch.nn.Unfold - <https://pytorch.org/docs/stable/generated/torch.nn.Unfold.html#torch.nn.Unfold>`_. - """ - return self._dilation - -
    [docs] def forward(self, image, mode='flat', *args, **kwargs): - r""" - Overrides ``torch.nn.Module``'s forward to compute a convolution on the - input image. - - Parameters - ---------- - image : torch.Tensor - Input batch of images with shape - - .. math:: - - batch\_size \times in\_channels \times height \times width - mode : {"flat", "snake"} - Indicates the order in which MPS should take the pixels in the image. - When ``"flat"``, the image is flattened putting one row of the image - after the other. When ``"snake"``, its row is put in the opposite - orientation as the previous row (like a snake running through the - image). - args : - Arguments that might be used in :meth:`~MPSLayer.contract`. - kwargs : - Keyword arguments that might be used in :meth:`~MPSLayer.contract`, - like ``inline_input`` or ``inline_mats``. - """ - # Input image shape: batch_size x in_channels x height x width - - patches = self.unfold(image).transpose(1, 2) - # batch_size x nb_windows x (in_channels * nb_pixels) - - patches = patches.view(*patches.shape[:-1], self.in_channels, -1) - # batch_size x nb_windows x in_channels x nb_pixels - - patches = patches.transpose(2, 3) - # batch_size x nb_windows x nb_pixels x in_channels - - if mode == 'snake': - new_patches = patches[..., :self._kernel_size[1], :] - for i in range(1, self._kernel_size[0]): - if i % 2 == 0: - aux = patches[..., (i * self._kernel_size[1]): - ((i + 1) * self._kernel_size[1]), :] - else: - aux = patches[..., - (i * self._kernel_size[1]): - ((i + 1) * self._kernel_size[1]), :].flip(dims=[0]) - new_patches = torch.cat([new_patches, aux], dim=2) - - patches = new_patches - - elif mode != 'flat': - raise ValueError('`mode` can only be "flat" or "snake"') - - result = super().forward(patches, *args, **kwargs) - # batch_size x nb_windows x out_channels - - result = result.transpose(1, 2) - # batch_size x out_channels x nb_windows - - h_in = image.shape[2] - w_in = image.shape[3] - - h_out = int((h_in + 2 * self.padding[0] - self.dilation[0] * - (self.kernel_size[0] - 1) - 1) / self.stride[0] + 1) - w_out = int((w_in + 2 * self.padding[1] - self.dilation[1] * - (self.kernel_size[1] - 1) - 1) / self.stride[1] + 1) - - result = result.view(*result.shape[:-1], h_out, w_out) - # batch_size x out_channels x height_out x width_out - - return result
    - - -
    [docs]class ConvUMPSLayer(UMPSLayer): - """ - Class for Uniform Matrix Product States with an extra node that is dedicated - to the output, and where the input data is a batch of images. It is the - convolutional version of :class:`UMPSLayer`. This class cannot have different - bond dimensions for each site and boundary conditions are always periodic. - - Input data as well as initialization parameters are described in `torch.nn.Conv2d - <https://pytorch.org/docs/stable/generated/torch.nn.Conv2d.html>`_. - - Parameters - ---------- - in_channels : int - Input channels. Same as ``in_dim`` in :class:`UMPSLayer`. - out_channels : int - Output channels. Same as ``out_dim`` in :class:`UMPSLayer`. - bond_dim : int - Bond dimension. - kernel_size : int, list[int] or tuple[int] - Kernel size used in `torch.nn.Unfold - <https://pytorch.org/docs/stable/generated/torch.nn.Unfold.html#torch.nn.Unfold>`_. - If given as an ``int``, the actual kernel size will be - ``(kernel_size, kernel_size)``. - stride : int - Stride used in `torch.nn.Unfold - <https://pytorch.org/docs/stable/generated/torch.nn.Unfold.html#torch.nn.Unfold>`_. - padding : int - Padding used in `torch.nn.Unfold - <https://pytorch.org/docs/stable/generated/torch.nn.Unfold.html#torch.nn.Unfold>`_. - If given as an ``int``, the actual kernel size will be - ``(kernel_size, kernel_size)``. - dilation : int - Dilation used in `torch.nn.Unfold - <https://pytorch.org/docs/stable/generated/torch.nn.Unfold.html#torch.nn.Unfold>`_. - If given as an ``int``, the actual kernel size will be - ``(kernel_size, kernel_size)``. - out_position : int, optional - Position of the output node (label). Should be between 0 and - :math:`kernel\_size_0 \cdot kernel\_size_1`. If ``None``, the output node - will be located at the middle of the MPS. - - Examples - -------- - >>> conv_mps_layer = tk.models.ConvUMPSLayer(in_channels=2, - ... out_channels=10, - ... bond_dim=5, - ... kernel_size=2) - >>> for node in conv_mps_layer.left_env + conv_mps_layer.right_env: - ... assert node.tensor_address() == 'virtual_uniform' - ... - >>> data = torch.ones(20, 2, 2, 2) # batch_size x in_channels x height x width - >>> result = conv_mps_layer(data) - >>> result.shape - torch.Size([20, 10, 1, 1]) - """ - - def __init__(self, - in_channels: int, - out_channels: int, - bond_dim: int, - kernel_size: Union[int, Sequence], - stride: int = 1, - padding: int = 0, - dilation: int = 1, - out_position: Optional[int] = None): - - if isinstance(kernel_size, int): - kernel_size = (kernel_size, kernel_size) - elif not isinstance(kernel_size, Sequence): - raise TypeError('`kernel_size` must be int or Sequence') - - if isinstance(stride, int): - stride = (stride, stride) - elif not isinstance(stride, Sequence): - raise TypeError('`stride` must be int or Sequence') - - if isinstance(padding, int): - padding = (padding, padding) - elif not isinstance(padding, Sequence): - raise TypeError('`padding` must be int or Sequence') - - if isinstance(dilation, int): - dilation = (dilation, dilation) - elif not isinstance(dilation, Sequence): - raise TypeError('`dilation` must be int or Sequence') - - self._in_channels = in_channels - self._kernel_size = kernel_size - self._stride = stride - self._padding = padding - self._dilation = dilation - - super().__init__(n_features=kernel_size[0] * kernel_size[1], - in_dim=in_channels, - out_dim=out_channels, - bond_dim=bond_dim, - out_position=out_position, - n_batches=2) - - self.unfold = nn.Unfold(kernel_size=kernel_size, - stride=stride, - padding=padding, - dilation=dilation) - - @property - def in_channels(self) -> int: - """Returns ``in_channels``. Same as ``in_dim`` in :class:`UMPSLayer`.""" - return self._in_channels - - @property - def kernel_size(self) -> Tuple[int, int]: - """ - Returns ``kernel_size``. Number of nodes is given by - :math:`kernel\_size_0 \cdot kernel\_size_1 + 1`. - """ - return self._kernel_size - - @property - def stride(self) -> Tuple[int, int]: - """ - Returns stride used in `torch.nn.Unfold - <https://pytorch.org/docs/stable/generated/torch.nn.Unfold.html#torch.nn.Unfold>`_. - """ - return self._stride - - @property - def padding(self) -> Tuple[int, int]: - """ - Returns padding used in `torch.nn.Unfold - <https://pytorch.org/docs/stable/generated/torch.nn.Unfold.html#torch.nn.Unfold>`_. - """ - return self._padding - - @property - def dilation(self) -> Tuple[int, int]: - """ - Returns dilation used in `torch.nn.Unfold - <https://pytorch.org/docs/stable/generated/torch.nn.Unfold.html#torch.nn.Unfold>`_. - """ - return self._dilation - -
    [docs] def forward(self, image, mode='flat', *args, **kwargs): - r""" - Overrides ``torch.nn.Module``'s forward to compute a convolution on the - input image. - - Parameters - ---------- - image : torch.Tensor - Input batch of images with shape - - .. math:: - - batch\_size \times in\_channels \times height \times width - mode : {"flat", "snake"} - Indicates the order in which MPS should take the pixels in the image. - When ``"flat"``, the image is flattened putting one row of the image - after the other. When ``"snake"``, its row is put in the opposite - orientation as the previous row (like a snake running through the - image). - args : - Arguments that might be used in :meth:`~UMPSLayer.contract`. - kwargs : - Keyword arguments that might be used in :meth:`~UMPSLayer.contract`, - like ``inline_input`` or ``inline_mats``. - """ - # Input image shape: batch_size x in_channels x height x width - - patches = self.unfold(image).transpose(1, 2) - # batch_size x nb_windows x (in_channels * nb_pixels) - - patches = patches.view(*patches.shape[:-1], self.in_channels, -1) - # batch_size x nb_windows x in_channels x nb_pixels - - patches = patches.transpose(2, 3) - # batch_size x nb_windows x nb_pixels x in_channels - - if mode == 'snake': - new_patches = patches[..., :self._kernel_size[1], :] - for i in range(1, self._kernel_size[0]): - if i % 2 == 0: - aux = patches[..., (i * self._kernel_size[1]): - ((i + 1) * self._kernel_size[1]), :] - else: - aux = patches[..., - (i * self._kernel_size[1]): - ((i + 1) * self._kernel_size[1]), :].flip(dims=[0]) - new_patches = torch.cat([new_patches, aux], dim=2) - - patches = new_patches - - elif mode != 'flat': - raise ValueError('`mode` can only be "flat" or "snake"') - - result = super().forward(patches, *args, **kwargs) - # batch_size x nb_windows x out_channels - - result = result.transpose(1, 2) - # batch_size x out_channels x nb_windows - - h_in = image.shape[2] - w_in = image.shape[3] - - h_out = int((h_in + 2 * self.padding[0] - self.dilation[0] * - (self.kernel_size[0] - 1) - 1) / self.stride[0] + 1) - w_out = int((w_in + 2 * self.padding[1] - self.dilation[1] * - (self.kernel_size[1] - 1) - 1) / self.stride[1] + 1) - - result = result.view(*result.shape[:-1], h_out, w_out) - # batch_size x out_channels x height_out x width_out - - return result
    -
    - -
    - -
    -
    - - -
    -
    -
    -
    -
    - - -
    - - -
    -
    - - - - - - - \ No newline at end of file diff --git a/docs/_build/html/_modules/tensorkrowch/models/peps.html b/docs/_build/html/_modules/tensorkrowch/models/peps.html index a5c2428..48ace85 100644 --- a/docs/_build/html/_modules/tensorkrowch/models/peps.html +++ b/docs/_build/html/_modules/tensorkrowch/models/peps.html @@ -1,11 +1,11 @@ - + - tensorkrowch.models.peps — TensorKrowch 1.0.0 documentation + tensorkrowch.models.peps — TensorKrowch 1.0.1 documentation @@ -29,17 +29,15 @@ - - - + @@ -180,6 +178,11 @@ Embeddings +
  • + + Decompositions + +
  • diff --git a/docs/_build/html/_modules/tensorkrowch/models/tree.html b/docs/_build/html/_modules/tensorkrowch/models/tree.html index 41f30c9..dca9f9a 100644 --- a/docs/_build/html/_modules/tensorkrowch/models/tree.html +++ b/docs/_build/html/_modules/tensorkrowch/models/tree.html @@ -1,11 +1,11 @@ - + - tensorkrowch.models.tree — TensorKrowch 1.0.0 documentation + tensorkrowch.models.tree — TensorKrowch 1.0.1 documentation @@ -29,17 +29,15 @@ - - - + @@ -180,6 +178,11 @@ Embeddings +
  • + + Decompositions + +
  • diff --git a/docs/_build/html/_modules/tensorkrowch/operations.html b/docs/_build/html/_modules/tensorkrowch/operations.html index b542d8b..3071e07 100644 --- a/docs/_build/html/_modules/tensorkrowch/operations.html +++ b/docs/_build/html/_modules/tensorkrowch/operations.html @@ -1,11 +1,11 @@ - + - tensorkrowch.operations — TensorKrowch 1.0.0 documentation + tensorkrowch.operations — TensorKrowch 1.0.1 documentation @@ -29,17 +29,15 @@ - - - + @@ -180,6 +178,11 @@ Embeddings +
  • + + Decompositions + +
  • @@ -301,11 +304,16 @@

    Source code for tensorkrowch.operations

         Node-like operations:
             * split
             * split_             (in-place)
    +        * svd                           (edge operation)
             * svd_               (in-place) (edge operation)
    +        * svdr                          (edge operation)
             * svdr_              (in-place) (edge operation)
    +        * qr                            (edge operation)
             * qr_                (in-place) (edge operation)
    +        * rq                            (edge operation)
             * rq_                (in-place) (edge operation)
             * contract_edges
    +        * contract                      (edge operation)
             * contract_          (in-place) (edge operation)
             * get_shared_edges
             * contract_between
    @@ -326,8 +334,6 @@ 

    Source code for tensorkrowch.operations

     from tensorkrowch.utils import (inverse_permutation, is_permutation,
                                     list2slice, permute_list)
     
    -Ax = Union[int, Text, Axis]
    -
     
     def copy_func(f):
         """Returns a function with the same code, defaults, closure and name."""
    @@ -344,7 +350,7 @@ 

    Source code for tensorkrowch.operations

     ###############################################################################
     
     
    -
    [docs]class Operation: +
    [docs]class Operation: # MARK: Operation """ Class for node operations. @@ -370,7 +376,11 @@

    Source code for tensorkrowch.operations

             Function that is called the next times the operation is performed.
         """
     
    -    def __init__(self, name: Text, check_first, fn_first, fn_next):
    +    def __init__(self,
    +                 name: Text,
    +                 check_first: Callable,
    +                 fn_first: Callable,
    +                 fn_next: Callable) -> None:
             assert isinstance(check_first, Callable)
             assert isinstance(fn_first, Callable)
             assert isinstance(fn_next, Callable)
    @@ -395,9 +405,10 @@ 

    Source code for tensorkrowch.operations

     ###############################################################################
     
     #################################   PERMUTE    ################################
    +# MARK: permute
     def _check_first_permute(node: AbstractNode,
                              axes: Sequence[Ax]) -> Optional[Successor]:
    -    args = (node, axes)
    +    args = (node, tuple(axes))
         successors = node._successors.get('permute')
         if not successors:
             return None
    @@ -423,7 +434,7 @@ 

    Source code for tensorkrowch.operations

     
         # Create successor
         net = node._network
    -    args = (node, axes)
    +    args = (node, tuple(axes))
         successor = Successor(node_ref=node.node_ref(),
                               index=node._tensor_info['index'],
                               child=new_node,
    @@ -474,10 +485,13 @@ 

    Source code for tensorkrowch.operations

         Permutes the nodes' tensor, as well as its axes and edges to match the new
         shape.
     
    -    See `permute <https://pytorch.org/docs/stable/generated/torch.permute.html>`_.
    +    See `permute <https://pytorch.org/docs/stable/generated/torch.permute.html>`_
    +    in the **PyTorch** documentation.
         
         Nodes ``resultant`` from this operation are called ``"permute"``. The node
         that keeps information about the :class:`Successor` is ``node``.
    +    
    +    This operation is the same as :meth:`~AbstractNode.permute`.
     
         Parameters
         ----------
    @@ -506,7 +520,8 @@ 

    Source code for tensorkrowch.operations

         Permutes the nodes' tensor, as well as its axes and edges to match the new
         shape.
         
    -    See `permute <https://pytorch.org/docs/stable/generated/torch.permute.html>`_.
    +    See `permute <https://pytorch.org/docs/stable/generated/torch.permute.html>`_
    +    in the **PyTorch** documentation.
         
         Nodes ``resultant`` from this operation are called ``"permute"``. The node
         that keeps information about the :class:`Successor` is ``self``.
    @@ -542,6 +557,8 @@ 

    Source code for tensorkrowch.operations

         See `permute <https://pytorch.org/docs/stable/generated/torch.permute.html>`_.
         
         Nodes ``resultant`` from this operation use the same name as ``node``.
    +    
    +    This operation is the same as :meth:`~AbstractNode.permute_`.
     
         Parameters
         ----------
    @@ -613,6 +630,7 @@ 

    Source code for tensorkrowch.operations

     
     
     ##################################   TPROD    #################################
    +# MARK: tprod
     def _check_first_tprod(node1: AbstractNode,
                            node2: AbstractNode) -> Optional[Successor]:
         args = (node1, node2)
    @@ -757,6 +775,7 @@ 

    Source code for tensorkrowch.operations

     
     
     ###################################   MUL    ##################################
    +# MARK: mul
     def _check_first_mul(node1: AbstractNode,
                          node2: AbstractNode) -> Optional[Successor]:
         args = (node1, node2)
    @@ -890,6 +909,7 @@ 

    Source code for tensorkrowch.operations

     
     
     ###################################   ADD    ##################################
    +# MARK: add
     def _check_first_add(node1: AbstractNode,
                          node2: AbstractNode) -> Optional[Successor]:
         args = (node1, node2)
    @@ -1023,6 +1043,7 @@ 

    Source code for tensorkrowch.operations

     
     
     ###################################   SUB    ##################################
    +# MARK: sub
     def _check_first_sub(node1: AbstractNode,
                          node2: AbstractNode) -> Optional[Successor]:
         args = (node1, node2)
    @@ -1160,6 +1181,7 @@ 

    Source code for tensorkrowch.operations

     ###############################################################################
     
     ##################################   SPLIT    #################################
    +# MARK: split
     def _check_first_split(node: AbstractNode,
                            node1_axes: Sequence[Ax],
                            node2_axes: Sequence[Ax],
    @@ -1190,9 +1212,9 @@ 

    Source code for tensorkrowch.operations

                      rank: Optional[int] = None,
                      cum_percentage: Optional[float] = None,
                      cutoff: Optional[float] = None) -> Tuple[Node, Node]:
    -    if not isinstance(node1_axes, (list, tuple)):
    +    if not isinstance(node1_axes, Sequence):
             raise TypeError('`node1_edges` should be list or tuple type')
    -    if not isinstance(node2_axes, (list, tuple)):
    +    if not isinstance(node2_axes, Sequence):
             raise TypeError('`node2_edges` should be list or tuple type')
         
         args = (node,
    @@ -1254,48 +1276,39 @@ 

    Source code for tensorkrowch.operations

     
         if (mode == 'svd') or (mode == 'svdr'):
             u, s, vh = torch.linalg.svd(node_tensor, full_matrices=False)
    -
    -        if cum_percentage is not None:
    -            if (rank is not None) or (cutoff is not None):
    -                raise ValueError('Only one of `rank`, `cum_percentage` and '
    -                                 '`cutoff` should be provided')
    -
    -            percentages = s.cumsum(-1) / s.sum(-1) \
    -                .view(*s.shape[:-1], 1).expand(s.shape)
    -            cum_percentage_tensor = torch.tensor(cum_percentage) \
    -                .repeat(percentages.shape[:-1])
    -            rank = 0
    -            for i in range(percentages.shape[-1]):
    -                p = percentages[..., i]
    -                rank += 1
    -                # Cut when ``cum_percentage`` is exceeded in all batches
    -                if torch.ge(p, cum_percentage_tensor).all():
    -                    break
    -
    -        elif cutoff is not None:
    -            if rank is not None:
    -                raise ValueError('Only one of `rank`, `cum_percentage` and '
    -                                 '`cutoff` should be provided')
    -
    -            cutoff_tensor = torch.tensor(cutoff).repeat(s.shape[:-1])
    -            rank = 0
    -            for i in range(s.shape[-1]):
    -                # Cut when ``cutoff`` is exceeded in all batches
    -                if torch.le(s[..., i], cutoff_tensor).all():
    -                    break
    -                rank += 1
    -            if rank == 0:
    -                rank = 1
    -
    +        
    +        lst_ranks = []
    +        
             if rank is None:
                 rank = s.shape[-1]
    +            lst_ranks.append(rank)
             else:
    -            if rank < s.shape[-1]:
    -                u = u[..., :rank]
    -                s = s[..., :rank]
    -                vh = vh[..., :rank, :]
    -            else:
    -                rank = s.shape[-1]
    +            lst_ranks.append(min(max(1, int(rank)), s.shape[-1]))
    +            
    +        if cum_percentage is not None:
    +            s_percentages = s.cumsum(-1) / \
    +                (s.sum(-1, keepdim=True).expand(s.shape) + 1e-10) # To avoid having all 0's
    +            cum_percentage_tensor = cum_percentage * torch.ones_like(s)
    +            cp_rank = torch.lt(
    +                s_percentages,
    +                cum_percentage_tensor
    +                ).view(-1, s.shape[-1]).all(dim=0).sum()
    +            lst_ranks.append(max(1, cp_rank.item() + 1))
    +            
    +        if cutoff is not None:
    +            cutoff_tensor = cutoff * torch.ones_like(s)
    +            co_rank = torch.ge(
    +                s,
    +                cutoff_tensor
    +                ).view(-1, s.shape[-1]).all(dim=0).sum()
    +            lst_ranks.append(max(1, co_rank.item()))
    +        
    +        # Select rank from specified restrictions
    +        rank = min(lst_ranks)
    +        
    +        u = u[..., :rank]
    +        s = s[..., :rank]
    +        vh = vh[..., :rank, :]
     
             if mode == 'svdr':
                 phase = torch.sign(torch.randn(s.shape))
    @@ -1462,48 +1475,39 @@ 

    Source code for tensorkrowch.operations

     
         if (mode == 'svd') or (mode == 'svdr'):
             u, s, vh = torch.linalg.svd(node_tensor, full_matrices=False)
    -
    -        if cum_percentage is not None:
    -            if (rank is not None) or (cutoff is not None):
    -                raise ValueError('Only one of `rank`, `cum_percentage` and '
    -                                 '`cutoff` should be provided')
    -
    -            percentages = s.cumsum(-1) / s.sum(-1) \
    -                .view(*s.shape[:-1], 1).expand(s.shape)
    -            cum_percentage_tensor = torch.tensor(
    -                cum_percentage).repeat(percentages.shape[:-1])
    -            rank = 0
    -            for i in range(percentages.shape[-1]):
    -                p = percentages[..., i]
    -                rank += 1
    -                # Cut when ``cum_percentage`` is exceeded in all batches
    -                if torch.ge(p, cum_percentage_tensor).all():
    -                    break
    -
    -        elif cutoff is not None:
    -            if rank is not None:
    -                raise ValueError('Only one of `rank`, `cum_percentage` and '
    -                                 '`cutoff` should be provided')
    -
    -            cutoff_tensor = torch.tensor(cutoff).repeat(s.shape[:-1])
    -            rank = 0
    -            for i in range(s.shape[-1]):
    -                # Cut when ``cutoff`` is exceeded in all batches
    -                if torch.le(s[..., i], cutoff_tensor).all():
    -                    break
    -                rank += 1
    -            if rank == 0:
    -                rank = 1
    -
    +        
    +        lst_ranks = []
    +        
             if rank is None:
                 rank = s.shape[-1]
    +            lst_ranks.append(rank)
             else:
    -            if rank < s.shape[-1]:
    -                u = u[..., :rank]
    -                s = s[..., :rank]
    -                vh = vh[..., :rank, :]
    -            else:
    -                rank = s.shape[-1]
    +            lst_ranks.append(min(max(1, rank), s.shape[-1]))
    +            
    +        if cum_percentage is not None:
    +            s_percentages = s.cumsum(-1) / \
    +                (s.sum(-1, keepdim=True).expand(s.shape) + 1e-10) # To avoid having all 0's
    +            cum_percentage_tensor = cum_percentage * torch.ones_like(s)
    +            cp_rank = torch.lt(
    +                s_percentages,
    +                cum_percentage_tensor
    +                ).view(-1, s.shape[-1]).all(dim=0).sum()
    +            lst_ranks.append(max(1, cp_rank.item() + 1))
    +            
    +        if cutoff is not None:
    +            cutoff_tensor = cutoff * torch.ones_like(s)
    +            co_rank = torch.ge(
    +                s,
    +                cutoff_tensor
    +                ).view(-1, s.shape[-1]).all(dim=0).sum()
    +            lst_ranks.append(max(1, co_rank.item()))
    +        
    +        # Select rank from specified restrictions
    +        rank = min(lst_ranks)
    +        
    +        u = u[..., :rank]
    +        s = s[..., :rank]
    +        vh = vh[..., :rank, :]
     
             if mode == 'svdr':
                 phase = torch.sign(torch.randn(s.shape))
    @@ -1571,7 +1575,7 @@ 

    Source code for tensorkrowch.operations

         r"""
         Splits one node in two via the decomposition specified in ``mode``. To
         perform this operation the set of edges has to be split in two sets,
    -    corresponding to the edges of the first and second ``resultant nodes``.
    +    corresponding to the edges of the first and second ``resultant`` nodes.
         Batch edges that don't appear in any of the lists will be repeated in both
         nodes, and will appear as the first edges of the ``resultant`` nodes, in
         the order they appeared in ``node``.
    @@ -1617,14 +1621,18 @@ 

    Source code for tensorkrowch.operations

     
           where R is a lower triangular matrix and Q is unitary.
     
    -    If ``mode`` is "svd" or "svdr", ``side`` must be provided. Besides, one
    -    (and only one) of ``rank``, ``cum_percentage`` and ``cutoff`` is required.
    +    If ``mode`` is "svd" or "svdr", ``side`` must be provided. Besides, at least
    +    one of ``rank``, ``cum_percentage`` and ``cutoff`` is required. If more than
    +    one is specified, the resulting rank will be the one that satisfies all
    +    conditions.
         
         Since the node is `split` in two, a new edge appears connecting both
         nodes. The axis that corresponds to this edge has the name ``"split"``.
         
         Nodes ``resultant`` from this operation are called ``"split"``. The node
         that keeps information about the :class:`Successor` is ``node``.
    +    
    +    This operation is the same as :meth:`~AbstractNode.split`.
     
         Parameters
         ----------
    @@ -1765,6 +1773,8 @@ 

    Source code for tensorkrowch.operations

         nodes. The axis that corresponds to this edge has the name ``"split"``.
         
         Nodes ``resultant`` from this operation are called ``"split_ip"``.
    +    
    +    This operation is the same as :meth:`~AbstractNode.split_`.
     
         Parameters
         ----------
    @@ -1828,8 +1838,8 @@ 

    Source code for tensorkrowch.operations

         """
         node1, node2 = split(node, node1_axes, node2_axes,
                              mode, side, rank, cum_percentage, cutoff)
    -    node1.reattach_edges(True)
    -    node2.reattach_edges(True)
    +    node1.reattach_edges(override=True)
    +    node2.reattach_edges(override=True)
         node1._unrestricted_set_tensor(node1.tensor.detach())
         node2._unrestricted_set_tensor(node2.tensor.detach())
     
    @@ -1863,7 +1873,7 @@ 

    Source code for tensorkrowch.operations

     split_node_ = copy_func(split_)
     split_node_.__doc__ = \
         r"""
    -    In-place version of :func:`~AbstractNode.split`.
    +    In-place version of :meth:`~AbstractNode.split`.
         
         Following the **PyTorch** convention, names of functions ended with an
         underscore indicate **in-place** operations.
    @@ -1910,10 +1920,9 @@ 

    Source code for tensorkrowch.operations

         --------
         >>> node = tk.randn(shape=(10, 15, 100),
         ...                 axes_names=('left', 'right', 'batch'))
    -    >>> node_left, node_right = tk.split_(node,
    -    ...                                   ['left'], ['right'],
    -    ...                                   mode='svd',
    -    ...                                   rank=5)
    +    >>> node_left, node_right = node.split_(['left'], ['right'],
    +    ...                                     mode='svd',
    +    ...                                     rank=5)
         >>> node_left.shape
         torch.Size([100, 10, 5])
         
    @@ -1935,21 +1944,16 @@ 

    Source code for tensorkrowch.operations

     AbstractNode.split_ = split_node_
     
     
    -
    [docs]def svd_(edge: Edge, - side: Text = 'left', - rank: Optional[int] = None, - cum_percentage: Optional[float] = None, - cutoff: Optional[float] = None) -> Tuple[Node, Node]: +
    [docs]def svd(edge: Edge, + side: Text = 'left', + rank: Optional[int] = None, + cum_percentage: Optional[float] = None, + cutoff: Optional[float] = None) -> Tuple[Node, Node]: r""" - Contracts an edge in-place via :func:`contract_` and splits it in-place via - :func:`split_` using ``mode = "svd"``. See :func:`split` for a more complete - explanation. - - Following the **PyTorch** convention, names of functions ended with an - underscore indicate **in-place** operations. + Contracts an edge via :func:`contract` and splits it via :func:`split` + using ``mode = "svd"``. See :func:`split` for a more complete explanation. - Nodes ``resultant`` from this operation use the same names as the original - nodes connected by ``edge``. + This operation is the same as :meth:`~Edge.svd`. Parameters ---------- @@ -1988,25 +1992,31 @@

    Source code for tensorkrowch.operations

         ...                  name='nodeB')
         ...
         >>> new_edge = nodeA['right'] ^ nodeB['left']
    -    >>> nodeA, nodeB = tk.svd_(new_edge, rank=7)
    +    >>> new_nodeA, new_nodeB = tk.svd(new_edge, rank=7)
         ...
    -    >>> nodeA.shape
    +    >>> new_nodeA.shape
         torch.Size([10, 7, 100])
         
    -    >>> nodeB.shape
    +    >>> new_nodeB.shape
         torch.Size([7, 20, 100])
         
    -    >>> print(nodeA.axes_names)
    +    >>> print(new_nodeA.axes_names)
         ['left', 'right', 'batch']
         
    -    >>> print(nodeB.axes_names)
    +    >>> print(new_nodeB.axes_names)
         ['left', 'right', 'batch']
    +    
    +    Original nodes still exist in the network
    +    
    +    >>> assert nodeA.network == new_nodeA.network
    +    >>> assert nodeB.network == new_nodeB.network
         """
         if edge.is_dangling():
             raise ValueError('Edge should be connected to perform SVD')
    +    if edge.node1 is edge.node2:
    +        raise ValueError('Edge should connect different nodes')
     
         node1, node2 = edge.node1, edge.node2
    -    node1_name, node2_name = node1._name, node2._name
         axis1, axis2 = edge.axis1, edge.axis2
     
         batch_axes = []
    @@ -2018,19 +2028,19 @@ 

    Source code for tensorkrowch.operations

         n_axes1 = len(node1._axes) - n_batches - 1
         n_axes2 = len(node2._axes) - n_batches - 1
     
    -    contracted = edge.contract_()
    -    new_node1, new_node2 = split_(node=contracted,
    -                                  node1_axes=list(
    -                                      range(n_batches,
    -                                            n_batches + n_axes1)),
    -                                  node2_axes=list(
    -                                      range(n_batches + n_axes1,
    -                                            n_batches + n_axes1 + n_axes2)),
    -                                  mode='svd',
    -                                  side=side,
    -                                  rank=rank,
    -                                  cum_percentage=cum_percentage,
    -                                  cutoff=cutoff)
    +    contracted = edge.contract()
    +    new_node1, new_node2 = split(node=contracted,
    +                                 node1_axes=list(
    +                                     range(n_batches,
    +                                         n_batches + n_axes1)),
    +                                 node2_axes=list(
    +                                     range(n_batches + n_axes1,
    +                                         n_batches + n_axes1 + n_axes2)),
    +                                 mode='svd',
    +                                 side=side,
    +                                 rank=rank,
    +                                 cum_percentage=cum_percentage,
    +                                 cutoff=cutoff)
     
         # new_node1
         prev_nums = [ax.num for ax in batch_axes]
    @@ -2041,7 +2051,7 @@ 

    Source code for tensorkrowch.operations

     
         if prev_nums != list(range(new_node1.rank)):
             permutation = inverse_permutation(prev_nums)
    -        new_node1 = new_node1.permute_(permutation)
    +        new_node1 = new_node1.permute(permutation)
     
         # new_node2
         prev_nums = [node2.get_axis_num(node1.get_axis(ax)._name)
    @@ -2052,29 +2062,20 @@ 

    Source code for tensorkrowch.operations

     
         if prev_nums != list(range(new_node2.rank)):
             permutation = inverse_permutation(prev_nums)
    -        new_node2 = new_node2.permute_(permutation)
    -
    -    new_node1.name = node1_name
    +        new_node2 = new_node2.permute(permutation)
    +        
         new_node1.get_axis(axis1._num).name = axis1._name
    -
    -    new_node2.name = node2_name
         new_node2.get_axis(axis2._num).name = axis2._name
     
         return new_node1, new_node2
    -svd_edge_ = copy_func(svd_) -svd_edge_.__doc__ = \ +svd_edge = copy_func(svd) +svd_edge.__doc__ = \ r""" - Contracts an edge in-place via :func:`~Edge.contract_` and splits - it in-place via :func:`~AbstractNode.split_` using ``mode = "svd"``. See - :func:`split` for a more complete explanation. - - Following the **PyTorch** convention, names of functions ended with an - underscore indicate **in-place** operations. - - Nodes ``resultant`` from this operation use the same names as the original - nodes connected by ``self``. + Contracts an edge via :meth:`~Edge.contract` and splits it via + :meth:`~AbstractNode.split` using ``mode = "svd"``. See :func:`split` for + a more complete explanation. Parameters ---------- @@ -2089,9 +2090,9 @@

    Source code for tensorkrowch.operations

         cum_percentage : float, optional
             Proportion that should be satisfied between the sum of all singular
             values kept and the total sum of all singular values.
    -        
    +
             .. math::
    -        
    +
                 \frac{\sum_{i \in \{kept\}}{s_i}}{\sum_{i \in \{all\}}{s_i}} \ge
                 cum\_percentage
         cutoff : float, optional
    @@ -2111,32 +2112,39 @@ 

    Source code for tensorkrowch.operations

         ...                  name='nodeB')
         ...
         >>> new_edge = nodeA['right'] ^ nodeB['left']
    -    >>> nodeA, nodeB = new_edge.svd_(rank=7)
    +    >>> new_nodeA, new_nodeB = new_edge.svd(rank=7)
         ...
    -    >>> nodeA.shape
    +    >>> new_nodeA.shape
         torch.Size([10, 7, 100])
         
    -    >>> nodeB.shape
    +    >>> new_nodeB.shape
         torch.Size([7, 20, 100])
         
    -    >>> print(nodeA.axes_names)
    +    >>> print(new_nodeA.axes_names)
         ['left', 'right', 'batch']
         
    -    >>> print(nodeB.axes_names)
    +    >>> print(new_nodeB.axes_names)
         ['left', 'right', 'batch']
    +    
    +    Original nodes still exist in the network
    +    
    +    >>> assert nodeA.network == new_nodeA.network
    +    >>> assert nodeB.network == new_nodeB.network
         """
     
    -Edge.svd_ = svd_edge_
    +Edge.svd = svd_edge
     
     
    -
    [docs]def svdr_(edge: Edge, - side: Text = 'left', - rank: Optional[int] = None, - cum_percentage: Optional[float] = None, - cutoff: Optional[float] = None) -> Tuple[Node, Node]: +
    [docs]def svd_(edge: Edge, + side: Text = 'left', + rank: Optional[int] = None, + cum_percentage: Optional[float] = None, + cutoff: Optional[float] = None) -> Tuple[Node, Node]: r""" + In-place version of :func:`svd`. + Contracts an edge in-place via :func:`contract_` and splits it in-place via - :func:`split_` using ``mode = "svdr"``. See :func:`split` for a more complete + :func:`split_` using ``mode = "svd"``. See :func:`split` for a more complete explanation. Following the **PyTorch** convention, names of functions ended with an @@ -2144,6 +2152,8 @@

    Source code for tensorkrowch.operations

         
         Nodes ``resultant`` from this operation use the same names as the original
         nodes connected by ``edge``.
    +    
    +    This operation is the same as :meth:`~Edge.svd_`.
     
         Parameters
         ----------
    @@ -2182,7 +2192,7 @@ 

    Source code for tensorkrowch.operations

         ...                  name='nodeB')
         ...
         >>> new_edge = nodeA['right'] ^ nodeB['left']
    -    >>> nodeA, nodeB = tk.svdr_(new_edge, rank=7)
    +    >>> nodeA, nodeB = tk.svd_(new_edge, rank=7)
         ...
         >>> nodeA.shape
         torch.Size([10, 7, 100])
    @@ -2198,6 +2208,8 @@ 

    Source code for tensorkrowch.operations

         """
         if edge.is_dangling():
             raise ValueError('Edge should be connected to perform SVD')
    +    if edge.node1 is edge.node2:
    +        raise ValueError('Edge should connect different nodes')
     
         node1, node2 = edge.node1, edge.node2
         node1_name, node2_name = node1._name, node2._name
    @@ -2220,14 +2232,14 @@ 

    Source code for tensorkrowch.operations

                                       node2_axes=list(
                                           range(n_batches + n_axes1,
                                                 n_batches + n_axes1 + n_axes2)),
    -                                  mode='svdr',
    +                                  mode='svd',
                                       side=side,
                                       rank=rank,
                                       cum_percentage=cum_percentage,
                                       cutoff=cutoff)
     
         # new_node1
    -    prev_nums = [ax._num for ax in batch_axes]
    +    prev_nums = [ax.num for ax in batch_axes]
         for i in range(new_node1.rank):
             if (i not in prev_nums) and (i != axis1._num):
                 prev_nums.append(i)
    @@ -2257,11 +2269,13 @@ 

    Source code for tensorkrowch.operations

         return new_node1, new_node2
    -svdr_edge_ = copy_func(svdr_) -svdr_edge_.__doc__ = \ +svd_edge_ = copy_func(svd_) +svd_edge_.__doc__ = \ r""" - Contracts an edge in-place via :func:`~Edge.contract_` and splits - it in-place via :func:`~AbstractNode.split_` using ``mode = "svdr"``. See + In-place version of :meth:`~Edge.svd`. + + Contracts an edge in-place via :meth:`~Edge.contract_` and splits + it in-place via :meth:`~AbstractNode.split_` using ``mode = "svd"``. See :func:`split` for a more complete explanation. Following the **PyTorch** convention, names of functions ended with an @@ -2305,7 +2319,7 @@

    Source code for tensorkrowch.operations

         ...                  name='nodeB')
         ...
         >>> new_edge = nodeA['right'] ^ nodeB['left']
    -    >>> nodeA, nodeB = new_edge.svdr_(rank=7)
    +    >>> nodeA, nodeB = new_edge.svd_(rank=7)
         ...
         >>> nodeA.shape
         torch.Size([10, 7, 100])
    @@ -2320,25 +2334,42 @@ 

    Source code for tensorkrowch.operations

         ['left', 'right', 'batch']
         """
     
    -Edge.svdr_ = svdr_edge_
    +Edge.svd_ = svd_edge_
     
     
    -
    [docs]def qr_(edge) -> Tuple[Node, Node]: +
    [docs]def svdr(edge: Edge, + side: Text = 'left', + rank: Optional[int] = None, + cum_percentage: Optional[float] = None, + cutoff: Optional[float] = None) -> Tuple[Node, Node]: r""" - Contracts an edge in-place via :func:`contract_` and splits it in-place via - :func:`split_` using ``mode = "qr"``. See :func:`split` for a more complete - explanation. - - Following the **PyTorch** convention, names of functions ended with an - underscore indicate **in-place** operations. + Contracts an edge via :func:`contract` and splits it via :func:`split` + using ``mode = "svdr"``. See :func:`split` for a more complete explanation. - Nodes ``resultant`` from this operation use the same names as the original - nodes connected by ``edge``. + This operation is the same as :meth:`~Edge.svdr`. Parameters ---------- edge : Edge Edge whose nodes are to be contracted and split. + side : str, optional + Indicates the side to which the diagonal matrix :math:`S` should be + contracted. If "left", the first resultant node's tensor will be + :math:`US`, and the other node's tensor will be :math:`V^{\dagger}`. + If "right", their tensors will be :math:`U` and :math:`SV^{\dagger}`, + respectively. + rank : int, optional + Number of singular values to keep. + cum_percentage : float, optional + Proportion that should be satisfied between the sum of all singular + values kept and the total sum of all singular values. + + .. math:: + + \frac{\sum_{i \in \{kept\}}{s_i}}{\sum_{i \in \{all\}}{s_i}} \ge + cum\_percentage + cutoff : float, optional + Quantity that lower bounds singular values in order to be kept. Returns ------- @@ -2354,48 +2385,58 @@

    Source code for tensorkrowch.operations

         ...                  name='nodeB')
         ...
         >>> new_edge = nodeA['right'] ^ nodeB['left']
    -    >>> nodeA, nodeB = tk.qr_(new_edge)
    +    >>> new_nodeA, new_nodeB = tk.svdr(new_edge, rank=7)
         ...
    -    >>> nodeA.shape
    -    torch.Size([10, 10, 100])
    +    >>> new_nodeA.shape
    +    torch.Size([10, 7, 100])
         
    -    >>> nodeB.shape
    -    torch.Size([10, 20, 100])
    +    >>> new_nodeB.shape
    +    torch.Size([7, 20, 100])
         
    -    >>> print(nodeA.axes_names)
    +    >>> print(new_nodeA.axes_names)
         ['left', 'right', 'batch']
         
    -    >>> print(nodeB.axes_names)
    +    >>> print(new_nodeB.axes_names)
         ['left', 'right', 'batch']
    +    
    +    Original nodes still exist in the network
    +    
    +    >>> assert nodeA.network == new_nodeA.network
    +    >>> assert nodeB.network == new_nodeB.network
         """
         if edge.is_dangling():
             raise ValueError('Edge should be connected to perform SVD')
    +    if edge.node1 is edge.node2:
    +        raise ValueError('Edge should connect different nodes')
     
         node1, node2 = edge.node1, edge.node2
    -    node1_name, node2_name = node1._name, node2._name
         axis1, axis2 = edge.axis1, edge.axis2
     
         batch_axes = []
         for axis in node1._axes:
    -        if axis.is_batch() and (axis._name in node2.axes_names):
    +        if axis._batch and (axis._name in node2.axes_names):
                 batch_axes.append(axis)
     
         n_batches = len(batch_axes)
         n_axes1 = len(node1._axes) - n_batches - 1
         n_axes2 = len(node2._axes) - n_batches - 1
     
    -    contracted = edge.contract_()
    -    new_node1, new_node2 = split_(node=contracted,
    -                                  node1_axes=list(
    -                                      range(n_batches,
    -                                            n_batches + n_axes1)),
    -                                  node2_axes=list(
    -                                      range(n_batches + n_axes1,
    -                                            n_batches + n_axes1 + n_axes2)),
    -                                  mode='qr')
    +    contracted = edge.contract()
    +    new_node1, new_node2 = split(node=contracted,
    +                                 node1_axes=list(
    +                                     range(n_batches,
    +                                         n_batches + n_axes1)),
    +                                 node2_axes=list(
    +                                     range(n_batches + n_axes1,
    +                                         n_batches + n_axes1 + n_axes2)),
    +                                 mode='svdr',
    +                                 side=side,
    +                                 rank=rank,
    +                                 cum_percentage=cum_percentage,
    +                                 cutoff=cutoff)
     
         # new_node1
    -    prev_nums = [ax._num for ax in batch_axes]
    +    prev_nums = [ax.num for ax in batch_axes]
         for i in range(new_node1.rank):
             if (i not in prev_nums) and (i != axis1._num):
                 prev_nums.append(i)
    @@ -2403,7 +2444,7 @@ 

    Source code for tensorkrowch.operations

     
         if prev_nums != list(range(new_node1.rank)):
             permutation = inverse_permutation(prev_nums)
    -        new_node1 = new_node1.permute_(permutation)
    +        new_node1 = new_node1.permute(permutation)
     
         # new_node2
         prev_nums = [node2.get_axis_num(node1.get_axis(ax)._name)
    @@ -2414,29 +2455,41 @@ 

    Source code for tensorkrowch.operations

     
         if prev_nums != list(range(new_node2.rank)):
             permutation = inverse_permutation(prev_nums)
    -        new_node2 = new_node2.permute_(permutation)
    -
    -    new_node1.name = node1_name
    +        new_node2 = new_node2.permute(permutation)
    +        
         new_node1.get_axis(axis1._num).name = axis1._name
    -
    -    new_node2.name = node2_name
         new_node2.get_axis(axis2._num).name = axis2._name
     
         return new_node1, new_node2
    -qr_edge_ = copy_func(qr_) -qr_edge_.__doc__ = \ +svdr_edge = copy_func(svdr) +svdr_edge.__doc__ = \ r""" - Contracts an edge in-place via :func:`~Edge.contract_` and splits - it in-place via :func:`~AbstractNode.split_` using ``mode = "qr"``. See - :func:`split` for a more complete explanation. - - Following the **PyTorch** convention, names of functions ended with an - underscore indicate **in-place** operations. - - Nodes ``resultant`` from this operation use the same names as the original - nodes connected by ``self``. + Contracts an edge via :meth:`~Edge.contract` and splits it via + :meth:`~AbstractNode.split` using ``mode = "svdr"``. See :func:`split` for + a more complete explanation. + + Parameters + ---------- + side : str, optional + Indicates the side to which the diagonal matrix :math:`S` should be + contracted. If "left", the first resultant node's tensor will be + :math:`US`, and the other node's tensor will be :math:`V^{\dagger}`. + If "right", their tensors will be :math:`U` and :math:`SV^{\dagger}`, + respectively. + rank : int, optional + Number of singular values to keep. + cum_percentage : float, optional + Proportion that should be satisfied between the sum of all singular + values kept and the total sum of all singular values. + + .. math:: + + \frac{\sum_{i \in \{kept\}}{s_i}}{\sum_{i \in \{all\}}{s_i}} \ge + cum\_percentage + cutoff : float, optional + Quantity that lower bounds singular values in order to be kept. Returns ------- @@ -2452,28 +2505,39 @@

    Source code for tensorkrowch.operations

         ...                  name='nodeB')
         ...
         >>> new_edge = nodeA['right'] ^ nodeB['left']
    -    >>> nodeA, nodeB = new_edge.qr_()
    +    >>> new_nodeA, new_nodeB = new_edge.svdr(rank=7)
         ...
    -    >>> nodeA.shape
    -    torch.Size([10, 10, 100])
    +    >>> new_nodeA.shape
    +    torch.Size([10, 7, 100])
         
    -    >>> nodeB.shape
    -    torch.Size([10, 20, 100])
    +    >>> new_nodeB.shape
    +    torch.Size([7, 20, 100])
         
    -    >>> print(nodeA.axes_names)
    +    >>> print(new_nodeA.axes_names)
         ['left', 'right', 'batch']
         
    -    >>> print(nodeB.axes_names)
    +    >>> print(new_nodeB.axes_names)
         ['left', 'right', 'batch']
    +    
    +    Original nodes still exist in the network
    +    
    +    >>> assert nodeA.network == new_nodeA.network
    +    >>> assert nodeB.network == new_nodeB.network
         """
     
    -Edge.qr_ = qr_edge_
    +Edge.svdr = svdr_edge
     
     
    -
    [docs]def rq_(edge) -> Tuple[Node, Node]: +
    [docs]def svdr_(edge: Edge, + side: Text = 'left', + rank: Optional[int] = None, + cum_percentage: Optional[float] = None, + cutoff: Optional[float] = None) -> Tuple[Node, Node]: r""" + In-place version of :func:`svdr`. + Contracts an edge in-place via :func:`contract_` and splits it in-place via - :func:`split_` using ``mode = "rq"``. See :func:`split` for a more complete + :func:`split_` using ``mode = "svdr"``. See :func:`split` for a more complete explanation. Following the **PyTorch** convention, names of functions ended with an @@ -2481,16 +2545,659 @@

    Source code for tensorkrowch.operations

         
         Nodes ``resultant`` from this operation use the same names as the original
         nodes connected by ``edge``.
    +    
    +    This operation is the same as :meth:`~Edge.svdr_`.
     
         Parameters
         ----------
         edge : Edge
             Edge whose nodes are to be contracted and split.
    +    side : str, optional
    +        Indicates the side to which the diagonal matrix :math:`S` should be
    +        contracted. If "left", the first resultant node's tensor will be
    +        :math:`US`, and the other node's tensor will be :math:`V^{\dagger}`.
    +        If "right", their tensors will be :math:`U` and :math:`SV^{\dagger}`,
    +        respectively.
    +    rank : int, optional
    +        Number of singular values to keep.
    +    cum_percentage : float, optional
    +        Proportion that should be satisfied between the sum of all singular
    +        values kept and the total sum of all singular values.
     
    -    Returns
    -    -------
    -    tuple[Node, Node]
    -    
    +        .. math::
    +
    +            \frac{\sum_{i \in \{kept\}}{s_i}}{\sum_{i \in \{all\}}{s_i}} \ge
    +            cum\_percentage
    +    cutoff : float, optional
    +        Quantity that lower bounds singular values in order to be kept.
    +
    +    Returns
    +    -------
    +    tuple[Node, Node]
    +    
    +    Examples
    +    --------
    +    >>> nodeA = tk.randn(shape=(10, 15, 100),
    +    ...                  axes_names=('left', 'right', 'batch'),
    +    ...                  name='nodeA')
    +    >>> nodeB = tk.randn(shape=(15, 20, 100),
    +    ...                  axes_names=('left', 'right', 'batch'),
    +    ...                  name='nodeB')
    +    ...
    +    >>> new_edge = nodeA['right'] ^ nodeB['left']
    +    >>> nodeA, nodeB = tk.svdr_(new_edge, rank=7)
    +    ...
    +    >>> nodeA.shape
    +    torch.Size([10, 7, 100])
    +    
    +    >>> nodeB.shape
    +    torch.Size([7, 20, 100])
    +    
    +    >>> print(nodeA.axes_names)
    +    ['left', 'right', 'batch']
    +    
    +    >>> print(nodeB.axes_names)
    +    ['left', 'right', 'batch']
    +    """
    +    if edge.is_dangling():
    +        raise ValueError('Edge should be connected to perform SVD')
    +    if edge.node1 is edge.node2:
    +        raise ValueError('Edge should connect different nodes')
    +
    +    node1, node2 = edge.node1, edge.node2
    +    node1_name, node2_name = node1._name, node2._name
    +    axis1, axis2 = edge.axis1, edge.axis2
    +
    +    batch_axes = []
    +    for axis in node1._axes:
    +        if axis._batch and (axis._name in node2.axes_names):
    +            batch_axes.append(axis)
    +
    +    n_batches = len(batch_axes)
    +    n_axes1 = len(node1._axes) - n_batches - 1
    +    n_axes2 = len(node2._axes) - n_batches - 1
    +
    +    contracted = edge.contract_()
    +    new_node1, new_node2 = split_(node=contracted,
    +                                  node1_axes=list(
    +                                      range(n_batches,
    +                                            n_batches + n_axes1)),
    +                                  node2_axes=list(
    +                                      range(n_batches + n_axes1,
    +                                            n_batches + n_axes1 + n_axes2)),
    +                                  mode='svdr',
    +                                  side=side,
    +                                  rank=rank,
    +                                  cum_percentage=cum_percentage,
    +                                  cutoff=cutoff)
    +
    +    # new_node1
    +    prev_nums = [ax._num for ax in batch_axes]
    +    for i in range(new_node1.rank):
    +        if (i not in prev_nums) and (i != axis1._num):
    +            prev_nums.append(i)
    +    prev_nums += [axis1._num]
    +
    +    if prev_nums != list(range(new_node1.rank)):
    +        permutation = inverse_permutation(prev_nums)
    +        new_node1 = new_node1.permute_(permutation)
    +
    +    # new_node2
    +    prev_nums = [node2.get_axis_num(node1.get_axis(ax)._name)
    +                 for ax in batch_axes] + [axis2._num]
    +    for i in range(new_node2.rank):
    +        if i not in prev_nums:
    +            prev_nums.append(i)
    +
    +    if prev_nums != list(range(new_node2.rank)):
    +        permutation = inverse_permutation(prev_nums)
    +        new_node2 = new_node2.permute_(permutation)
    +
    +    new_node1.name = node1_name
    +    new_node1.get_axis(axis1._num).name = axis1._name
    +
    +    new_node2.name = node2_name
    +    new_node2.get_axis(axis2._num).name = axis2._name
    +
    +    return new_node1, new_node2
    + + +svdr_edge_ = copy_func(svdr_) +svdr_edge_.__doc__ = \ + r""" + In-place version of :meth:`~Edge.svdr`. + + Contracts an edge in-place via :meth:`~Edge.contract_` and splits + it in-place via :meth:`~AbstractNode.split_` using ``mode = "svdr"``. See + :func:`split` for a more complete explanation. + + Following the **PyTorch** convention, names of functions ended with an + underscore indicate **in-place** operations. + + Nodes ``resultant`` from this operation use the same names as the original + nodes connected by ``self``. + + Parameters + ---------- + side : str, optional + Indicates the side to which the diagonal matrix :math:`S` should be + contracted. If "left", the first resultant node's tensor will be + :math:`US`, and the other node's tensor will be :math:`V^{\dagger}`. + If "right", their tensors will be :math:`U` and :math:`SV^{\dagger}`, + respectively. + rank : int, optional + Number of singular values to keep. + cum_percentage : float, optional + Proportion that should be satisfied between the sum of all singular + values kept and the total sum of all singular values. + + .. math:: + + \frac{\sum_{i \in \{kept\}}{s_i}}{\sum_{i \in \{all\}}{s_i}} \ge + cum\_percentage + cutoff : float, optional + Quantity that lower bounds singular values in order to be kept. + + Returns + ------- + tuple[Node, Node] + + Examples + -------- + >>> nodeA = tk.randn(shape=(10, 15, 100), + ... axes_names=('left', 'right', 'batch'), + ... name='nodeA') + >>> nodeB = tk.randn(shape=(15, 20, 100), + ... axes_names=('left', 'right', 'batch'), + ... name='nodeB') + ... + >>> new_edge = nodeA['right'] ^ nodeB['left'] + >>> nodeA, nodeB = new_edge.svdr_(rank=7) + ... + >>> nodeA.shape + torch.Size([10, 7, 100]) + + >>> nodeB.shape + torch.Size([7, 20, 100]) + + >>> print(nodeA.axes_names) + ['left', 'right', 'batch'] + + >>> print(nodeB.axes_names) + ['left', 'right', 'batch'] + """ + +Edge.svdr_ = svdr_edge_ + + +
    [docs]def qr(edge: Edge) -> Tuple[Node, Node]: + r""" + Contracts an edge via :func:`contract` and splits it via :func:`split` + using ``mode = "qr"``. See :func:`split` for a more complete explanation. + + This operation is the same as :meth:`~Edge.qr`. + + Parameters + ---------- + edge : Edge + Edge whose nodes are to be contracted and split. + + Returns + ------- + tuple[Node, Node] + + Examples + -------- + >>> nodeA = tk.randn(shape=(10, 15, 100), + ... axes_names=('left', 'right', 'batch'), + ... name='nodeA') + >>> nodeB = tk.randn(shape=(15, 20, 100), + ... axes_names=('left', 'right', 'batch'), + ... name='nodeB') + ... + >>> new_edge = nodeA['right'] ^ nodeB['left'] + >>> new_nodeA, new_nodeB = tk.qr(new_edge) + ... + >>> new_nodeA.shape + torch.Size([10, 10, 100]) + + >>> new_nodeB.shape + torch.Size([10, 20, 100]) + + >>> print(new_nodeA.axes_names) + ['left', 'right', 'batch'] + + >>> print(new_nodeB.axes_names) + ['left', 'right', 'batch'] + + Original nodes still exist in the network + + >>> assert nodeA.network == new_nodeA.network + >>> assert nodeB.network == new_nodeB.network + """ + if edge.is_dangling(): + raise ValueError('Edge should be connected to perform SVD') + if edge.node1 is edge.node2: + raise ValueError('Edge should connect different nodes') + + node1, node2 = edge.node1, edge.node2 + axis1, axis2 = edge.axis1, edge.axis2 + + batch_axes = [] + for axis in node1._axes: + if axis._batch and (axis._name in node2.axes_names): + batch_axes.append(axis) + + n_batches = len(batch_axes) + n_axes1 = len(node1._axes) - n_batches - 1 + n_axes2 = len(node2._axes) - n_batches - 1 + + contracted = edge.contract() + new_node1, new_node2 = split(node=contracted, + node1_axes=list( + range(n_batches, + n_batches + n_axes1)), + node2_axes=list( + range(n_batches + n_axes1, + n_batches + n_axes1 + n_axes2)), + mode='qr') + + # new_node1 + prev_nums = [ax.num for ax in batch_axes] + for i in range(new_node1.rank): + if (i not in prev_nums) and (i != axis1._num): + prev_nums.append(i) + prev_nums += [axis1._num] + + if prev_nums != list(range(new_node1.rank)): + permutation = inverse_permutation(prev_nums) + new_node1 = new_node1.permute(permutation) + + # new_node2 + prev_nums = [node2.get_axis_num(node1.get_axis(ax)._name) + for ax in batch_axes] + [axis2._num] + for i in range(new_node2.rank): + if i not in prev_nums: + prev_nums.append(i) + + if prev_nums != list(range(new_node2.rank)): + permutation = inverse_permutation(prev_nums) + new_node2 = new_node2.permute(permutation) + + new_node1.get_axis(axis1._num).name = axis1._name + new_node2.get_axis(axis2._num).name = axis2._name + + return new_node1, new_node2
    + + +qr_edge = copy_func(qr) +qr_edge.__doc__ = \ + r""" + Contracts an edge via :meth:`~Edge.contract` and splits it via + :meth:`~AbstractNode.split` using ``mode = "qr"``. See :func:`split` for + a more complete explanation. + + Returns + ------- + tuple[Node, Node] + + Examples + -------- + >>> nodeA = tk.randn(shape=(10, 15, 100), + ... axes_names=('left', 'right', 'batch'), + ... name='nodeA') + >>> nodeB = tk.randn(shape=(15, 20, 100), + ... axes_names=('left', 'right', 'batch'), + ... name='nodeB') + ... + >>> new_edge = nodeA['right'] ^ nodeB['left'] + >>> new_nodeA, new_nodeB = new_edge.qr() + ... + >>> new_nodeA.shape + torch.Size([10, 10, 100]) + + >>> new_nodeB.shape + torch.Size([10, 20, 100]) + + >>> print(new_nodeA.axes_names) + ['left', 'right', 'batch'] + + >>> print(new_nodeB.axes_names) + ['left', 'right', 'batch'] + + Original nodes still exist in the network + + >>> assert nodeA.network == new_nodeA.network + >>> assert nodeB.network == new_nodeB.network + """ + +Edge.qr = qr_edge + + +
    [docs]def qr_(edge) -> Tuple[Node, Node]: + r""" + In-place version of :func:`qr`. + + Contracts an edge in-place via :func:`contract_` and splits it in-place via + :func:`split_` using ``mode = "qr"``. See :func:`split` for a more complete + explanation. + + Following the **PyTorch** convention, names of functions ended with an + underscore indicate **in-place** operations. + + Nodes ``resultant`` from this operation use the same names as the original + nodes connected by ``edge``. + + This operation is the same as :meth:`~Edge.qr_`. + + Parameters + ---------- + edge : Edge + Edge whose nodes are to be contracted and split. + + Returns + ------- + tuple[Node, Node] + + Examples + -------- + >>> nodeA = tk.randn(shape=(10, 15, 100), + ... axes_names=('left', 'right', 'batch'), + ... name='nodeA') + >>> nodeB = tk.randn(shape=(15, 20, 100), + ... axes_names=('left', 'right', 'batch'), + ... name='nodeB') + ... + >>> new_edge = nodeA['right'] ^ nodeB['left'] + >>> nodeA, nodeB = tk.qr_(new_edge) + ... + >>> nodeA.shape + torch.Size([10, 10, 100]) + + >>> nodeB.shape + torch.Size([10, 20, 100]) + + >>> print(nodeA.axes_names) + ['left', 'right', 'batch'] + + >>> print(nodeB.axes_names) + ['left', 'right', 'batch'] + """ + if edge.is_dangling(): + raise ValueError('Edge should be connected to perform SVD') + if edge.node1 is edge.node2: + raise ValueError('Edge should connect different nodes') + + node1, node2 = edge.node1, edge.node2 + node1_name, node2_name = node1._name, node2._name + axis1, axis2 = edge.axis1, edge.axis2 + + batch_axes = [] + for axis in node1._axes: + if axis._batch and (axis._name in node2.axes_names): + batch_axes.append(axis) + + n_batches = len(batch_axes) + n_axes1 = len(node1._axes) - n_batches - 1 + n_axes2 = len(node2._axes) - n_batches - 1 + + contracted = edge.contract_() + new_node1, new_node2 = split_(node=contracted, + node1_axes=list( + range(n_batches, + n_batches + n_axes1)), + node2_axes=list( + range(n_batches + n_axes1, + n_batches + n_axes1 + n_axes2)), + mode='qr') + + # new_node1 + prev_nums = [ax._num for ax in batch_axes] + for i in range(new_node1.rank): + if (i not in prev_nums) and (i != axis1._num): + prev_nums.append(i) + prev_nums += [axis1._num] + + if prev_nums != list(range(new_node1.rank)): + permutation = inverse_permutation(prev_nums) + new_node1 = new_node1.permute_(permutation) + + # new_node2 + prev_nums = [node2.get_axis_num(node1.get_axis(ax)._name) + for ax in batch_axes] + [axis2._num] + for i in range(new_node2.rank): + if i not in prev_nums: + prev_nums.append(i) + + if prev_nums != list(range(new_node2.rank)): + permutation = inverse_permutation(prev_nums) + new_node2 = new_node2.permute_(permutation) + + new_node1.name = node1_name + new_node1.get_axis(axis1._num).name = axis1._name + + new_node2.name = node2_name + new_node2.get_axis(axis2._num).name = axis2._name + + return new_node1, new_node2
    + + +qr_edge_ = copy_func(qr_) +qr_edge_.__doc__ = \ + r""" + In-place version of :meth:`~Edge.qr`. + + Contracts an edge in-place via :meth:`~Edge.contract_` and splits + it in-place via :meth:`~AbstractNode.split_` using ``mode = "qr"``. See + :func:`split` for a more complete explanation. + + Following the **PyTorch** convention, names of functions ended with an + underscore indicate **in-place** operations. + + Nodes ``resultant`` from this operation use the same names as the original + nodes connected by ``self``. + + Returns + ------- + tuple[Node, Node] + + Examples + -------- + >>> nodeA = tk.randn(shape=(10, 15, 100), + ... axes_names=('left', 'right', 'batch'), + ... name='nodeA') + >>> nodeB = tk.randn(shape=(15, 20, 100), + ... axes_names=('left', 'right', 'batch'), + ... name='nodeB') + ... + >>> new_edge = nodeA['right'] ^ nodeB['left'] + >>> nodeA, nodeB = new_edge.qr_() + ... + >>> nodeA.shape + torch.Size([10, 10, 100]) + + >>> nodeB.shape + torch.Size([10, 20, 100]) + + >>> print(nodeA.axes_names) + ['left', 'right', 'batch'] + + >>> print(nodeB.axes_names) + ['left', 'right', 'batch'] + """ + +Edge.qr_ = qr_edge_ + + +
    [docs]def rq(edge: Edge) -> Tuple[Node, Node]: + r""" + Contracts an edge via :func:`contract` and splits it via :func:`split` + using ``mode = "rq"``. See :func:`split` for a more complete explanation. + + This operation is the same as :meth:`~Edge.rq`. + + Parameters + ---------- + edge : Edge + Edge whose nodes are to be contracted and split. + + Returns + ------- + tuple[Node, Node] + + Examples + -------- + >>> nodeA = tk.randn(shape=(10, 15, 100), + ... axes_names=('left', 'right', 'batch'), + ... name='nodeA') + >>> nodeB = tk.randn(shape=(15, 20, 100), + ... axes_names=('left', 'right', 'batch'), + ... name='nodeB') + ... + >>> new_edge = nodeA['right'] ^ nodeB['left'] + >>> new_nodeA, new_nodeB = tk.rq(new_edge) + ... + >>> new_nodeA.shape + torch.Size([10, 10, 100]) + + >>> new_nodeB.shape + torch.Size([10, 20, 100]) + + >>> print(new_nodeA.axes_names) + ['left', 'right', 'batch'] + + >>> print(new_nodeB.axes_names) + ['left', 'right', 'batch'] + + Original nodes still exist in the network + + >>> assert nodeA.network == new_nodeA.network + >>> assert nodeB.network == new_nodeB.network + """ + if edge.is_dangling(): + raise ValueError('Edge should be connected to perform SVD') + if edge.node1 is edge.node2: + raise ValueError('Edge should connect different nodes') + + node1, node2 = edge.node1, edge.node2 + axis1, axis2 = edge.axis1, edge.axis2 + + batch_axes = [] + for axis in node1._axes: + if axis._batch and (axis._name in node2.axes_names): + batch_axes.append(axis) + + n_batches = len(batch_axes) + n_axes1 = len(node1._axes) - n_batches - 1 + n_axes2 = len(node2._axes) - n_batches - 1 + + contracted = edge.contract() + new_node1, new_node2 = split(node=contracted, + node1_axes=list( + range(n_batches, + n_batches + n_axes1)), + node2_axes=list( + range(n_batches + n_axes1, + n_batches + n_axes1 + n_axes2)), + mode='rq') + + # new_node1 + prev_nums = [ax.num for ax in batch_axes] + for i in range(new_node1.rank): + if (i not in prev_nums) and (i != axis1._num): + prev_nums.append(i) + prev_nums += [axis1._num] + + if prev_nums != list(range(new_node1.rank)): + permutation = inverse_permutation(prev_nums) + new_node1 = new_node1.permute(permutation) + + # new_node2 + prev_nums = [node2.get_axis_num(node1.get_axis(ax)._name) + for ax in batch_axes] + [axis2._num] + for i in range(new_node2.rank): + if i not in prev_nums: + prev_nums.append(i) + + if prev_nums != list(range(new_node2.rank)): + permutation = inverse_permutation(prev_nums) + new_node2 = new_node2.permute(permutation) + + new_node1.get_axis(axis1._num).name = axis1._name + new_node2.get_axis(axis2._num).name = axis2._name + + return new_node1, new_node2
    + + +rq_edge = copy_func(rq) +rq_edge.__doc__ = \ + r""" + Contracts an edge via :meth:`~Edge.contract` and splits it via + :meth:`~AbstractNode.split` using ``mode = "rq"``. See :func:`split` for + a more complete explanation. + + Returns + ------- + tuple[Node, Node] + + Examples + -------- + >>> nodeA = tk.randn(shape=(10, 15, 100), + ... axes_names=('left', 'right', 'batch'), + ... name='nodeA') + >>> nodeB = tk.randn(shape=(15, 20, 100), + ... axes_names=('left', 'right', 'batch'), + ... name='nodeB') + ... + >>> new_edge = nodeA['right'] ^ nodeB['left'] + >>> new_nodeA, new_nodeB = new_edge.rq() + ... + >>> new_nodeA.shape + torch.Size([10, 10, 100]) + + >>> new_nodeB.shape + torch.Size([10, 20, 100]) + + >>> print(new_nodeA.axes_names) + ['left', 'right', 'batch'] + + >>> print(new_nodeB.axes_names) + ['left', 'right', 'batch'] + + Original nodes still exist in the network + + >>> assert nodeA.network == new_nodeA.network + >>> assert nodeB.network == new_nodeB.network + """ + +Edge.rq = rq_edge + + +
    [docs]def rq_(edge) -> Tuple[Node, Node]: + r""" + In-place version of :func:`rq`. + + Contracts an edge in-place via :func:`contract_` and splits it in-place via + :func:`split_` using ``mode = "rq"``. See :func:`split` for a more complete + explanation. + + Following the **PyTorch** convention, names of functions ended with an + underscore indicate **in-place** operations. + + Nodes ``resultant`` from this operation use the same names as the original + nodes connected by ``edge``. + + This operation is the same as :meth:`~Edge.rq_`. + + Parameters + ---------- + edge : Edge + Edge whose nodes are to be contracted and split. + + Returns + ------- + tuple[Node, Node] + Examples -------- >>> nodeA = tk.randn(shape=(10, 15, 100), @@ -2517,6 +3224,8 @@

    Source code for tensorkrowch.operations

         """
         if edge.is_dangling():
             raise ValueError('Edge should be connected to perform SVD')
    +    if edge.node1 is edge.node2:
    +        raise ValueError('Edge should connect different nodes')
     
         node1, node2 = edge.node1, edge.node2
         node1_name, node2_name = node1._name, node2._name
    @@ -2524,7 +3233,7 @@ 

    Source code for tensorkrowch.operations

     
         batch_axes = []
         for axis in node1._axes:
    -        if axis.is_batch() and (axis._name in node2.axes_names):
    +        if axis._batch and (axis._name in node2.axes_names):
                 batch_axes.append(axis)
     
         n_batches = len(batch_axes)
    @@ -2575,8 +3284,10 @@ 

    Source code for tensorkrowch.operations

     rq_edge_ = copy_func(rq_)
     rq_edge_.__doc__ = \
         r"""
    -    Contracts an edge in-place via :func:`~Edge.contract_` and splits
    -    it in-place via :func:`~AbstractNode.split_` using ``mode = "qr"``. See
    +    In-place version of :meth:`~Edge.rq`.
    +    
    +    Contracts an edge in-place via :meth:`~Edge.contract_` and splits
    +    it in-place via :meth:`~AbstractNode.split_` using ``mode = "qr"``. See
         :func:`split` for a more complete explanation.
         
         Following the **PyTorch** convention, names of functions ended with an
    @@ -2618,6 +3329,7 @@ 

    Source code for tensorkrowch.operations

     
     
     ################################   CONTRACT    ################################
    +# MARK: contract_edges
     def _check_first_contract_edges(edges: Optional[List[Edge]],
                                     node1: AbstractNode,
                                     node2: AbstractNode) -> Optional[Successor]:
    @@ -2970,15 +3682,87 @@ 

    Source code for tensorkrowch.operations

         return contract_edges_op(edges, node1, node2)
    +
    [docs]def contract(edge: Edge) -> Node: + """ + Contracts the nodes that are connected through the edge. + + Nodes ``resultant`` from this operation are called ``"contract_edges"``. + The node that keeps information about the :class:`Successor` is + ``edge.node1``. + + This operation is the same as :meth:`~Edge.contract`. + + Parameters + ---------- + edge : Edge + Edge that is to be contracted. Batch contraction is automatically + performed when both nodes have batch edges with the same names. + + Returns + ------- + Node + + Examples + -------- + >>> nodeA = tk.randn(shape=(10, 15, 20), + ... axes_names=('one', 'two', 'three'), + ... name='nodeA') + >>> nodeB = tk.randn(shape=(10, 15, 20), + ... axes_names=('one', 'two', 'three'), + ... name='nodeB') + ... + >>> _ = nodeA['one'] ^ nodeB['one'] + >>> _ = nodeA['two'] ^ nodeB['two'] + >>> _ = nodeA['three'] ^ nodeB['three'] + >>> result = tk.contract(nodeA['one']) + >>> result.shape + torch.Size([15, 20, 15, 20]) + """ + return contract_edges_op([edge], edge.node1, edge.node2)
    + +contract_edge = copy_func(contract) +contract_edge.__doc__ = \ + """ + Contracts the nodes that are connected through the edge. + + Nodes ``resultant`` from this operation are called ``"contract_edges"``. + The node that keeps information about the :class:`Successor` is + ``self.node1``. + + Returns + ------- + Node + + Examples + -------- + >>> nodeA = tk.randn(shape=(10, 15, 20), + ... axes_names=('one', 'two', 'three'), + ... name='nodeA') + >>> nodeB = tk.randn(shape=(10, 15, 20), + ... axes_names=('one', 'two', 'three'), + ... name='nodeB') + ... + >>> _ = nodeA['one'] ^ nodeB['one'] + >>> _ = nodeA['two'] ^ nodeB['two'] + >>> _ = nodeA['three'] ^ nodeB['three'] + >>> result = nodeA['one'].contract() + >>> result.shape + torch.Size([15, 20, 15, 20]) + """ + +Edge.contract = contract_edge + +
    [docs]def contract_(edge: Edge) -> Node: """ - Contracts in-place the nodes that are connected through the edge. See - :func:`contract` for a more complete explanation. + In-place version of :func:`contract`. Following the **PyTorch** convention, names of functions ended with an underscore indicate **in-place** operations. Nodes ``resultant`` from this operation are called ``"contract_edges_ip"``. + + This operation is the same as :meth:`~Edge.contract_`. Parameters ---------- @@ -3017,14 +3801,17 @@

    Source code for tensorkrowch.operations

         >>> del nodeA
         >>> del nodeB
         """
    -    result = contract_edges([edge], edge.node1, edge.node2)
    -    result.reattach_edges(True)
    +    nodes = [edge.node1, edge.node2]
    +    result = contract_edges_op([edge], nodes[0], nodes[1])
    +    result.reattach_edges(override=True)
         result._unrestricted_set_tensor(result.tensor.detach())
    +    
    +    nodes = set(nodes)
     
         # Delete nodes (and their edges) from the TN
         net = result.network
    -    net.delete_node(edge.node1)
    -    net.delete_node(edge.node2)
    +    for node in nodes:
    +        net.delete_node(node)
     
         # Add edges of result to the TN
         for res_edge in result._edges:
    @@ -3034,9 +3821,9 @@ 

    Source code for tensorkrowch.operations

         result._leaf = True
         del net._resultant_nodes[result._name]
         net._leaf_nodes[result._name] = result
    -
    -    edge.node1._successors = dict()
    -    edge.node2._successors = dict()
    +    
    +    for node in nodes:
    +        node._successors = dict()
         net._seq_ops = []
     
         # Remove resultant name
    @@ -3045,7 +3832,49 @@ 

    Source code for tensorkrowch.operations

         return result
    -Edge.contract_ = contract_ +contract_edge_ = copy_func(contract_) +contract_edge_.__doc__ = \ + """ + In-place version of :meth:`~Edge.contract`. + + Following the **PyTorch** convention, names of functions ended with an + underscore indicate **in-place** operations. + + Nodes ``resultant`` from this operation are called ``"contract_edges_ip"``. + + Returns + ------- + Node + + Examples + -------- + >>> nodeA = tk.randn(shape=(10, 15, 20), + ... axes_names=('one', 'two', 'three'), + ... name='nodeA') + >>> nodeB = tk.randn(shape=(10, 15, 20), + ... axes_names=('one', 'two', 'three'), + ... name='nodeB') + ... + >>> _ = nodeA['one'] ^ nodeB['one'] + >>> _ = nodeA['two'] ^ nodeB['two'] + >>> _ = nodeA['three'] ^ nodeB['three'] + >>> result = nodeA['one'].contract_() + >>> result.shape + torch.Size([15, 20, 15, 20]) + + ``nodeA`` and ``nodeB`` have been removed from the network. + + >>> nodeA.network is None + True + + >>> nodeB.network is None + True + + >>> del nodeA + >>> del nodeB + """ + +Edge.contract_ = contract_edge_ def get_shared_edges(node1: AbstractNode, @@ -3066,10 +3895,12 @@

    Source code for tensorkrowch.operations

         """
         Contracts all edges shared between two nodes. Batch contraction is
         automatically performed when both nodes have batch edges with the same
    -    names.
    +    names. It can also be performed using the operator ``@``.
         
         Nodes ``resultant`` from this operation are called ``"contract_edges"``.
         The node that keeps information about the :class:`Successor` is ``node1``.
    +    
    +    This operation is the same as :meth:`~AbstractNode.contract_between`.
     
         Parameters
         ----------
    @@ -3098,7 +3929,7 @@ 

    Source code for tensorkrowch.operations

         >>> result.shape
         torch.Size([100, 10, 7])
         """
    -    return contract_edges(None, node1, node2)
    + return contract_edges_op(None, node1, node2)
    contract_between_node = copy_func(contract_between) @@ -3149,6 +3980,8 @@

    Source code for tensorkrowch.operations

         underscore indicate **in-place** operations.
         
         Nodes ``resultant`` from this operation are called ``"contract_edges_ip"``.
    +    
    +    This operation is the same as :meth:`~AbstractNode.contract_between_`.
     
         Parameters
         ----------
    @@ -3189,13 +4022,15 @@ 

    Source code for tensorkrowch.operations

         >>> del nodeB
         """
         result = contract_between(node1, node2)
    -    result.reattach_edges(True)
    +    result.reattach_edges(override=True)
         result._unrestricted_set_tensor(result.tensor.detach())
    +    
    +    nodes = set([node1, node2])
     
         # Delete nodes (and their edges) from the TN
         net = result.network
    -    net.delete_node(node1)
    -    net.delete_node(node2)
    +    for node in nodes:
    +        net.delete_node(node)
     
         # Add edges of result to the TN
         for res_edge in result._edges:
    @@ -3205,9 +4040,9 @@ 

    Source code for tensorkrowch.operations

         result._leaf = True
         del net._resultant_nodes[result._name]
         net._leaf_nodes[result._name] = result
    -
    -    node1._successors = dict()
    -    node2._successors = dict()
    +    
    +    for node in nodes:
    +        node._successors = dict()
         net._seq_ops = []
     
         # Remove resultant name
    @@ -3266,6 +4101,7 @@ 

    Source code for tensorkrowch.operations

     
     
     #####################################   STACK   ###############################
    +# MARK: stack
     def _check_first_stack(nodes: Sequence[AbstractNode]) -> Optional[Successor]:
         if not nodes:
             raise ValueError('`nodes` should be a non-empty sequence of nodes')
    @@ -3288,7 +4124,7 @@ 

    Source code for tensorkrowch.operations

         stack_indices = []        # In the case above, stack indices of each node in
                                   # the reference node's memory
     
    -    if not (isinstance(nodes, (list, tuple)) and isinstance(nodes[0], AbstractNode)):
    +    if not (isinstance(nodes, Sequence) and isinstance(nodes[0], AbstractNode)):
             raise TypeError('`nodes` should be a list or tuple of AbstractNodes')
     
         net = nodes[0]._network
    @@ -3316,15 +4152,19 @@ 

    Source code for tensorkrowch.operations

                         all_same_ref = False
                         node_ref_is_stack = False
                         continue
    -
    -                stack_indices.append(node._tensor_info['index'][0])
    +                
    +                aux_index = node._tensor_info['index']
    +                if isinstance(aux_index, int):
    +                    stack_indices.append(aux_index)
    +                else:
    +                    stack_indices.append(aux_index[0])
     
                 else:
                     all_same_ref = False
     
         if all_param and node_ref_is_stack and net._auto_stack:
             stack_node = ParamStackNode(nodes=nodes,
    -                                    name='virtual_stack',
    +                                    name='virtual_result_stack',
                                         virtual=True)
         else:
             stack_node = StackNode._create_resultant(nodes=nodes,
    @@ -3365,7 +4205,6 @@ 

    Source code for tensorkrowch.operations

             del net._memory_nodes[stack_node._tensor_info['address']]
             stack_node._tensor_info['address'] = None
             stack_node._tensor_info['node_ref'] = stack_node_ref
    -        # stack_node._tensor_info['full'] = False
     
             index = [stack_indices]
             if stack_node_ref.shape[1:] != stack_node.shape[1:]:
    @@ -3388,7 +4227,6 @@ 

    Source code for tensorkrowch.operations

                         del net._memory_nodes[node._tensor_info['address']]
                     node._tensor_info['address'] = None
                     node._tensor_info['node_ref'] = stack_node
    -                # node._tensor_info['full'] = False
                     index = [i]
                     for j, (max_dim, dim) in enumerate(zip(stack_node._shape[1:],
                                                            node._shape)):
    @@ -3484,13 +4322,13 @@ 

    Source code for tensorkrowch.operations

         
         Nodes ``resultant`` from this operation are called ``"stack"``. If this
         operation returns a ``virtual`` :class:`ParamStackNode`, it will be called
    -    ``"virtual_stack"``. See :class:AbstractNode` to learn about this **reserved
    -    name**.  The node that keeps information about the :class:`Successor` is
    -    ``nodes[0]``, the first stacked node.
    +    ``"virtual_result_stack"``. See :class:AbstractNode` to learn about this
    +    **reserved name**.  The node that keeps information about the
    +    :class:`Successor` is ``nodes[0]``, the first stacked node.
     
         Parameters
         ----------
    -    nodes : list[Node or ParamNode] or tuple[Node or ParamNode]
    +    nodes : list[AbstractNode] or tuple[AbstractNode]
             Sequence of nodes that are to be stacked. They must be of the same type,
             have the same rank and axes names, be in the same tensor network, and
             have edges with the same types.
    @@ -3510,6 +4348,7 @@ 

    Source code for tensorkrowch.operations

     
     
     ##################################   UNBIND   #################################
    +# MARK: unbind
     def _check_first_unbind(node: AbstractStackNode) -> Optional[Successor]:
         args = (node,)
         successors = node._successors.get('unbind')
    @@ -3539,7 +4378,13 @@ 

    Source code for tensorkrowch.operations

             else:
                 edges_lists.append([edge] * len(tensors))
                 node1_lists.append([True] * len(tensors))
    -    lst = list(zip(tensors, list(zip(*edges_lists)), list(zip(*node1_lists))))
    +    
    +    if node._edges[1:]:
    +        lst = list(zip(tensors,
    +                       list(zip(*edges_lists)),
    +                       list(zip(*node1_lists))))
    +    else:
    +        lst = [(t, [], []) for t in tensors]
     
         net = node._network
         for i, (tensor, edges, node1_list) in enumerate(lst):
    @@ -3588,18 +4433,16 @@ 

    Source code for tensorkrowch.operations

                         new_node._tensor_info['address']]
                 new_node._tensor_info['address'] = None
                 new_node._tensor_info['node_ref'] = node_ref
    -            # new_node._tensor_info['full'] = False
     
                 if node_ref == node:
                     index = [i]
                     for j, (max_dim, dim) in enumerate(zip(node._shape[1:],
                                                            new_node._shape)):
    -                    if new_node._axes[j].is_batch():
    +                    if new_node._axes[j]._batch:
                             # Admit any size in batch edges
                             index.append(slice(0, None))
                         else:
                             index.append(slice(max_dim - dim, max_dim))
    -                new_node._tensor_info['index'] = index
     
                 else:
                     node_index = node._tensor_info['index']
    @@ -3615,7 +4458,7 @@ 

    Source code for tensorkrowch.operations

                         # If node is indexing from the original stack
                         for j, (aux_slice, dim) in enumerate(zip(node_index[1:],
                                                                  new_node._shape)):
    -                        if new_node._axes[j].is_batch():
    +                        if new_node._axes[j]._batch:
                                 # Admit any size in batch edges
                                 index.append(slice(0, None))
                             else:
    @@ -3624,15 +4467,17 @@ 

    Source code for tensorkrowch.operations

     
                     else:
                         # If node has the same shape as the original stack
    -                    for j, (max_dim, dim) in enumerate(zip(node.shape[1:],
    +                    for j, (max_dim, dim) in enumerate(zip(node._shape[1:],
                                                                new_node._shape)):
    -                        if new_node._axes[j].is_batch():
    +                        if new_node._axes[j]._batch:
                                 # Admit any size in batch edges
                                 index.append(slice(0, None))
                             else:
                                 index.append(slice(max_dim - dim, max_dim))
     
    -                new_node._tensor_info['index'] = index
    +            if len(index) == 1:
    +                index = index[0]
    +            new_node._tensor_info['index'] = index
     
         # Create successor
         args = (node,)
    @@ -3761,7 +4606,64 @@ 

    Source code for tensorkrowch.operations

         return unbind_op(node)
    +unbind_node = copy_func(unbind) +unbind_node.__doc__ = \ + """ + Unbinds a :class:`StackNode` or :class:`ParamStackNode`, where the first + dimension is assumed to be the stack dimension. + + If :meth:`~TensorNetwork.auto_unbind` is set to ``False``, each resultant + node will store its own tensor. Otherwise, they will have only a reference + to the corresponding slice of the ``(Param)StackNode``. + + See :class:`TensorNetwork` to learn how the ``auto_unbind`` mode affects + the computation of :func:`unbind`. + + Nodes ``resultant`` from this operation are called ``"unbind"``. The node + that keeps information about the :class:`Successor` is ``self``. + + Returns + ------- + list[Node] + + Examples + -------- + >>> net = tk.TensorNetwork() + >>> nodes = [tk.randn(shape=(2, 4, 2), + ... axes_names=('left', 'input', 'right'), + ... network=net) + ... for _ in range(10)] + >>> data = [tk.randn(shape=(4,), + ... axes_names=('feature',), + ... network=net) + ... for _ in range(10)] + ... + >>> for i in range(10): + ... _ = nodes[i]['input'] ^ data[i]['feature'] + ... + >>> stack_nodes = tk.stack(nodes) + >>> stack_data = tk.stack(data) + ... + >>> # It is necessary to re-connect stacks + >>> _ = stack_nodes['input'] ^ stack_data['feature'] + >>> result = stack_nodes @ stack_data + >>> result = result.unbind() + >>> print(result[0].name) + unbind_0 + + >>> result[0].axes + [Axis( left (0) ), Axis( right (1) )] + + >>> result[0].shape + torch.Size([2, 2]) + """ + +StackNode.unbind = unbind_node +ParamStackNode.unbind = unbind_node + + ################################## EINSUM ################################# +# MARK: einsum def _check_first_einsum(string: Text, *nodes: AbstractNode) -> Optional[Successor]: if not nodes: diff --git a/docs/_build/html/_sources/api.rst.txt b/docs/_build/html/_sources/api.rst.txt index 8938481..696b184 100644 --- a/docs/_build/html/_sources/api.rst.txt +++ b/docs/_build/html/_sources/api.rst.txt @@ -8,4 +8,5 @@ API Reference operations models initializers - embeddings \ No newline at end of file + embeddings + decompositions \ No newline at end of file diff --git a/docs/_build/html/_sources/decompositions.rst.txt b/docs/_build/html/_sources/decompositions.rst.txt new file mode 100644 index 0000000..bd31fa9 --- /dev/null +++ b/docs/_build/html/_sources/decompositions.rst.txt @@ -0,0 +1,12 @@ +Decompositions +============== + +.. currentmodule:: tensorkrowch.decompositions + +vec_to_mps +^^^^^^^^^^ +.. autofunction:: vec_to_mps + +mat_to_mpo +^^^^^^^^^^ +.. autofunction:: mat_to_mpo \ No newline at end of file diff --git a/docs/_build/html/_sources/embeddings.rst.txt b/docs/_build/html/_sources/embeddings.rst.txt index 17dcb74..fb1e511 100644 --- a/docs/_build/html/_sources/embeddings.rst.txt +++ b/docs/_build/html/_sources/embeddings.rst.txt @@ -1,3 +1,5 @@ +.. _Embeddings: + Embeddings ========== @@ -13,4 +15,12 @@ add_ones poly ^^^^ -.. autofunction:: poly \ No newline at end of file +.. autofunction:: poly + +discretize +^^^^^^^^^^ +.. autofunction:: discretize + +basis +^^^^^ +.. autofunction:: basis \ No newline at end of file diff --git a/docs/_build/html/_sources/models.rst.txt b/docs/_build/html/_sources/models.rst.txt index 1491129..5c51f80 100644 --- a/docs/_build/html/_sources/models.rst.txt +++ b/docs/_build/html/_sources/models.rst.txt @@ -4,8 +4,18 @@ Models .. currentmodule:: tensorkrowch.models -MPSLayer --------- +MPS +--- + +MPS +^^^ +.. autoclass:: MPS + :members: + +UMPS +^^^^ +.. autoclass:: UMPS + :members: MPSLayer ^^^^^^^^ @@ -17,38 +27,55 @@ UMPSLayer .. autoclass:: UMPSLayer :members: +ConvMPS +^^^^^^^ +.. autoclass:: ConvMPS + :members: + + .. automethod:: forward + +ConvUMPS +^^^^^^^^ +.. autoclass:: ConvUMPS + :members: + + .. automethod:: forward + ConvMPSLayer ^^^^^^^^^^^^ .. autoclass:: ConvMPSLayer :members: + .. automethod:: forward + ConvUMPSLayer ^^^^^^^^^^^^^ .. autoclass:: ConvUMPSLayer :members: + .. automethod:: forward -MPS ---- -MPS -^^^ -.. autoclass:: MPS - :members: +MPSData +------- -UMPS -^^^^ -.. autoclass:: UMPS +MPSData +^^^^^^^ +.. autoclass:: MPSData :members: -ConvMPS -^^^^^^^ -.. autoclass:: ConvMPS + +MPO +--- + +MPO +^^^ +.. autoclass:: MPO :members: -ConvUMPS -^^^^^^^^ -.. autoclass:: ConvUMPS +UMPO +^^^^ +.. autoclass:: UMPO :members: diff --git a/docs/_build/html/_sources/operations.rst.txt b/docs/_build/html/_sources/operations.rst.txt index 7c670f4..6643a96 100644 --- a/docs/_build/html/_sources/operations.rst.txt +++ b/docs/_build/html/_sources/operations.rst.txt @@ -19,22 +19,42 @@ disconnect ^^^^^^^^^^ .. autofunction:: disconnect +svd +^^^ +.. autofunction:: svd + svd\_ ^^^^^ .. autofunction:: svd_ +svdr +^^^^ +.. autofunction:: svdr + svdr\_ ^^^^^^ .. autofunction:: svdr_ +qr +^^ +.. autofunction:: qr + qr\_ ^^^^ .. autofunction:: qr_ +rq +^^ +.. autofunction:: rq + rq\_ ^^^^ .. autofunction:: rq_ +contract +^^^^^^^^ +.. autofunction:: contract + contract\_ ^^^^^^^^^^ .. autofunction:: contract_ diff --git a/docs/_build/html/_sources/tutorials/0_first_steps.rst.txt b/docs/_build/html/_sources/tutorials/0_first_steps.rst.txt index 120ada5..05997e1 100644 --- a/docs/_build/html/_sources/tutorials/0_first_steps.rst.txt +++ b/docs/_build/html/_sources/tutorials/0_first_steps.rst.txt @@ -73,7 +73,8 @@ First of all, we need to import the necessary libraries:: # Model parameters image_size = (28, 28) - in_channels = 3 + in_dim = 3 + out_dim = 10 bond_dim = 10 @@ -126,7 +127,7 @@ Put **MNIST** into ``DataLoaders``:: We are going to train a Matrix Product State (MPS) model. ``TensorKrowch`` comes with some built-in models like ``MPSLayer``, which is a MPS with one output node -with a dangling edge. Hence, when the whole tensor netwok gets contracted, we +with a dangling edge. Hence, when the whole tensor network gets contracted, we obtain a vector with the probabilities that an image belongs to one of the 10 possible classes. @@ -136,10 +137,12 @@ possible classes. device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') # Instantiate model - mps = tk.models.MPSLayer(n_features=image_size[0] * image_size[1], + mps = tk.models.MPSLayer(n_features=image_size[0] * image_size[1] + 1, in_dim=in_dim, - out_dim=10, - bond_dim=bond_dim) + out_dim=out_dim, + bond_dim=bond_dim, + init_method='randn_eye', + std=1e-9) # Send model to GPU mps = mps.to(device) @@ -224,16 +227,16 @@ We use a common training loop used when training neural networks in ``PyTorch``: f'Train. Acc.: {running_train_acc / num_batches["train"]:.4f}, ' f'Test Acc.: {running_test_acc / num_batches["test"]:.4f}') - # * Epoch 1: Train. Loss: 0.9456, Train. Acc.: 0.6752, Test Acc.: 0.8924 - # * Epoch 2: Train. Loss: 0.2921, Train. Acc.: 0.9122, Test Acc.: 0.9360 - # * Epoch 3: Train. Loss: 0.2066, Train. Acc.: 0.9378, Test Acc.: 0.9443 - # * Epoch 4: Train. Loss: 0.1642, Train. Acc.: 0.9502, Test Acc.: 0.9595 - # * Epoch 5: Train. Loss: 0.1317, Train. Acc.: 0.9601, Test Acc.: 0.9632 - # * Epoch 6: Train. Loss: 0.1135, Train. Acc.: 0.9654, Test Acc.: 0.9655 - # * Epoch 7: Train. Loss: 0.1046, Train. Acc.: 0.9687, Test Acc.: 0.9669 - # * Epoch 8: Train. Loss: 0.0904, Train. Acc.: 0.9720, Test Acc.: 0.9723 - # * Epoch 9: Train. Loss: 0.0836, Train. Acc.: 0.9740, Test Acc.: 0.9725 - # * Epoch 10: Train. Loss: 0.0751, Train. Acc.: 0.9764, Test Acc.: 0.9748 + # * Epoch 1: Train. Loss: 1.1955, Train. Acc.: 0.5676, Test Acc.: 0.8820 + # * Epoch 2: Train. Loss: 0.3083, Train. Acc.: 0.9053, Test Acc.: 0.9371 + # * Epoch 3: Train. Loss: 0.1990, Train. Acc.: 0.9396, Test Acc.: 0.9509 + # * Epoch 4: Train. Loss: 0.1573, Train. Acc.: 0.9526, Test Acc.: 0.9585 + # * Epoch 5: Train. Loss: 0.1308, Train. Acc.: 0.9600, Test Acc.: 0.9621 + # * Epoch 6: Train. Loss: 0.1123, Train. Acc.: 0.9668, Test Acc.: 0.9625 + # * Epoch 7: Train. Loss: 0.0998, Train. Acc.: 0.9696, Test Acc.: 0.9677 + # * Epoch 8: Train. Loss: 0.0913, Train. Acc.: 0.9721, Test Acc.: 0.9729 + # * Epoch 9: Train. Loss: 0.0820, Train. Acc.: 0.9743, Test Acc.: 0.9736 + # * Epoch 10: Train. Loss: 0.0728, Train. Acc.: 0.9775, Test Acc.: 0.9734 7. Prune the Model @@ -250,8 +253,8 @@ Let's count how many parameters our model has before pruning:: print(f'Nº params: {n_params}') print(f'Memory module: {memory / 1024**2:.4f} MB') # MegaBytes - # Nº params: 235660 - # Memory module: 0.8990 MB + # Nº params: 236220 + # Memory module: 0.9011 MB To prune the model, we take the **canonical form** of the ``MPSLayer``. In this process, many Singular Value Decompositions are performed in the network. By @@ -262,10 +265,19 @@ that we are losing a lot of uninformative (useless) parameters. # Canonicalize SVD # ---------------- - mps.canonicalize(cum_percentage=0.98) - mps.trace(torch.zeros(1, image_size[0] * image_size[1], in_dim).to(device)) + mps.canonicalize(cum_percentage=0.99) + + # Number of parametrs + n_params = 0 + memory = 0 + for p in mps.parameters(): + n_params += p.nelement() + memory += p.nelement() * p.element_size() # Bytes + print(f'Nº params: {n_params}') + print(f'Memory module: {memory / 1024**2:.4f} MB\n') # MegaBytes # New test accuracy + mps.trace(torch.zeros(1, image_size[0] * image_size[1], in_dim).to(device)) with torch.no_grad(): running_acc = 0.0 @@ -282,19 +294,10 @@ that we are losing a lot of uninformative (useless) parameters. print(f'Test Acc.: {running_acc / num_batches["test"]:.4f}\n') - # Number of parametrs - n_params = 0 - memory = 0 - for p in mps.parameters(): - n_params += p.nelement() - memory += p.nelement() * p.element_size() # Bytes - print(f'Nº params: {n_params}') - print(f'Memory module: {memory / 1024**2:.4f} MB\n') # MegaBytes - - # Test Acc.: 0.9194 + # Nº params: 161204 + # Memory module: 0.6149 MB - # Nº params: 150710 - # Memory module: 0.5749 MB + # Test Acc.: 0.9400 We could continue training to improve performance after pruning, and pruning again, until we reach an `equilibrium` point:: @@ -349,9 +352,9 @@ again, until we reach an `equilibrium` point:: f'Train. Acc.: {running_train_acc / num_batches["train"]:.4f}, ' f'Test Acc.: {running_test_acc / num_batches["test"]:.4f}') - # * Epoch 1: Train. Loss: 0.1018, Train. Acc.: 0.9684, Test Acc.: 0.9693 - # * Epoch 2: Train. Loss: 0.0815, Train. Acc.: 0.9745, Test Acc.: 0.9699 - # * Epoch 3: Train. Loss: 0.0716, Train. Acc.: 0.9777, Test Acc.: 0.9721 + # * Epoch 1: Train. Loss: 0.0983, Train. Acc.: 0.9700, Test Acc.: 0.9738 + # * Epoch 2: Train. Loss: 0.0750, Train. Acc.: 0.9768, Test Acc.: 0.9743 + # * Epoch 3: Train. Loss: 0.0639, Train. Acc.: 0.9793, Test Acc.: 0.9731 -After all the pruning an re-training, we have reduced around 36% of the total -amount of parameters losing less than 0.3% in accuracy. +After all the pruning an re-training, we have reduced around 32% of the total +amount of parameters without losing accuracy. diff --git a/docs/_build/html/_sources/tutorials/2_contracting_tensor_network.rst.txt b/docs/_build/html/_sources/tutorials/2_contracting_tensor_network.rst.txt index 85939b5..f42b503 100644 --- a/docs/_build/html/_sources/tutorials/2_contracting_tensor_network.rst.txt +++ b/docs/_build/html/_sources/tutorials/2_contracting_tensor_network.rst.txt @@ -192,7 +192,8 @@ Regarding the **node-like** operations, these are: stack_node = tk.stack(nodes) stack_data_node = tk.stack(data_nodes) - stack_node['input'] ^ stack_data_node['feature'] + # reconnect stacks + stack_node ^ stack_data_node 4) :func:`unbind`: Unbinds a :class:`StackNode` and returns a list of nodes that are already connected to the corresponding neighbours:: @@ -281,7 +282,7 @@ contractions, which will save us some time:: stack_node = tk.stack(nodes) stack_data_node = tk.stack(data_nodes) - stack_node['input'] ^ stack_data_node['feature'] + stack_node ^ stack_data_node stack_result = stack_node @ stack_data_node unbind_result = tk.unbind(stack_result) diff --git a/docs/_build/html/_sources/tutorials/3_memory_management.rst.txt b/docs/_build/html/_sources/tutorials/3_memory_management.rst.txt index 3abcb7c..c36aa04 100644 --- a/docs/_build/html/_sources/tutorials/3_memory_management.rst.txt +++ b/docs/_build/html/_sources/tutorials/3_memory_management.rst.txt @@ -129,8 +129,8 @@ Product State:: assert node.tensor_address() == 'uniform' -2. How TensorKrowch skipps Operations to run faster ---------------------------------------------------- +2. How TensorKrowch skips Operations to run faster +-------------------------------------------------- The main purpose of ``TensorKrowch`` is enabling you to experiment creating and training different tensor networks, only having to worry about diff --git a/docs/_build/html/_sources/tutorials/4_types_of_nodes.rst.txt b/docs/_build/html/_sources/tutorials/4_types_of_nodes.rst.txt index a25b488..a3c5ff6 100644 --- a/docs/_build/html/_sources/tutorials/4_types_of_nodes.rst.txt +++ b/docs/_build/html/_sources/tutorials/4_types_of_nodes.rst.txt @@ -123,7 +123,7 @@ different roles in the ``TensorNetwork``: for node in nodes: assert node.tensor_address() == 'virtual_uniform' - giving the ``uniform_node`` the role of ``virtual`` makes more sense, + Giving the ``uniform_node`` the role of ``virtual`` makes more sense, since it is a node that one wouldn't desire to see as a ``leaf`` node of the network. Instead it is `hidden`. @@ -139,8 +139,7 @@ different roles in the ``TensorNetwork``: They are intermediate nodes that (almost always) inherit edges from ``leaf`` and ``data`` nodes, the ones that really form the network. These nodes can store their own tensors or use other node's tensor. The names of the - ``resultant`` nodes are the name of the ``Operation`` that originated - it:: + ``resultant`` nodes are the name of the ``Operation`` that originated it:: node1 = tk.randn(shape=(2, 3)) node2 = tk.randn(shape=(3, 4)) @@ -191,11 +190,12 @@ Other thing one should take into account are **reserved nodes' names**: # Batch edge has size 1 when created assert net['stack_data_memory'].shape == (100, 1, 5) -* **"virtual_stack"**: Name of the ``virtual`` :class:`ParamStackNode` that - results from stacking ``ParamNodes`` as the first operation in the network - contraction, if ``auto_stack`` mode is set to ``True``. There might be as - much ``"virtual_stack"`` nodes as stacks are created from ``ParamNodes``. To - learn more about this, see :class:`ParamStackNode`. +* **"virtual_result"**: Name of ``virtual`` nodes that are not explicitly + part of the network, but are required for some situations during contraction. + For instance, the :class:`ParamStackNode` that results from stacking + :class:`ParamNodes ` as the first operation in the network + contraction, if ``auto_stack`` mode is set to ``True``. To learn more about + this, see :class:`ParamStackNode`. :: @@ -213,7 +213,7 @@ Other thing one should take into account are **reserved nodes' names**: # All ParamNodes use a slice of the tensor in stack_node for node in nodes: - assert node.tensor_address() == 'virtual_stack' + assert node.tensor_address() == 'virtual_result_stack' * **"virtual_uniform"**: Name of the ``virtual`` ``Node`` or ``ParamNode`` that is used in uniform (translationally invariant) tensor networks to store the @@ -221,6 +221,10 @@ Other thing one should take into account are **reserved nodes' names**: ``"virtual_uniform"`` nodes as shared memories are used for the ``leaf`` nodes in the network (usually just one). An example of this can be seen in the previous section, when ``virtual`` nodes were defined. + +For ``"virtual_result"`` and ``"virtual_uniform"``, these special behaviours +are not restricted to nodes having those names, but also nodes whose names +contain those strings. Although these names can in principle be used for other nodes, this can lead to undesired behaviour. diff --git a/docs/_build/html/_sources/tutorials/5_subclass_tensor_network.rst.txt b/docs/_build/html/_sources/tutorials/5_subclass_tensor_network.rst.txt index 1e0d8e5..24b4148 100644 --- a/docs/_build/html/_sources/tutorials/5_subclass_tensor_network.rst.txt +++ b/docs/_build/html/_sources/tutorials/5_subclass_tensor_network.rst.txt @@ -207,7 +207,7 @@ images:: stack_input = tk.stack(self.input_nodes) stack_data = tk.stack(list(self.data_nodes.values())) - stack_input['input'] ^ stack_data['feature'] + stack_input ^ stack_data stack_result = stack_input @ stack_data stack_result = tk.unbind(stack_result) @@ -231,7 +231,7 @@ Now we can instantiate our model:: Since our model is a subclass of ``torch.nn.Module``, we can take advantage of its methods. For instance, we can easily send the model to the GPU:: - device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') + device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu') mps = mps.to(device) Note that only the ``ParamNodes`` are parameters of the model. Thus if your @@ -313,6 +313,7 @@ already comes with a handful of widely-known models that you can use: * :class:`MPS` * :class:`MPSLayer` +* :class:`MPO` * :class:`PEPS` * :class:`Tree` diff --git a/docs/_build/html/_sources/tutorials/6_mix_with_pytorch.rst.txt b/docs/_build/html/_sources/tutorials/6_mix_with_pytorch.rst.txt index ba2f645..0788167 100644 --- a/docs/_build/html/_sources/tutorials/6_mix_with_pytorch.rst.txt +++ b/docs/_build/html/_sources/tutorials/6_mix_with_pytorch.rst.txt @@ -57,11 +57,11 @@ Now we can define the model:: in_channels=7, bond_dim=bond_dim, out_channels=10, - kernel_size=image_size[0] // 2) + kernel_size=image_size[0] // 2, + init_method='randn_eye', + std=1e-9) self.layers.append(mps) - self.softmax = nn.Softmax(dim=1) - @staticmethod def embedding(x): ones = torch.ones_like(x[:, 0]).unsqueeze(1) @@ -99,7 +99,7 @@ Now we set the parameters for the training algorithm and our model:: Initialize our model and send it to the appropiate device:: - device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') + device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu') cnn_snake = CNN_SnakeSBS(in_channels, bond_dim, image_size) cnn_snake = cnn_snake.to(device) @@ -210,15 +210,15 @@ Let the training begin! f'Train. Loss: {running_train_loss / num_batches["train"]:.4f}, ' f'Train. Acc.: {running_train_acc / num_batches["train"]:.4f}, ' f'Test Acc.: {running_test_acc / num_batches["test"]:.4f}') - - # * Epoch 10: Train. Loss: 0.3824, Train. Acc.: 0.8599, Test Acc.: 0.8570 - # * Epoch 20: Train. Loss: 0.3245, Train. Acc.: 0.8814, Test Acc.: 0.8758 - # * Epoch 30: Train. Loss: 0.2924, Train. Acc.: 0.8915, Test Acc.: 0.8829 - # * Epoch 40: Train. Loss: 0.2694, Train. Acc.: 0.8993, Test Acc.: 0.8884 - # * Epoch 50: Train. Loss: 0.2463, Train. Acc.: 0.9078, Test Acc.: 0.8860 - # * Epoch 60: Train. Loss: 0.2257, Train. Acc.: 0.9163, Test Acc.: 0.8958 - # * Epoch 70: Train. Loss: 0.2083, Train. Acc.: 0.9219, Test Acc.: 0.8969 - # * Epoch 80: Train. Loss: 0.2013, Train. Acc.: 0.9226, Test Acc.: 0.8979 + + # * Epoch 10: Train. Loss: 0.3714, Train. Acc.: 0.8627, Test Acc.: 0.8502 + # * Epoch 20: Train. Loss: 0.3149, Train. Acc.: 0.8851, Test Acc.: 0.8795 + # * Epoch 30: Train. Loss: 0.2840, Train. Acc.: 0.8948, Test Acc.: 0.8848 + # * Epoch 40: Train. Loss: 0.2618, Train. Acc.: 0.9026, Test Acc.: 0.8915 + # * Epoch 50: Train. Loss: 0.2357, Train. Acc.: 0.9125, Test Acc.: 0.8901 + # * Epoch 60: Train. Loss: 0.2203, Train. Acc.: 0.9174, Test Acc.: 0.9009 + # * Epoch 70: Train. Loss: 0.2052, Train. Acc.: 0.9231, Test Acc.: 0.8984 + # * Epoch 80: Train. Loss: 0.1878, Train. Acc.: 0.9284, Test Acc.: 0.9011 Wow! That's almost 90% accuracy with just the first model we try! @@ -227,13 +227,13 @@ Let's check how many parameters our model has:: # Original number of parametrs n_params = 0 memory = 0 - for p in mps.parameters(): + for p in cnn_snake.parameters(): n_params += p.nelement() memory += p.nelement() * p.element_size() # Bytes print(f'Nº params: {n_params}') print(f'Memory module: {memory / 1024**2:.4f} MB') # MegaBytes - # Nº params: 136940 + # Nº params: 553186 # Memory module: 0.5224 MB Since we are using tensor networks we can **prune** our model in 4 lines of @@ -250,7 +250,21 @@ singular values, reducing the sizes of the edges in our network:: Let's see how much our model has changed after pruning with **canonical forms**:: + # Number of parametrs + n_params = 0 + memory = 0 + for p in mps.parameters(): + n_params += p.nelement() + memory += p.nelement() * p.element_size() # Bytes + print(f'Nº params: {n_params}') + print(f'Memory module: {memory / 1024**2:.4f} MB\n') # MegaBytes + # New test accuracy + for mps in cnn_snake.layers: + # Since the nodes are different now, we have to re-trace + mps.trace(torch.zeros( + 1, 7, image_size[0]//2, image_size[1]//2).to(device)) + with torch.no_grad(): running_test_acc = 0.0 @@ -267,19 +281,7 @@ Let's see how much our model has changed after pruning with **canonical forms**: print(f'Test Acc.: {running_test_acc / num_batches["test"]:.4f}\n') - # Test Acc.: 0.8908 - - # Number of parametrs - n_params = 0 - memory = 0 - for p in mps.parameters(): - n_params += p.nelement() - memory += p.nelement() * p.element_size() # Bytes - print(f'Nº params: {n_params}') - print(f'Memory module: {memory / 1024**2:.4f} MB\n') # MegaBytes - - # Nº params: 110753 - # Memory module: 0.4225 MB + # Nº params: 499320 + # Memory module: 1.9048 MB -We have reduced around 20% of the total amount of parameters losing less than -1% in accuracy. + # Test Acc.: 0.8968 diff --git a/docs/_build/html/_static/_sphinx_javascript_frameworks_compat.js b/docs/_build/html/_static/_sphinx_javascript_frameworks_compat.js deleted file mode 100644 index 8549469..0000000 --- a/docs/_build/html/_static/_sphinx_javascript_frameworks_compat.js +++ /dev/null @@ -1,134 +0,0 @@ -/* - * _sphinx_javascript_frameworks_compat.js - * ~~~~~~~~~~ - * - * Compatability shim for jQuery and underscores.js. - * - * WILL BE REMOVED IN Sphinx 6.0 - * xref RemovedInSphinx60Warning - * - */ - -/** - * select a different prefix for underscore - */ -$u = _.noConflict(); - - -/** - * small helper function to urldecode strings - * - * See https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/decodeURIComponent#Decoding_query_parameters_from_a_URL - */ -jQuery.urldecode = function(x) { - if (!x) { - return x - } - return decodeURIComponent(x.replace(/\+/g, ' ')); -}; - -/** - * small helper function to urlencode strings - */ -jQuery.urlencode = encodeURIComponent; - -/** - * This function returns the parsed url parameters of the - * current request. Multiple values per key are supported, - * it will always return arrays of strings for the value parts. - */ -jQuery.getQueryParameters = function(s) { - if (typeof s === 'undefined') - s = document.location.search; - var parts = s.substr(s.indexOf('?') + 1).split('&'); - var result = {}; - for (var i = 0; i < parts.length; i++) { - var tmp = parts[i].split('=', 2); - var key = jQuery.urldecode(tmp[0]); - var value = jQuery.urldecode(tmp[1]); - if (key in result) - result[key].push(value); - else - result[key] = [value]; - } - return result; -}; - -/** - * highlight a given string on a jquery object by wrapping it in - * span elements with the given class name. - */ -jQuery.fn.highlightText = function(text, className) { - function highlight(node, addItems) { - if (node.nodeType === 3) { - var val = node.nodeValue; - var pos = val.toLowerCase().indexOf(text); - if (pos >= 0 && - !jQuery(node.parentNode).hasClass(className) && - !jQuery(node.parentNode).hasClass("nohighlight")) { - var span; - var isInSVG = jQuery(node).closest("body, svg, foreignObject").is("svg"); - if (isInSVG) { - span = document.createElementNS("http://www.w3.org/2000/svg", "tspan"); - } else { - span = document.createElement("span"); - span.className = className; - } - span.appendChild(document.createTextNode(val.substr(pos, text.length))); - node.parentNode.insertBefore(span, node.parentNode.insertBefore( - document.createTextNode(val.substr(pos + text.length)), - node.nextSibling)); - node.nodeValue = val.substr(0, pos); - if (isInSVG) { - var rect = document.createElementNS("http://www.w3.org/2000/svg", "rect"); - var bbox = node.parentElement.getBBox(); - rect.x.baseVal.value = bbox.x; - rect.y.baseVal.value = bbox.y; - rect.width.baseVal.value = bbox.width; - rect.height.baseVal.value = bbox.height; - rect.setAttribute('class', className); - addItems.push({ - "parent": node.parentNode, - "target": rect}); - } - } - } - else if (!jQuery(node).is("button, select, textarea")) { - jQuery.each(node.childNodes, function() { - highlight(this, addItems); - }); - } - } - var addItems = []; - var result = this.each(function() { - highlight(this, addItems); - }); - for (var i = 0; i < addItems.length; ++i) { - jQuery(addItems[i].parent).before(addItems[i].target); - } - return result; -}; - -/* - * backward compatibility for jQuery.browser - * This will be supported until firefox bug is fixed. - */ -if (!jQuery.browser) { - jQuery.uaMatch = function(ua) { - ua = ua.toLowerCase(); - - var match = /(chrome)[ \/]([\w.]+)/.exec(ua) || - /(webkit)[ \/]([\w.]+)/.exec(ua) || - /(opera)(?:.*version|)[ \/]([\w.]+)/.exec(ua) || - /(msie) ([\w.]+)/.exec(ua) || - ua.indexOf("compatible") < 0 && /(mozilla)(?:.*? rv:([\w.]+)|)/.exec(ua) || - []; - - return { - browser: match[ 1 ] || "", - version: match[ 2 ] || "0" - }; - }; - jQuery.browser = {}; - jQuery.browser[jQuery.uaMatch(navigator.userAgent).browser] = true; -} diff --git a/docs/_build/html/_static/jquery-3.6.0.js b/docs/_build/html/_static/jquery-3.6.0.js deleted file mode 100644 index fc6c299..0000000 --- a/docs/_build/html/_static/jquery-3.6.0.js +++ /dev/null @@ -1,10881 +0,0 @@ -/*! - * jQuery JavaScript Library v3.6.0 - * https://jquery.com/ - * - * Includes Sizzle.js - * https://sizzlejs.com/ - * - * Copyright OpenJS Foundation and other contributors - * Released under the MIT license - * https://jquery.org/license - * - * Date: 2021-03-02T17:08Z - */ -( function( global, factory ) { - - "use strict"; - - if ( typeof module === "object" && typeof module.exports === "object" ) { - - // For CommonJS and CommonJS-like environments where a proper `window` - // is present, execute the factory and get jQuery. - // For environments that do not have a `window` with a `document` - // (such as Node.js), expose a factory as module.exports. - // This accentuates the need for the creation of a real `window`. - // e.g. var jQuery = require("jquery")(window); - // See ticket #14549 for more info. - module.exports = global.document ? - factory( global, true ) : - function( w ) { - if ( !w.document ) { - throw new Error( "jQuery requires a window with a document" ); - } - return factory( w ); - }; - } else { - factory( global ); - } - -// Pass this if window is not defined yet -} )( typeof window !== "undefined" ? window : this, function( window, noGlobal ) { - -// Edge <= 12 - 13+, Firefox <=18 - 45+, IE 10 - 11, Safari 5.1 - 9+, iOS 6 - 9.1 -// throw exceptions when non-strict code (e.g., ASP.NET 4.5) accesses strict mode -// arguments.callee.caller (trac-13335). But as of jQuery 3.0 (2016), strict mode should be common -// enough that all such attempts are guarded in a try block. -"use strict"; - -var arr = []; - -var getProto = Object.getPrototypeOf; - -var slice = arr.slice; - -var flat = arr.flat ? function( array ) { - return arr.flat.call( array ); -} : function( array ) { - return arr.concat.apply( [], array ); -}; - - -var push = arr.push; - -var indexOf = arr.indexOf; - -var class2type = {}; - -var toString = class2type.toString; - -var hasOwn = class2type.hasOwnProperty; - -var fnToString = hasOwn.toString; - -var ObjectFunctionString = fnToString.call( Object ); - -var support = {}; - -var isFunction = function isFunction( obj ) { - - // Support: Chrome <=57, Firefox <=52 - // In some browsers, typeof returns "function" for HTML elements - // (i.e., `typeof document.createElement( "object" ) === "function"`). - // We don't want to classify *any* DOM node as a function. - // Support: QtWeb <=3.8.5, WebKit <=534.34, wkhtmltopdf tool <=0.12.5 - // Plus for old WebKit, typeof returns "function" for HTML collections - // (e.g., `typeof document.getElementsByTagName("div") === "function"`). (gh-4756) - return typeof obj === "function" && typeof obj.nodeType !== "number" && - typeof obj.item !== "function"; - }; - - -var isWindow = function isWindow( obj ) { - return obj != null && obj === obj.window; - }; - - -var document = window.document; - - - - var preservedScriptAttributes = { - type: true, - src: true, - nonce: true, - noModule: true - }; - - function DOMEval( code, node, doc ) { - doc = doc || document; - - var i, val, - script = doc.createElement( "script" ); - - script.text = code; - if ( node ) { - for ( i in preservedScriptAttributes ) { - - // Support: Firefox 64+, Edge 18+ - // Some browsers don't support the "nonce" property on scripts. - // On the other hand, just using `getAttribute` is not enough as - // the `nonce` attribute is reset to an empty string whenever it - // becomes browsing-context connected. - // See https://github.com/whatwg/html/issues/2369 - // See https://html.spec.whatwg.org/#nonce-attributes - // The `node.getAttribute` check was added for the sake of - // `jQuery.globalEval` so that it can fake a nonce-containing node - // via an object. - val = node[ i ] || node.getAttribute && node.getAttribute( i ); - if ( val ) { - script.setAttribute( i, val ); - } - } - } - doc.head.appendChild( script ).parentNode.removeChild( script ); - } - - -function toType( obj ) { - if ( obj == null ) { - return obj + ""; - } - - // Support: Android <=2.3 only (functionish RegExp) - return typeof obj === "object" || typeof obj === "function" ? - class2type[ toString.call( obj ) ] || "object" : - typeof obj; -} -/* global Symbol */ -// Defining this global in .eslintrc.json would create a danger of using the global -// unguarded in another place, it seems safer to define global only for this module - - - -var - version = "3.6.0", - - // Define a local copy of jQuery - jQuery = function( selector, context ) { - - // The jQuery object is actually just the init constructor 'enhanced' - // Need init if jQuery is called (just allow error to be thrown if not included) - return new jQuery.fn.init( selector, context ); - }; - -jQuery.fn = jQuery.prototype = { - - // The current version of jQuery being used - jquery: version, - - constructor: jQuery, - - // The default length of a jQuery object is 0 - length: 0, - - toArray: function() { - return slice.call( this ); - }, - - // Get the Nth element in the matched element set OR - // Get the whole matched element set as a clean array - get: function( num ) { - - // Return all the elements in a clean array - if ( num == null ) { - return slice.call( this ); - } - - // Return just the one element from the set - return num < 0 ? this[ num + this.length ] : this[ num ]; - }, - - // Take an array of elements and push it onto the stack - // (returning the new matched element set) - pushStack: function( elems ) { - - // Build a new jQuery matched element set - var ret = jQuery.merge( this.constructor(), elems ); - - // Add the old object onto the stack (as a reference) - ret.prevObject = this; - - // Return the newly-formed element set - return ret; - }, - - // Execute a callback for every element in the matched set. - each: function( callback ) { - return jQuery.each( this, callback ); - }, - - map: function( callback ) { - return this.pushStack( jQuery.map( this, function( elem, i ) { - return callback.call( elem, i, elem ); - } ) ); - }, - - slice: function() { - return this.pushStack( slice.apply( this, arguments ) ); - }, - - first: function() { - return this.eq( 0 ); - }, - - last: function() { - return this.eq( -1 ); - }, - - even: function() { - return this.pushStack( jQuery.grep( this, function( _elem, i ) { - return ( i + 1 ) % 2; - } ) ); - }, - - odd: function() { - return this.pushStack( jQuery.grep( this, function( _elem, i ) { - return i % 2; - } ) ); - }, - - eq: function( i ) { - var len = this.length, - j = +i + ( i < 0 ? len : 0 ); - return this.pushStack( j >= 0 && j < len ? [ this[ j ] ] : [] ); - }, - - end: function() { - return this.prevObject || this.constructor(); - }, - - // For internal use only. - // Behaves like an Array's method, not like a jQuery method. - push: push, - sort: arr.sort, - splice: arr.splice -}; - -jQuery.extend = jQuery.fn.extend = function() { - var options, name, src, copy, copyIsArray, clone, - target = arguments[ 0 ] || {}, - i = 1, - length = arguments.length, - deep = false; - - // Handle a deep copy situation - if ( typeof target === "boolean" ) { - deep = target; - - // Skip the boolean and the target - target = arguments[ i ] || {}; - i++; - } - - // Handle case when target is a string or something (possible in deep copy) - if ( typeof target !== "object" && !isFunction( target ) ) { - target = {}; - } - - // Extend jQuery itself if only one argument is passed - if ( i === length ) { - target = this; - i--; - } - - for ( ; i < length; i++ ) { - - // Only deal with non-null/undefined values - if ( ( options = arguments[ i ] ) != null ) { - - // Extend the base object - for ( name in options ) { - copy = options[ name ]; - - // Prevent Object.prototype pollution - // Prevent never-ending loop - if ( name === "__proto__" || target === copy ) { - continue; - } - - // Recurse if we're merging plain objects or arrays - if ( deep && copy && ( jQuery.isPlainObject( copy ) || - ( copyIsArray = Array.isArray( copy ) ) ) ) { - src = target[ name ]; - - // Ensure proper type for the source value - if ( copyIsArray && !Array.isArray( src ) ) { - clone = []; - } else if ( !copyIsArray && !jQuery.isPlainObject( src ) ) { - clone = {}; - } else { - clone = src; - } - copyIsArray = false; - - // Never move original objects, clone them - target[ name ] = jQuery.extend( deep, clone, copy ); - - // Don't bring in undefined values - } else if ( copy !== undefined ) { - target[ name ] = copy; - } - } - } - } - - // Return the modified object - return target; -}; - -jQuery.extend( { - - // Unique for each copy of jQuery on the page - expando: "jQuery" + ( version + Math.random() ).replace( /\D/g, "" ), - - // Assume jQuery is ready without the ready module - isReady: true, - - error: function( msg ) { - throw new Error( msg ); - }, - - noop: function() {}, - - isPlainObject: function( obj ) { - var proto, Ctor; - - // Detect obvious negatives - // Use toString instead of jQuery.type to catch host objects - if ( !obj || toString.call( obj ) !== "[object Object]" ) { - return false; - } - - proto = getProto( obj ); - - // Objects with no prototype (e.g., `Object.create( null )`) are plain - if ( !proto ) { - return true; - } - - // Objects with prototype are plain iff they were constructed by a global Object function - Ctor = hasOwn.call( proto, "constructor" ) && proto.constructor; - return typeof Ctor === "function" && fnToString.call( Ctor ) === ObjectFunctionString; - }, - - isEmptyObject: function( obj ) { - var name; - - for ( name in obj ) { - return false; - } - return true; - }, - - // Evaluates a script in a provided context; falls back to the global one - // if not specified. - globalEval: function( code, options, doc ) { - DOMEval( code, { nonce: options && options.nonce }, doc ); - }, - - each: function( obj, callback ) { - var length, i = 0; - - if ( isArrayLike( obj ) ) { - length = obj.length; - for ( ; i < length; i++ ) { - if ( callback.call( obj[ i ], i, obj[ i ] ) === false ) { - break; - } - } - } else { - for ( i in obj ) { - if ( callback.call( obj[ i ], i, obj[ i ] ) === false ) { - break; - } - } - } - - return obj; - }, - - // results is for internal usage only - makeArray: function( arr, results ) { - var ret = results || []; - - if ( arr != null ) { - if ( isArrayLike( Object( arr ) ) ) { - jQuery.merge( ret, - typeof arr === "string" ? - [ arr ] : arr - ); - } else { - push.call( ret, arr ); - } - } - - return ret; - }, - - inArray: function( elem, arr, i ) { - return arr == null ? -1 : indexOf.call( arr, elem, i ); - }, - - // Support: Android <=4.0 only, PhantomJS 1 only - // push.apply(_, arraylike) throws on ancient WebKit - merge: function( first, second ) { - var len = +second.length, - j = 0, - i = first.length; - - for ( ; j < len; j++ ) { - first[ i++ ] = second[ j ]; - } - - first.length = i; - - return first; - }, - - grep: function( elems, callback, invert ) { - var callbackInverse, - matches = [], - i = 0, - length = elems.length, - callbackExpect = !invert; - - // Go through the array, only saving the items - // that pass the validator function - for ( ; i < length; i++ ) { - callbackInverse = !callback( elems[ i ], i ); - if ( callbackInverse !== callbackExpect ) { - matches.push( elems[ i ] ); - } - } - - return matches; - }, - - // arg is for internal usage only - map: function( elems, callback, arg ) { - var length, value, - i = 0, - ret = []; - - // Go through the array, translating each of the items to their new values - if ( isArrayLike( elems ) ) { - length = elems.length; - for ( ; i < length; i++ ) { - value = callback( elems[ i ], i, arg ); - - if ( value != null ) { - ret.push( value ); - } - } - - // Go through every key on the object, - } else { - for ( i in elems ) { - value = callback( elems[ i ], i, arg ); - - if ( value != null ) { - ret.push( value ); - } - } - } - - // Flatten any nested arrays - return flat( ret ); - }, - - // A global GUID counter for objects - guid: 1, - - // jQuery.support is not used in Core but other projects attach their - // properties to it so it needs to exist. - support: support -} ); - -if ( typeof Symbol === "function" ) { - jQuery.fn[ Symbol.iterator ] = arr[ Symbol.iterator ]; -} - -// Populate the class2type map -jQuery.each( "Boolean Number String Function Array Date RegExp Object Error Symbol".split( " " ), - function( _i, name ) { - class2type[ "[object " + name + "]" ] = name.toLowerCase(); - } ); - -function isArrayLike( obj ) { - - // Support: real iOS 8.2 only (not reproducible in simulator) - // `in` check used to prevent JIT error (gh-2145) - // hasOwn isn't used here due to false negatives - // regarding Nodelist length in IE - var length = !!obj && "length" in obj && obj.length, - type = toType( obj ); - - if ( isFunction( obj ) || isWindow( obj ) ) { - return false; - } - - return type === "array" || length === 0 || - typeof length === "number" && length > 0 && ( length - 1 ) in obj; -} -var Sizzle = -/*! - * Sizzle CSS Selector Engine v2.3.6 - * https://sizzlejs.com/ - * - * Copyright JS Foundation and other contributors - * Released under the MIT license - * https://js.foundation/ - * - * Date: 2021-02-16 - */ -( function( window ) { -var i, - support, - Expr, - getText, - isXML, - tokenize, - compile, - select, - outermostContext, - sortInput, - hasDuplicate, - - // Local document vars - setDocument, - document, - docElem, - documentIsHTML, - rbuggyQSA, - rbuggyMatches, - matches, - contains, - - // Instance-specific data - expando = "sizzle" + 1 * new Date(), - preferredDoc = window.document, - dirruns = 0, - done = 0, - classCache = createCache(), - tokenCache = createCache(), - compilerCache = createCache(), - nonnativeSelectorCache = createCache(), - sortOrder = function( a, b ) { - if ( a === b ) { - hasDuplicate = true; - } - return 0; - }, - - // Instance methods - hasOwn = ( {} ).hasOwnProperty, - arr = [], - pop = arr.pop, - pushNative = arr.push, - push = arr.push, - slice = arr.slice, - - // Use a stripped-down indexOf as it's faster than native - // https://jsperf.com/thor-indexof-vs-for/5 - indexOf = function( list, elem ) { - var i = 0, - len = list.length; - for ( ; i < len; i++ ) { - if ( list[ i ] === elem ) { - return i; - } - } - return -1; - }, - - booleans = "checked|selected|async|autofocus|autoplay|controls|defer|disabled|hidden|" + - "ismap|loop|multiple|open|readonly|required|scoped", - - // Regular expressions - - // http://www.w3.org/TR/css3-selectors/#whitespace - whitespace = "[\\x20\\t\\r\\n\\f]", - - // https://www.w3.org/TR/css-syntax-3/#ident-token-diagram - identifier = "(?:\\\\[\\da-fA-F]{1,6}" + whitespace + - "?|\\\\[^\\r\\n\\f]|[\\w-]|[^\0-\\x7f])+", - - // Attribute selectors: http://www.w3.org/TR/selectors/#attribute-selectors - attributes = "\\[" + whitespace + "*(" + identifier + ")(?:" + whitespace + - - // Operator (capture 2) - "*([*^$|!~]?=)" + whitespace + - - // "Attribute values must be CSS identifiers [capture 5] - // or strings [capture 3 or capture 4]" - "*(?:'((?:\\\\.|[^\\\\'])*)'|\"((?:\\\\.|[^\\\\\"])*)\"|(" + identifier + "))|)" + - whitespace + "*\\]", - - pseudos = ":(" + identifier + ")(?:\\((" + - - // To reduce the number of selectors needing tokenize in the preFilter, prefer arguments: - // 1. quoted (capture 3; capture 4 or capture 5) - "('((?:\\\\.|[^\\\\'])*)'|\"((?:\\\\.|[^\\\\\"])*)\")|" + - - // 2. simple (capture 6) - "((?:\\\\.|[^\\\\()[\\]]|" + attributes + ")*)|" + - - // 3. anything else (capture 2) - ".*" + - ")\\)|)", - - // Leading and non-escaped trailing whitespace, capturing some non-whitespace characters preceding the latter - rwhitespace = new RegExp( whitespace + "+", "g" ), - rtrim = new RegExp( "^" + whitespace + "+|((?:^|[^\\\\])(?:\\\\.)*)" + - whitespace + "+$", "g" ), - - rcomma = new RegExp( "^" + whitespace + "*," + whitespace + "*" ), - rcombinators = new RegExp( "^" + whitespace + "*([>+~]|" + whitespace + ")" + whitespace + - "*" ), - rdescend = new RegExp( whitespace + "|>" ), - - rpseudo = new RegExp( pseudos ), - ridentifier = new RegExp( "^" + identifier + "$" ), - - matchExpr = { - "ID": new RegExp( "^#(" + identifier + ")" ), - "CLASS": new RegExp( "^\\.(" + identifier + ")" ), - "TAG": new RegExp( "^(" + identifier + "|[*])" ), - "ATTR": new RegExp( "^" + attributes ), - "PSEUDO": new RegExp( "^" + pseudos ), - "CHILD": new RegExp( "^:(only|first|last|nth|nth-last)-(child|of-type)(?:\\(" + - whitespace + "*(even|odd|(([+-]|)(\\d*)n|)" + whitespace + "*(?:([+-]|)" + - whitespace + "*(\\d+)|))" + whitespace + "*\\)|)", "i" ), - "bool": new RegExp( "^(?:" + booleans + ")$", "i" ), - - // For use in libraries implementing .is() - // We use this for POS matching in `select` - "needsContext": new RegExp( "^" + whitespace + - "*[>+~]|:(even|odd|eq|gt|lt|nth|first|last)(?:\\(" + whitespace + - "*((?:-\\d)?\\d*)" + whitespace + "*\\)|)(?=[^-]|$)", "i" ) - }, - - rhtml = /HTML$/i, - rinputs = /^(?:input|select|textarea|button)$/i, - rheader = /^h\d$/i, - - rnative = /^[^{]+\{\s*\[native \w/, - - // Easily-parseable/retrievable ID or TAG or CLASS selectors - rquickExpr = /^(?:#([\w-]+)|(\w+)|\.([\w-]+))$/, - - rsibling = /[+~]/, - - // CSS escapes - // http://www.w3.org/TR/CSS21/syndata.html#escaped-characters - runescape = new RegExp( "\\\\[\\da-fA-F]{1,6}" + whitespace + "?|\\\\([^\\r\\n\\f])", "g" ), - funescape = function( escape, nonHex ) { - var high = "0x" + escape.slice( 1 ) - 0x10000; - - return nonHex ? - - // Strip the backslash prefix from a non-hex escape sequence - nonHex : - - // Replace a hexadecimal escape sequence with the encoded Unicode code point - // Support: IE <=11+ - // For values outside the Basic Multilingual Plane (BMP), manually construct a - // surrogate pair - high < 0 ? - String.fromCharCode( high + 0x10000 ) : - String.fromCharCode( high >> 10 | 0xD800, high & 0x3FF | 0xDC00 ); - }, - - // CSS string/identifier serialization - // https://drafts.csswg.org/cssom/#common-serializing-idioms - rcssescape = /([\0-\x1f\x7f]|^-?\d)|^-$|[^\0-\x1f\x7f-\uFFFF\w-]/g, - fcssescape = function( ch, asCodePoint ) { - if ( asCodePoint ) { - - // U+0000 NULL becomes U+FFFD REPLACEMENT CHARACTER - if ( ch === "\0" ) { - return "\uFFFD"; - } - - // Control characters and (dependent upon position) numbers get escaped as code points - return ch.slice( 0, -1 ) + "\\" + - ch.charCodeAt( ch.length - 1 ).toString( 16 ) + " "; - } - - // Other potentially-special ASCII characters get backslash-escaped - return "\\" + ch; - }, - - // Used for iframes - // See setDocument() - // Removing the function wrapper causes a "Permission Denied" - // error in IE - unloadHandler = function() { - setDocument(); - }, - - inDisabledFieldset = addCombinator( - function( elem ) { - return elem.disabled === true && elem.nodeName.toLowerCase() === "fieldset"; - }, - { dir: "parentNode", next: "legend" } - ); - -// Optimize for push.apply( _, NodeList ) -try { - push.apply( - ( arr = slice.call( preferredDoc.childNodes ) ), - preferredDoc.childNodes - ); - - // Support: Android<4.0 - // Detect silently failing push.apply - // eslint-disable-next-line no-unused-expressions - arr[ preferredDoc.childNodes.length ].nodeType; -} catch ( e ) { - push = { apply: arr.length ? - - // Leverage slice if possible - function( target, els ) { - pushNative.apply( target, slice.call( els ) ); - } : - - // Support: IE<9 - // Otherwise append directly - function( target, els ) { - var j = target.length, - i = 0; - - // Can't trust NodeList.length - while ( ( target[ j++ ] = els[ i++ ] ) ) {} - target.length = j - 1; - } - }; -} - -function Sizzle( selector, context, results, seed ) { - var m, i, elem, nid, match, groups, newSelector, - newContext = context && context.ownerDocument, - - // nodeType defaults to 9, since context defaults to document - nodeType = context ? context.nodeType : 9; - - results = results || []; - - // Return early from calls with invalid selector or context - if ( typeof selector !== "string" || !selector || - nodeType !== 1 && nodeType !== 9 && nodeType !== 11 ) { - - return results; - } - - // Try to shortcut find operations (as opposed to filters) in HTML documents - if ( !seed ) { - setDocument( context ); - context = context || document; - - if ( documentIsHTML ) { - - // If the selector is sufficiently simple, try using a "get*By*" DOM method - // (excepting DocumentFragment context, where the methods don't exist) - if ( nodeType !== 11 && ( match = rquickExpr.exec( selector ) ) ) { - - // ID selector - if ( ( m = match[ 1 ] ) ) { - - // Document context - if ( nodeType === 9 ) { - if ( ( elem = context.getElementById( m ) ) ) { - - // Support: IE, Opera, Webkit - // TODO: identify versions - // getElementById can match elements by name instead of ID - if ( elem.id === m ) { - results.push( elem ); - return results; - } - } else { - return results; - } - - // Element context - } else { - - // Support: IE, Opera, Webkit - // TODO: identify versions - // getElementById can match elements by name instead of ID - if ( newContext && ( elem = newContext.getElementById( m ) ) && - contains( context, elem ) && - elem.id === m ) { - - results.push( elem ); - return results; - } - } - - // Type selector - } else if ( match[ 2 ] ) { - push.apply( results, context.getElementsByTagName( selector ) ); - return results; - - // Class selector - } else if ( ( m = match[ 3 ] ) && support.getElementsByClassName && - context.getElementsByClassName ) { - - push.apply( results, context.getElementsByClassName( m ) ); - return results; - } - } - - // Take advantage of querySelectorAll - if ( support.qsa && - !nonnativeSelectorCache[ selector + " " ] && - ( !rbuggyQSA || !rbuggyQSA.test( selector ) ) && - - // Support: IE 8 only - // Exclude object elements - ( nodeType !== 1 || context.nodeName.toLowerCase() !== "object" ) ) { - - newSelector = selector; - newContext = context; - - // qSA considers elements outside a scoping root when evaluating child or - // descendant combinators, which is not what we want. - // In such cases, we work around the behavior by prefixing every selector in the - // list with an ID selector referencing the scope context. - // The technique has to be used as well when a leading combinator is used - // as such selectors are not recognized by querySelectorAll. - // Thanks to Andrew Dupont for this technique. - if ( nodeType === 1 && - ( rdescend.test( selector ) || rcombinators.test( selector ) ) ) { - - // Expand context for sibling selectors - newContext = rsibling.test( selector ) && testContext( context.parentNode ) || - context; - - // We can use :scope instead of the ID hack if the browser - // supports it & if we're not changing the context. - if ( newContext !== context || !support.scope ) { - - // Capture the context ID, setting it first if necessary - if ( ( nid = context.getAttribute( "id" ) ) ) { - nid = nid.replace( rcssescape, fcssescape ); - } else { - context.setAttribute( "id", ( nid = expando ) ); - } - } - - // Prefix every selector in the list - groups = tokenize( selector ); - i = groups.length; - while ( i-- ) { - groups[ i ] = ( nid ? "#" + nid : ":scope" ) + " " + - toSelector( groups[ i ] ); - } - newSelector = groups.join( "," ); - } - - try { - push.apply( results, - newContext.querySelectorAll( newSelector ) - ); - return results; - } catch ( qsaError ) { - nonnativeSelectorCache( selector, true ); - } finally { - if ( nid === expando ) { - context.removeAttribute( "id" ); - } - } - } - } - } - - // All others - return select( selector.replace( rtrim, "$1" ), context, results, seed ); -} - -/** - * Create key-value caches of limited size - * @returns {function(string, object)} Returns the Object data after storing it on itself with - * property name the (space-suffixed) string and (if the cache is larger than Expr.cacheLength) - * deleting the oldest entry - */ -function createCache() { - var keys = []; - - function cache( key, value ) { - - // Use (key + " ") to avoid collision with native prototype properties (see Issue #157) - if ( keys.push( key + " " ) > Expr.cacheLength ) { - - // Only keep the most recent entries - delete cache[ keys.shift() ]; - } - return ( cache[ key + " " ] = value ); - } - return cache; -} - -/** - * Mark a function for special use by Sizzle - * @param {Function} fn The function to mark - */ -function markFunction( fn ) { - fn[ expando ] = true; - return fn; -} - -/** - * Support testing using an element - * @param {Function} fn Passed the created element and returns a boolean result - */ -function assert( fn ) { - var el = document.createElement( "fieldset" ); - - try { - return !!fn( el ); - } catch ( e ) { - return false; - } finally { - - // Remove from its parent by default - if ( el.parentNode ) { - el.parentNode.removeChild( el ); - } - - // release memory in IE - el = null; - } -} - -/** - * Adds the same handler for all of the specified attrs - * @param {String} attrs Pipe-separated list of attributes - * @param {Function} handler The method that will be applied - */ -function addHandle( attrs, handler ) { - var arr = attrs.split( "|" ), - i = arr.length; - - while ( i-- ) { - Expr.attrHandle[ arr[ i ] ] = handler; - } -} - -/** - * Checks document order of two siblings - * @param {Element} a - * @param {Element} b - * @returns {Number} Returns less than 0 if a precedes b, greater than 0 if a follows b - */ -function siblingCheck( a, b ) { - var cur = b && a, - diff = cur && a.nodeType === 1 && b.nodeType === 1 && - a.sourceIndex - b.sourceIndex; - - // Use IE sourceIndex if available on both nodes - if ( diff ) { - return diff; - } - - // Check if b follows a - if ( cur ) { - while ( ( cur = cur.nextSibling ) ) { - if ( cur === b ) { - return -1; - } - } - } - - return a ? 1 : -1; -} - -/** - * Returns a function to use in pseudos for input types - * @param {String} type - */ -function createInputPseudo( type ) { - return function( elem ) { - var name = elem.nodeName.toLowerCase(); - return name === "input" && elem.type === type; - }; -} - -/** - * Returns a function to use in pseudos for buttons - * @param {String} type - */ -function createButtonPseudo( type ) { - return function( elem ) { - var name = elem.nodeName.toLowerCase(); - return ( name === "input" || name === "button" ) && elem.type === type; - }; -} - -/** - * Returns a function to use in pseudos for :enabled/:disabled - * @param {Boolean} disabled true for :disabled; false for :enabled - */ -function createDisabledPseudo( disabled ) { - - // Known :disabled false positives: fieldset[disabled] > legend:nth-of-type(n+2) :can-disable - return function( elem ) { - - // Only certain elements can match :enabled or :disabled - // https://html.spec.whatwg.org/multipage/scripting.html#selector-enabled - // https://html.spec.whatwg.org/multipage/scripting.html#selector-disabled - if ( "form" in elem ) { - - // Check for inherited disabledness on relevant non-disabled elements: - // * listed form-associated elements in a disabled fieldset - // https://html.spec.whatwg.org/multipage/forms.html#category-listed - // https://html.spec.whatwg.org/multipage/forms.html#concept-fe-disabled - // * option elements in a disabled optgroup - // https://html.spec.whatwg.org/multipage/forms.html#concept-option-disabled - // All such elements have a "form" property. - if ( elem.parentNode && elem.disabled === false ) { - - // Option elements defer to a parent optgroup if present - if ( "label" in elem ) { - if ( "label" in elem.parentNode ) { - return elem.parentNode.disabled === disabled; - } else { - return elem.disabled === disabled; - } - } - - // Support: IE 6 - 11 - // Use the isDisabled shortcut property to check for disabled fieldset ancestors - return elem.isDisabled === disabled || - - // Where there is no isDisabled, check manually - /* jshint -W018 */ - elem.isDisabled !== !disabled && - inDisabledFieldset( elem ) === disabled; - } - - return elem.disabled === disabled; - - // Try to winnow out elements that can't be disabled before trusting the disabled property. - // Some victims get caught in our net (label, legend, menu, track), but it shouldn't - // even exist on them, let alone have a boolean value. - } else if ( "label" in elem ) { - return elem.disabled === disabled; - } - - // Remaining elements are neither :enabled nor :disabled - return false; - }; -} - -/** - * Returns a function to use in pseudos for positionals - * @param {Function} fn - */ -function createPositionalPseudo( fn ) { - return markFunction( function( argument ) { - argument = +argument; - return markFunction( function( seed, matches ) { - var j, - matchIndexes = fn( [], seed.length, argument ), - i = matchIndexes.length; - - // Match elements found at the specified indexes - while ( i-- ) { - if ( seed[ ( j = matchIndexes[ i ] ) ] ) { - seed[ j ] = !( matches[ j ] = seed[ j ] ); - } - } - } ); - } ); -} - -/** - * Checks a node for validity as a Sizzle context - * @param {Element|Object=} context - * @returns {Element|Object|Boolean} The input node if acceptable, otherwise a falsy value - */ -function testContext( context ) { - return context && typeof context.getElementsByTagName !== "undefined" && context; -} - -// Expose support vars for convenience -support = Sizzle.support = {}; - -/** - * Detects XML nodes - * @param {Element|Object} elem An element or a document - * @returns {Boolean} True iff elem is a non-HTML XML node - */ -isXML = Sizzle.isXML = function( elem ) { - var namespace = elem && elem.namespaceURI, - docElem = elem && ( elem.ownerDocument || elem ).documentElement; - - // Support: IE <=8 - // Assume HTML when documentElement doesn't yet exist, such as inside loading iframes - // https://bugs.jquery.com/ticket/4833 - return !rhtml.test( namespace || docElem && docElem.nodeName || "HTML" ); -}; - -/** - * Sets document-related variables once based on the current document - * @param {Element|Object} [doc] An element or document object to use to set the document - * @returns {Object} Returns the current document - */ -setDocument = Sizzle.setDocument = function( node ) { - var hasCompare, subWindow, - doc = node ? node.ownerDocument || node : preferredDoc; - - // Return early if doc is invalid or already selected - // Support: IE 11+, Edge 17 - 18+ - // IE/Edge sometimes throw a "Permission denied" error when strict-comparing - // two documents; shallow comparisons work. - // eslint-disable-next-line eqeqeq - if ( doc == document || doc.nodeType !== 9 || !doc.documentElement ) { - return document; - } - - // Update global variables - document = doc; - docElem = document.documentElement; - documentIsHTML = !isXML( document ); - - // Support: IE 9 - 11+, Edge 12 - 18+ - // Accessing iframe documents after unload throws "permission denied" errors (jQuery #13936) - // Support: IE 11+, Edge 17 - 18+ - // IE/Edge sometimes throw a "Permission denied" error when strict-comparing - // two documents; shallow comparisons work. - // eslint-disable-next-line eqeqeq - if ( preferredDoc != document && - ( subWindow = document.defaultView ) && subWindow.top !== subWindow ) { - - // Support: IE 11, Edge - if ( subWindow.addEventListener ) { - subWindow.addEventListener( "unload", unloadHandler, false ); - - // Support: IE 9 - 10 only - } else if ( subWindow.attachEvent ) { - subWindow.attachEvent( "onunload", unloadHandler ); - } - } - - // Support: IE 8 - 11+, Edge 12 - 18+, Chrome <=16 - 25 only, Firefox <=3.6 - 31 only, - // Safari 4 - 5 only, Opera <=11.6 - 12.x only - // IE/Edge & older browsers don't support the :scope pseudo-class. - // Support: Safari 6.0 only - // Safari 6.0 supports :scope but it's an alias of :root there. - support.scope = assert( function( el ) { - docElem.appendChild( el ).appendChild( document.createElement( "div" ) ); - return typeof el.querySelectorAll !== "undefined" && - !el.querySelectorAll( ":scope fieldset div" ).length; - } ); - - /* Attributes - ---------------------------------------------------------------------- */ - - // Support: IE<8 - // Verify that getAttribute really returns attributes and not properties - // (excepting IE8 booleans) - support.attributes = assert( function( el ) { - el.className = "i"; - return !el.getAttribute( "className" ); - } ); - - /* getElement(s)By* - ---------------------------------------------------------------------- */ - - // Check if getElementsByTagName("*") returns only elements - support.getElementsByTagName = assert( function( el ) { - el.appendChild( document.createComment( "" ) ); - return !el.getElementsByTagName( "*" ).length; - } ); - - // Support: IE<9 - support.getElementsByClassName = rnative.test( document.getElementsByClassName ); - - // Support: IE<10 - // Check if getElementById returns elements by name - // The broken getElementById methods don't pick up programmatically-set names, - // so use a roundabout getElementsByName test - support.getById = assert( function( el ) { - docElem.appendChild( el ).id = expando; - return !document.getElementsByName || !document.getElementsByName( expando ).length; - } ); - - // ID filter and find - if ( support.getById ) { - Expr.filter[ "ID" ] = function( id ) { - var attrId = id.replace( runescape, funescape ); - return function( elem ) { - return elem.getAttribute( "id" ) === attrId; - }; - }; - Expr.find[ "ID" ] = function( id, context ) { - if ( typeof context.getElementById !== "undefined" && documentIsHTML ) { - var elem = context.getElementById( id ); - return elem ? [ elem ] : []; - } - }; - } else { - Expr.filter[ "ID" ] = function( id ) { - var attrId = id.replace( runescape, funescape ); - return function( elem ) { - var node = typeof elem.getAttributeNode !== "undefined" && - elem.getAttributeNode( "id" ); - return node && node.value === attrId; - }; - }; - - // Support: IE 6 - 7 only - // getElementById is not reliable as a find shortcut - Expr.find[ "ID" ] = function( id, context ) { - if ( typeof context.getElementById !== "undefined" && documentIsHTML ) { - var node, i, elems, - elem = context.getElementById( id ); - - if ( elem ) { - - // Verify the id attribute - node = elem.getAttributeNode( "id" ); - if ( node && node.value === id ) { - return [ elem ]; - } - - // Fall back on getElementsByName - elems = context.getElementsByName( id ); - i = 0; - while ( ( elem = elems[ i++ ] ) ) { - node = elem.getAttributeNode( "id" ); - if ( node && node.value === id ) { - return [ elem ]; - } - } - } - - return []; - } - }; - } - - // Tag - Expr.find[ "TAG" ] = support.getElementsByTagName ? - function( tag, context ) { - if ( typeof context.getElementsByTagName !== "undefined" ) { - return context.getElementsByTagName( tag ); - - // DocumentFragment nodes don't have gEBTN - } else if ( support.qsa ) { - return context.querySelectorAll( tag ); - } - } : - - function( tag, context ) { - var elem, - tmp = [], - i = 0, - - // By happy coincidence, a (broken) gEBTN appears on DocumentFragment nodes too - results = context.getElementsByTagName( tag ); - - // Filter out possible comments - if ( tag === "*" ) { - while ( ( elem = results[ i++ ] ) ) { - if ( elem.nodeType === 1 ) { - tmp.push( elem ); - } - } - - return tmp; - } - return results; - }; - - // Class - Expr.find[ "CLASS" ] = support.getElementsByClassName && function( className, context ) { - if ( typeof context.getElementsByClassName !== "undefined" && documentIsHTML ) { - return context.getElementsByClassName( className ); - } - }; - - /* QSA/matchesSelector - ---------------------------------------------------------------------- */ - - // QSA and matchesSelector support - - // matchesSelector(:active) reports false when true (IE9/Opera 11.5) - rbuggyMatches = []; - - // qSa(:focus) reports false when true (Chrome 21) - // We allow this because of a bug in IE8/9 that throws an error - // whenever `document.activeElement` is accessed on an iframe - // So, we allow :focus to pass through QSA all the time to avoid the IE error - // See https://bugs.jquery.com/ticket/13378 - rbuggyQSA = []; - - if ( ( support.qsa = rnative.test( document.querySelectorAll ) ) ) { - - // Build QSA regex - // Regex strategy adopted from Diego Perini - assert( function( el ) { - - var input; - - // Select is set to empty string on purpose - // This is to test IE's treatment of not explicitly - // setting a boolean content attribute, - // since its presence should be enough - // https://bugs.jquery.com/ticket/12359 - docElem.appendChild( el ).innerHTML = "" + - ""; - - // Support: IE8, Opera 11-12.16 - // Nothing should be selected when empty strings follow ^= or $= or *= - // The test attribute must be unknown in Opera but "safe" for WinRT - // https://msdn.microsoft.com/en-us/library/ie/hh465388.aspx#attribute_section - if ( el.querySelectorAll( "[msallowcapture^='']" ).length ) { - rbuggyQSA.push( "[*^$]=" + whitespace + "*(?:''|\"\")" ); - } - - // Support: IE8 - // Boolean attributes and "value" are not treated correctly - if ( !el.querySelectorAll( "[selected]" ).length ) { - rbuggyQSA.push( "\\[" + whitespace + "*(?:value|" + booleans + ")" ); - } - - // Support: Chrome<29, Android<4.4, Safari<7.0+, iOS<7.0+, PhantomJS<1.9.8+ - if ( !el.querySelectorAll( "[id~=" + expando + "-]" ).length ) { - rbuggyQSA.push( "~=" ); - } - - // Support: IE 11+, Edge 15 - 18+ - // IE 11/Edge don't find elements on a `[name='']` query in some cases. - // Adding a temporary attribute to the document before the selection works - // around the issue. - // Interestingly, IE 10 & older don't seem to have the issue. - input = document.createElement( "input" ); - input.setAttribute( "name", "" ); - el.appendChild( input ); - if ( !el.querySelectorAll( "[name='']" ).length ) { - rbuggyQSA.push( "\\[" + whitespace + "*name" + whitespace + "*=" + - whitespace + "*(?:''|\"\")" ); - } - - // Webkit/Opera - :checked should return selected option elements - // http://www.w3.org/TR/2011/REC-css3-selectors-20110929/#checked - // IE8 throws error here and will not see later tests - if ( !el.querySelectorAll( ":checked" ).length ) { - rbuggyQSA.push( ":checked" ); - } - - // Support: Safari 8+, iOS 8+ - // https://bugs.webkit.org/show_bug.cgi?id=136851 - // In-page `selector#id sibling-combinator selector` fails - if ( !el.querySelectorAll( "a#" + expando + "+*" ).length ) { - rbuggyQSA.push( ".#.+[+~]" ); - } - - // Support: Firefox <=3.6 - 5 only - // Old Firefox doesn't throw on a badly-escaped identifier. - el.querySelectorAll( "\\\f" ); - rbuggyQSA.push( "[\\r\\n\\f]" ); - } ); - - assert( function( el ) { - el.innerHTML = "" + - ""; - - // Support: Windows 8 Native Apps - // The type and name attributes are restricted during .innerHTML assignment - var input = document.createElement( "input" ); - input.setAttribute( "type", "hidden" ); - el.appendChild( input ).setAttribute( "name", "D" ); - - // Support: IE8 - // Enforce case-sensitivity of name attribute - if ( el.querySelectorAll( "[name=d]" ).length ) { - rbuggyQSA.push( "name" + whitespace + "*[*^$|!~]?=" ); - } - - // FF 3.5 - :enabled/:disabled and hidden elements (hidden elements are still enabled) - // IE8 throws error here and will not see later tests - if ( el.querySelectorAll( ":enabled" ).length !== 2 ) { - rbuggyQSA.push( ":enabled", ":disabled" ); - } - - // Support: IE9-11+ - // IE's :disabled selector does not pick up the children of disabled fieldsets - docElem.appendChild( el ).disabled = true; - if ( el.querySelectorAll( ":disabled" ).length !== 2 ) { - rbuggyQSA.push( ":enabled", ":disabled" ); - } - - // Support: Opera 10 - 11 only - // Opera 10-11 does not throw on post-comma invalid pseudos - el.querySelectorAll( "*,:x" ); - rbuggyQSA.push( ",.*:" ); - } ); - } - - if ( ( support.matchesSelector = rnative.test( ( matches = docElem.matches || - docElem.webkitMatchesSelector || - docElem.mozMatchesSelector || - docElem.oMatchesSelector || - docElem.msMatchesSelector ) ) ) ) { - - assert( function( el ) { - - // Check to see if it's possible to do matchesSelector - // on a disconnected node (IE 9) - support.disconnectedMatch = matches.call( el, "*" ); - - // This should fail with an exception - // Gecko does not error, returns false instead - matches.call( el, "[s!='']:x" ); - rbuggyMatches.push( "!=", pseudos ); - } ); - } - - rbuggyQSA = rbuggyQSA.length && new RegExp( rbuggyQSA.join( "|" ) ); - rbuggyMatches = rbuggyMatches.length && new RegExp( rbuggyMatches.join( "|" ) ); - - /* Contains - ---------------------------------------------------------------------- */ - hasCompare = rnative.test( docElem.compareDocumentPosition ); - - // Element contains another - // Purposefully self-exclusive - // As in, an element does not contain itself - contains = hasCompare || rnative.test( docElem.contains ) ? - function( a, b ) { - var adown = a.nodeType === 9 ? a.documentElement : a, - bup = b && b.parentNode; - return a === bup || !!( bup && bup.nodeType === 1 && ( - adown.contains ? - adown.contains( bup ) : - a.compareDocumentPosition && a.compareDocumentPosition( bup ) & 16 - ) ); - } : - function( a, b ) { - if ( b ) { - while ( ( b = b.parentNode ) ) { - if ( b === a ) { - return true; - } - } - } - return false; - }; - - /* Sorting - ---------------------------------------------------------------------- */ - - // Document order sorting - sortOrder = hasCompare ? - function( a, b ) { - - // Flag for duplicate removal - if ( a === b ) { - hasDuplicate = true; - return 0; - } - - // Sort on method existence if only one input has compareDocumentPosition - var compare = !a.compareDocumentPosition - !b.compareDocumentPosition; - if ( compare ) { - return compare; - } - - // Calculate position if both inputs belong to the same document - // Support: IE 11+, Edge 17 - 18+ - // IE/Edge sometimes throw a "Permission denied" error when strict-comparing - // two documents; shallow comparisons work. - // eslint-disable-next-line eqeqeq - compare = ( a.ownerDocument || a ) == ( b.ownerDocument || b ) ? - a.compareDocumentPosition( b ) : - - // Otherwise we know they are disconnected - 1; - - // Disconnected nodes - if ( compare & 1 || - ( !support.sortDetached && b.compareDocumentPosition( a ) === compare ) ) { - - // Choose the first element that is related to our preferred document - // Support: IE 11+, Edge 17 - 18+ - // IE/Edge sometimes throw a "Permission denied" error when strict-comparing - // two documents; shallow comparisons work. - // eslint-disable-next-line eqeqeq - if ( a == document || a.ownerDocument == preferredDoc && - contains( preferredDoc, a ) ) { - return -1; - } - - // Support: IE 11+, Edge 17 - 18+ - // IE/Edge sometimes throw a "Permission denied" error when strict-comparing - // two documents; shallow comparisons work. - // eslint-disable-next-line eqeqeq - if ( b == document || b.ownerDocument == preferredDoc && - contains( preferredDoc, b ) ) { - return 1; - } - - // Maintain original order - return sortInput ? - ( indexOf( sortInput, a ) - indexOf( sortInput, b ) ) : - 0; - } - - return compare & 4 ? -1 : 1; - } : - function( a, b ) { - - // Exit early if the nodes are identical - if ( a === b ) { - hasDuplicate = true; - return 0; - } - - var cur, - i = 0, - aup = a.parentNode, - bup = b.parentNode, - ap = [ a ], - bp = [ b ]; - - // Parentless nodes are either documents or disconnected - if ( !aup || !bup ) { - - // Support: IE 11+, Edge 17 - 18+ - // IE/Edge sometimes throw a "Permission denied" error when strict-comparing - // two documents; shallow comparisons work. - /* eslint-disable eqeqeq */ - return a == document ? -1 : - b == document ? 1 : - /* eslint-enable eqeqeq */ - aup ? -1 : - bup ? 1 : - sortInput ? - ( indexOf( sortInput, a ) - indexOf( sortInput, b ) ) : - 0; - - // If the nodes are siblings, we can do a quick check - } else if ( aup === bup ) { - return siblingCheck( a, b ); - } - - // Otherwise we need full lists of their ancestors for comparison - cur = a; - while ( ( cur = cur.parentNode ) ) { - ap.unshift( cur ); - } - cur = b; - while ( ( cur = cur.parentNode ) ) { - bp.unshift( cur ); - } - - // Walk down the tree looking for a discrepancy - while ( ap[ i ] === bp[ i ] ) { - i++; - } - - return i ? - - // Do a sibling check if the nodes have a common ancestor - siblingCheck( ap[ i ], bp[ i ] ) : - - // Otherwise nodes in our document sort first - // Support: IE 11+, Edge 17 - 18+ - // IE/Edge sometimes throw a "Permission denied" error when strict-comparing - // two documents; shallow comparisons work. - /* eslint-disable eqeqeq */ - ap[ i ] == preferredDoc ? -1 : - bp[ i ] == preferredDoc ? 1 : - /* eslint-enable eqeqeq */ - 0; - }; - - return document; -}; - -Sizzle.matches = function( expr, elements ) { - return Sizzle( expr, null, null, elements ); -}; - -Sizzle.matchesSelector = function( elem, expr ) { - setDocument( elem ); - - if ( support.matchesSelector && documentIsHTML && - !nonnativeSelectorCache[ expr + " " ] && - ( !rbuggyMatches || !rbuggyMatches.test( expr ) ) && - ( !rbuggyQSA || !rbuggyQSA.test( expr ) ) ) { - - try { - var ret = matches.call( elem, expr ); - - // IE 9's matchesSelector returns false on disconnected nodes - if ( ret || support.disconnectedMatch || - - // As well, disconnected nodes are said to be in a document - // fragment in IE 9 - elem.document && elem.document.nodeType !== 11 ) { - return ret; - } - } catch ( e ) { - nonnativeSelectorCache( expr, true ); - } - } - - return Sizzle( expr, document, null, [ elem ] ).length > 0; -}; - -Sizzle.contains = function( context, elem ) { - - // Set document vars if needed - // Support: IE 11+, Edge 17 - 18+ - // IE/Edge sometimes throw a "Permission denied" error when strict-comparing - // two documents; shallow comparisons work. - // eslint-disable-next-line eqeqeq - if ( ( context.ownerDocument || context ) != document ) { - setDocument( context ); - } - return contains( context, elem ); -}; - -Sizzle.attr = function( elem, name ) { - - // Set document vars if needed - // Support: IE 11+, Edge 17 - 18+ - // IE/Edge sometimes throw a "Permission denied" error when strict-comparing - // two documents; shallow comparisons work. - // eslint-disable-next-line eqeqeq - if ( ( elem.ownerDocument || elem ) != document ) { - setDocument( elem ); - } - - var fn = Expr.attrHandle[ name.toLowerCase() ], - - // Don't get fooled by Object.prototype properties (jQuery #13807) - val = fn && hasOwn.call( Expr.attrHandle, name.toLowerCase() ) ? - fn( elem, name, !documentIsHTML ) : - undefined; - - return val !== undefined ? - val : - support.attributes || !documentIsHTML ? - elem.getAttribute( name ) : - ( val = elem.getAttributeNode( name ) ) && val.specified ? - val.value : - null; -}; - -Sizzle.escape = function( sel ) { - return ( sel + "" ).replace( rcssescape, fcssescape ); -}; - -Sizzle.error = function( msg ) { - throw new Error( "Syntax error, unrecognized expression: " + msg ); -}; - -/** - * Document sorting and removing duplicates - * @param {ArrayLike} results - */ -Sizzle.uniqueSort = function( results ) { - var elem, - duplicates = [], - j = 0, - i = 0; - - // Unless we *know* we can detect duplicates, assume their presence - hasDuplicate = !support.detectDuplicates; - sortInput = !support.sortStable && results.slice( 0 ); - results.sort( sortOrder ); - - if ( hasDuplicate ) { - while ( ( elem = results[ i++ ] ) ) { - if ( elem === results[ i ] ) { - j = duplicates.push( i ); - } - } - while ( j-- ) { - results.splice( duplicates[ j ], 1 ); - } - } - - // Clear input after sorting to release objects - // See https://github.com/jquery/sizzle/pull/225 - sortInput = null; - - return results; -}; - -/** - * Utility function for retrieving the text value of an array of DOM nodes - * @param {Array|Element} elem - */ -getText = Sizzle.getText = function( elem ) { - var node, - ret = "", - i = 0, - nodeType = elem.nodeType; - - if ( !nodeType ) { - - // If no nodeType, this is expected to be an array - while ( ( node = elem[ i++ ] ) ) { - - // Do not traverse comment nodes - ret += getText( node ); - } - } else if ( nodeType === 1 || nodeType === 9 || nodeType === 11 ) { - - // Use textContent for elements - // innerText usage removed for consistency of new lines (jQuery #11153) - if ( typeof elem.textContent === "string" ) { - return elem.textContent; - } else { - - // Traverse its children - for ( elem = elem.firstChild; elem; elem = elem.nextSibling ) { - ret += getText( elem ); - } - } - } else if ( nodeType === 3 || nodeType === 4 ) { - return elem.nodeValue; - } - - // Do not include comment or processing instruction nodes - - return ret; -}; - -Expr = Sizzle.selectors = { - - // Can be adjusted by the user - cacheLength: 50, - - createPseudo: markFunction, - - match: matchExpr, - - attrHandle: {}, - - find: {}, - - relative: { - ">": { dir: "parentNode", first: true }, - " ": { dir: "parentNode" }, - "+": { dir: "previousSibling", first: true }, - "~": { dir: "previousSibling" } - }, - - preFilter: { - "ATTR": function( match ) { - match[ 1 ] = match[ 1 ].replace( runescape, funescape ); - - // Move the given value to match[3] whether quoted or unquoted - match[ 3 ] = ( match[ 3 ] || match[ 4 ] || - match[ 5 ] || "" ).replace( runescape, funescape ); - - if ( match[ 2 ] === "~=" ) { - match[ 3 ] = " " + match[ 3 ] + " "; - } - - return match.slice( 0, 4 ); - }, - - "CHILD": function( match ) { - - /* matches from matchExpr["CHILD"] - 1 type (only|nth|...) - 2 what (child|of-type) - 3 argument (even|odd|\d*|\d*n([+-]\d+)?|...) - 4 xn-component of xn+y argument ([+-]?\d*n|) - 5 sign of xn-component - 6 x of xn-component - 7 sign of y-component - 8 y of y-component - */ - match[ 1 ] = match[ 1 ].toLowerCase(); - - if ( match[ 1 ].slice( 0, 3 ) === "nth" ) { - - // nth-* requires argument - if ( !match[ 3 ] ) { - Sizzle.error( match[ 0 ] ); - } - - // numeric x and y parameters for Expr.filter.CHILD - // remember that false/true cast respectively to 0/1 - match[ 4 ] = +( match[ 4 ] ? - match[ 5 ] + ( match[ 6 ] || 1 ) : - 2 * ( match[ 3 ] === "even" || match[ 3 ] === "odd" ) ); - match[ 5 ] = +( ( match[ 7 ] + match[ 8 ] ) || match[ 3 ] === "odd" ); - - // other types prohibit arguments - } else if ( match[ 3 ] ) { - Sizzle.error( match[ 0 ] ); - } - - return match; - }, - - "PSEUDO": function( match ) { - var excess, - unquoted = !match[ 6 ] && match[ 2 ]; - - if ( matchExpr[ "CHILD" ].test( match[ 0 ] ) ) { - return null; - } - - // Accept quoted arguments as-is - if ( match[ 3 ] ) { - match[ 2 ] = match[ 4 ] || match[ 5 ] || ""; - - // Strip excess characters from unquoted arguments - } else if ( unquoted && rpseudo.test( unquoted ) && - - // Get excess from tokenize (recursively) - ( excess = tokenize( unquoted, true ) ) && - - // advance to the next closing parenthesis - ( excess = unquoted.indexOf( ")", unquoted.length - excess ) - unquoted.length ) ) { - - // excess is a negative index - match[ 0 ] = match[ 0 ].slice( 0, excess ); - match[ 2 ] = unquoted.slice( 0, excess ); - } - - // Return only captures needed by the pseudo filter method (type and argument) - return match.slice( 0, 3 ); - } - }, - - filter: { - - "TAG": function( nodeNameSelector ) { - var nodeName = nodeNameSelector.replace( runescape, funescape ).toLowerCase(); - return nodeNameSelector === "*" ? - function() { - return true; - } : - function( elem ) { - return elem.nodeName && elem.nodeName.toLowerCase() === nodeName; - }; - }, - - "CLASS": function( className ) { - var pattern = classCache[ className + " " ]; - - return pattern || - ( pattern = new RegExp( "(^|" + whitespace + - ")" + className + "(" + whitespace + "|$)" ) ) && classCache( - className, function( elem ) { - return pattern.test( - typeof elem.className === "string" && elem.className || - typeof elem.getAttribute !== "undefined" && - elem.getAttribute( "class" ) || - "" - ); - } ); - }, - - "ATTR": function( name, operator, check ) { - return function( elem ) { - var result = Sizzle.attr( elem, name ); - - if ( result == null ) { - return operator === "!="; - } - if ( !operator ) { - return true; - } - - result += ""; - - /* eslint-disable max-len */ - - return operator === "=" ? result === check : - operator === "!=" ? result !== check : - operator === "^=" ? check && result.indexOf( check ) === 0 : - operator === "*=" ? check && result.indexOf( check ) > -1 : - operator === "$=" ? check && result.slice( -check.length ) === check : - operator === "~=" ? ( " " + result.replace( rwhitespace, " " ) + " " ).indexOf( check ) > -1 : - operator === "|=" ? result === check || result.slice( 0, check.length + 1 ) === check + "-" : - false; - /* eslint-enable max-len */ - - }; - }, - - "CHILD": function( type, what, _argument, first, last ) { - var simple = type.slice( 0, 3 ) !== "nth", - forward = type.slice( -4 ) !== "last", - ofType = what === "of-type"; - - return first === 1 && last === 0 ? - - // Shortcut for :nth-*(n) - function( elem ) { - return !!elem.parentNode; - } : - - function( elem, _context, xml ) { - var cache, uniqueCache, outerCache, node, nodeIndex, start, - dir = simple !== forward ? "nextSibling" : "previousSibling", - parent = elem.parentNode, - name = ofType && elem.nodeName.toLowerCase(), - useCache = !xml && !ofType, - diff = false; - - if ( parent ) { - - // :(first|last|only)-(child|of-type) - if ( simple ) { - while ( dir ) { - node = elem; - while ( ( node = node[ dir ] ) ) { - if ( ofType ? - node.nodeName.toLowerCase() === name : - node.nodeType === 1 ) { - - return false; - } - } - - // Reverse direction for :only-* (if we haven't yet done so) - start = dir = type === "only" && !start && "nextSibling"; - } - return true; - } - - start = [ forward ? parent.firstChild : parent.lastChild ]; - - // non-xml :nth-child(...) stores cache data on `parent` - if ( forward && useCache ) { - - // Seek `elem` from a previously-cached index - - // ...in a gzip-friendly way - node = parent; - outerCache = node[ expando ] || ( node[ expando ] = {} ); - - // Support: IE <9 only - // Defend against cloned attroperties (jQuery gh-1709) - uniqueCache = outerCache[ node.uniqueID ] || - ( outerCache[ node.uniqueID ] = {} ); - - cache = uniqueCache[ type ] || []; - nodeIndex = cache[ 0 ] === dirruns && cache[ 1 ]; - diff = nodeIndex && cache[ 2 ]; - node = nodeIndex && parent.childNodes[ nodeIndex ]; - - while ( ( node = ++nodeIndex && node && node[ dir ] || - - // Fallback to seeking `elem` from the start - ( diff = nodeIndex = 0 ) || start.pop() ) ) { - - // When found, cache indexes on `parent` and break - if ( node.nodeType === 1 && ++diff && node === elem ) { - uniqueCache[ type ] = [ dirruns, nodeIndex, diff ]; - break; - } - } - - } else { - - // Use previously-cached element index if available - if ( useCache ) { - - // ...in a gzip-friendly way - node = elem; - outerCache = node[ expando ] || ( node[ expando ] = {} ); - - // Support: IE <9 only - // Defend against cloned attroperties (jQuery gh-1709) - uniqueCache = outerCache[ node.uniqueID ] || - ( outerCache[ node.uniqueID ] = {} ); - - cache = uniqueCache[ type ] || []; - nodeIndex = cache[ 0 ] === dirruns && cache[ 1 ]; - diff = nodeIndex; - } - - // xml :nth-child(...) - // or :nth-last-child(...) or :nth(-last)?-of-type(...) - if ( diff === false ) { - - // Use the same loop as above to seek `elem` from the start - while ( ( node = ++nodeIndex && node && node[ dir ] || - ( diff = nodeIndex = 0 ) || start.pop() ) ) { - - if ( ( ofType ? - node.nodeName.toLowerCase() === name : - node.nodeType === 1 ) && - ++diff ) { - - // Cache the index of each encountered element - if ( useCache ) { - outerCache = node[ expando ] || - ( node[ expando ] = {} ); - - // Support: IE <9 only - // Defend against cloned attroperties (jQuery gh-1709) - uniqueCache = outerCache[ node.uniqueID ] || - ( outerCache[ node.uniqueID ] = {} ); - - uniqueCache[ type ] = [ dirruns, diff ]; - } - - if ( node === elem ) { - break; - } - } - } - } - } - - // Incorporate the offset, then check against cycle size - diff -= last; - return diff === first || ( diff % first === 0 && diff / first >= 0 ); - } - }; - }, - - "PSEUDO": function( pseudo, argument ) { - - // pseudo-class names are case-insensitive - // http://www.w3.org/TR/selectors/#pseudo-classes - // Prioritize by case sensitivity in case custom pseudos are added with uppercase letters - // Remember that setFilters inherits from pseudos - var args, - fn = Expr.pseudos[ pseudo ] || Expr.setFilters[ pseudo.toLowerCase() ] || - Sizzle.error( "unsupported pseudo: " + pseudo ); - - // The user may use createPseudo to indicate that - // arguments are needed to create the filter function - // just as Sizzle does - if ( fn[ expando ] ) { - return fn( argument ); - } - - // But maintain support for old signatures - if ( fn.length > 1 ) { - args = [ pseudo, pseudo, "", argument ]; - return Expr.setFilters.hasOwnProperty( pseudo.toLowerCase() ) ? - markFunction( function( seed, matches ) { - var idx, - matched = fn( seed, argument ), - i = matched.length; - while ( i-- ) { - idx = indexOf( seed, matched[ i ] ); - seed[ idx ] = !( matches[ idx ] = matched[ i ] ); - } - } ) : - function( elem ) { - return fn( elem, 0, args ); - }; - } - - return fn; - } - }, - - pseudos: { - - // Potentially complex pseudos - "not": markFunction( function( selector ) { - - // Trim the selector passed to compile - // to avoid treating leading and trailing - // spaces as combinators - var input = [], - results = [], - matcher = compile( selector.replace( rtrim, "$1" ) ); - - return matcher[ expando ] ? - markFunction( function( seed, matches, _context, xml ) { - var elem, - unmatched = matcher( seed, null, xml, [] ), - i = seed.length; - - // Match elements unmatched by `matcher` - while ( i-- ) { - if ( ( elem = unmatched[ i ] ) ) { - seed[ i ] = !( matches[ i ] = elem ); - } - } - } ) : - function( elem, _context, xml ) { - input[ 0 ] = elem; - matcher( input, null, xml, results ); - - // Don't keep the element (issue #299) - input[ 0 ] = null; - return !results.pop(); - }; - } ), - - "has": markFunction( function( selector ) { - return function( elem ) { - return Sizzle( selector, elem ).length > 0; - }; - } ), - - "contains": markFunction( function( text ) { - text = text.replace( runescape, funescape ); - return function( elem ) { - return ( elem.textContent || getText( elem ) ).indexOf( text ) > -1; - }; - } ), - - // "Whether an element is represented by a :lang() selector - // is based solely on the element's language value - // being equal to the identifier C, - // or beginning with the identifier C immediately followed by "-". - // The matching of C against the element's language value is performed case-insensitively. - // The identifier C does not have to be a valid language name." - // http://www.w3.org/TR/selectors/#lang-pseudo - "lang": markFunction( function( lang ) { - - // lang value must be a valid identifier - if ( !ridentifier.test( lang || "" ) ) { - Sizzle.error( "unsupported lang: " + lang ); - } - lang = lang.replace( runescape, funescape ).toLowerCase(); - return function( elem ) { - var elemLang; - do { - if ( ( elemLang = documentIsHTML ? - elem.lang : - elem.getAttribute( "xml:lang" ) || elem.getAttribute( "lang" ) ) ) { - - elemLang = elemLang.toLowerCase(); - return elemLang === lang || elemLang.indexOf( lang + "-" ) === 0; - } - } while ( ( elem = elem.parentNode ) && elem.nodeType === 1 ); - return false; - }; - } ), - - // Miscellaneous - "target": function( elem ) { - var hash = window.location && window.location.hash; - return hash && hash.slice( 1 ) === elem.id; - }, - - "root": function( elem ) { - return elem === docElem; - }, - - "focus": function( elem ) { - return elem === document.activeElement && - ( !document.hasFocus || document.hasFocus() ) && - !!( elem.type || elem.href || ~elem.tabIndex ); - }, - - // Boolean properties - "enabled": createDisabledPseudo( false ), - "disabled": createDisabledPseudo( true ), - - "checked": function( elem ) { - - // In CSS3, :checked should return both checked and selected elements - // http://www.w3.org/TR/2011/REC-css3-selectors-20110929/#checked - var nodeName = elem.nodeName.toLowerCase(); - return ( nodeName === "input" && !!elem.checked ) || - ( nodeName === "option" && !!elem.selected ); - }, - - "selected": function( elem ) { - - // Accessing this property makes selected-by-default - // options in Safari work properly - if ( elem.parentNode ) { - // eslint-disable-next-line no-unused-expressions - elem.parentNode.selectedIndex; - } - - return elem.selected === true; - }, - - // Contents - "empty": function( elem ) { - - // http://www.w3.org/TR/selectors/#empty-pseudo - // :empty is negated by element (1) or content nodes (text: 3; cdata: 4; entity ref: 5), - // but not by others (comment: 8; processing instruction: 7; etc.) - // nodeType < 6 works because attributes (2) do not appear as children - for ( elem = elem.firstChild; elem; elem = elem.nextSibling ) { - if ( elem.nodeType < 6 ) { - return false; - } - } - return true; - }, - - "parent": function( elem ) { - return !Expr.pseudos[ "empty" ]( elem ); - }, - - // Element/input types - "header": function( elem ) { - return rheader.test( elem.nodeName ); - }, - - "input": function( elem ) { - return rinputs.test( elem.nodeName ); - }, - - "button": function( elem ) { - var name = elem.nodeName.toLowerCase(); - return name === "input" && elem.type === "button" || name === "button"; - }, - - "text": function( elem ) { - var attr; - return elem.nodeName.toLowerCase() === "input" && - elem.type === "text" && - - // Support: IE<8 - // New HTML5 attribute values (e.g., "search") appear with elem.type === "text" - ( ( attr = elem.getAttribute( "type" ) ) == null || - attr.toLowerCase() === "text" ); - }, - - // Position-in-collection - "first": createPositionalPseudo( function() { - return [ 0 ]; - } ), - - "last": createPositionalPseudo( function( _matchIndexes, length ) { - return [ length - 1 ]; - } ), - - "eq": createPositionalPseudo( function( _matchIndexes, length, argument ) { - return [ argument < 0 ? argument + length : argument ]; - } ), - - "even": createPositionalPseudo( function( matchIndexes, length ) { - var i = 0; - for ( ; i < length; i += 2 ) { - matchIndexes.push( i ); - } - return matchIndexes; - } ), - - "odd": createPositionalPseudo( function( matchIndexes, length ) { - var i = 1; - for ( ; i < length; i += 2 ) { - matchIndexes.push( i ); - } - return matchIndexes; - } ), - - "lt": createPositionalPseudo( function( matchIndexes, length, argument ) { - var i = argument < 0 ? - argument + length : - argument > length ? - length : - argument; - for ( ; --i >= 0; ) { - matchIndexes.push( i ); - } - return matchIndexes; - } ), - - "gt": createPositionalPseudo( function( matchIndexes, length, argument ) { - var i = argument < 0 ? argument + length : argument; - for ( ; ++i < length; ) { - matchIndexes.push( i ); - } - return matchIndexes; - } ) - } -}; - -Expr.pseudos[ "nth" ] = Expr.pseudos[ "eq" ]; - -// Add button/input type pseudos -for ( i in { radio: true, checkbox: true, file: true, password: true, image: true } ) { - Expr.pseudos[ i ] = createInputPseudo( i ); -} -for ( i in { submit: true, reset: true } ) { - Expr.pseudos[ i ] = createButtonPseudo( i ); -} - -// Easy API for creating new setFilters -function setFilters() {} -setFilters.prototype = Expr.filters = Expr.pseudos; -Expr.setFilters = new setFilters(); - -tokenize = Sizzle.tokenize = function( selector, parseOnly ) { - var matched, match, tokens, type, - soFar, groups, preFilters, - cached = tokenCache[ selector + " " ]; - - if ( cached ) { - return parseOnly ? 0 : cached.slice( 0 ); - } - - soFar = selector; - groups = []; - preFilters = Expr.preFilter; - - while ( soFar ) { - - // Comma and first run - if ( !matched || ( match = rcomma.exec( soFar ) ) ) { - if ( match ) { - - // Don't consume trailing commas as valid - soFar = soFar.slice( match[ 0 ].length ) || soFar; - } - groups.push( ( tokens = [] ) ); - } - - matched = false; - - // Combinators - if ( ( match = rcombinators.exec( soFar ) ) ) { - matched = match.shift(); - tokens.push( { - value: matched, - - // Cast descendant combinators to space - type: match[ 0 ].replace( rtrim, " " ) - } ); - soFar = soFar.slice( matched.length ); - } - - // Filters - for ( type in Expr.filter ) { - if ( ( match = matchExpr[ type ].exec( soFar ) ) && ( !preFilters[ type ] || - ( match = preFilters[ type ]( match ) ) ) ) { - matched = match.shift(); - tokens.push( { - value: matched, - type: type, - matches: match - } ); - soFar = soFar.slice( matched.length ); - } - } - - if ( !matched ) { - break; - } - } - - // Return the length of the invalid excess - // if we're just parsing - // Otherwise, throw an error or return tokens - return parseOnly ? - soFar.length : - soFar ? - Sizzle.error( selector ) : - - // Cache the tokens - tokenCache( selector, groups ).slice( 0 ); -}; - -function toSelector( tokens ) { - var i = 0, - len = tokens.length, - selector = ""; - for ( ; i < len; i++ ) { - selector += tokens[ i ].value; - } - return selector; -} - -function addCombinator( matcher, combinator, base ) { - var dir = combinator.dir, - skip = combinator.next, - key = skip || dir, - checkNonElements = base && key === "parentNode", - doneName = done++; - - return combinator.first ? - - // Check against closest ancestor/preceding element - function( elem, context, xml ) { - while ( ( elem = elem[ dir ] ) ) { - if ( elem.nodeType === 1 || checkNonElements ) { - return matcher( elem, context, xml ); - } - } - return false; - } : - - // Check against all ancestor/preceding elements - function( elem, context, xml ) { - var oldCache, uniqueCache, outerCache, - newCache = [ dirruns, doneName ]; - - // We can't set arbitrary data on XML nodes, so they don't benefit from combinator caching - if ( xml ) { - while ( ( elem = elem[ dir ] ) ) { - if ( elem.nodeType === 1 || checkNonElements ) { - if ( matcher( elem, context, xml ) ) { - return true; - } - } - } - } else { - while ( ( elem = elem[ dir ] ) ) { - if ( elem.nodeType === 1 || checkNonElements ) { - outerCache = elem[ expando ] || ( elem[ expando ] = {} ); - - // Support: IE <9 only - // Defend against cloned attroperties (jQuery gh-1709) - uniqueCache = outerCache[ elem.uniqueID ] || - ( outerCache[ elem.uniqueID ] = {} ); - - if ( skip && skip === elem.nodeName.toLowerCase() ) { - elem = elem[ dir ] || elem; - } else if ( ( oldCache = uniqueCache[ key ] ) && - oldCache[ 0 ] === dirruns && oldCache[ 1 ] === doneName ) { - - // Assign to newCache so results back-propagate to previous elements - return ( newCache[ 2 ] = oldCache[ 2 ] ); - } else { - - // Reuse newcache so results back-propagate to previous elements - uniqueCache[ key ] = newCache; - - // A match means we're done; a fail means we have to keep checking - if ( ( newCache[ 2 ] = matcher( elem, context, xml ) ) ) { - return true; - } - } - } - } - } - return false; - }; -} - -function elementMatcher( matchers ) { - return matchers.length > 1 ? - function( elem, context, xml ) { - var i = matchers.length; - while ( i-- ) { - if ( !matchers[ i ]( elem, context, xml ) ) { - return false; - } - } - return true; - } : - matchers[ 0 ]; -} - -function multipleContexts( selector, contexts, results ) { - var i = 0, - len = contexts.length; - for ( ; i < len; i++ ) { - Sizzle( selector, contexts[ i ], results ); - } - return results; -} - -function condense( unmatched, map, filter, context, xml ) { - var elem, - newUnmatched = [], - i = 0, - len = unmatched.length, - mapped = map != null; - - for ( ; i < len; i++ ) { - if ( ( elem = unmatched[ i ] ) ) { - if ( !filter || filter( elem, context, xml ) ) { - newUnmatched.push( elem ); - if ( mapped ) { - map.push( i ); - } - } - } - } - - return newUnmatched; -} - -function setMatcher( preFilter, selector, matcher, postFilter, postFinder, postSelector ) { - if ( postFilter && !postFilter[ expando ] ) { - postFilter = setMatcher( postFilter ); - } - if ( postFinder && !postFinder[ expando ] ) { - postFinder = setMatcher( postFinder, postSelector ); - } - return markFunction( function( seed, results, context, xml ) { - var temp, i, elem, - preMap = [], - postMap = [], - preexisting = results.length, - - // Get initial elements from seed or context - elems = seed || multipleContexts( - selector || "*", - context.nodeType ? [ context ] : context, - [] - ), - - // Prefilter to get matcher input, preserving a map for seed-results synchronization - matcherIn = preFilter && ( seed || !selector ) ? - condense( elems, preMap, preFilter, context, xml ) : - elems, - - matcherOut = matcher ? - - // If we have a postFinder, or filtered seed, or non-seed postFilter or preexisting results, - postFinder || ( seed ? preFilter : preexisting || postFilter ) ? - - // ...intermediate processing is necessary - [] : - - // ...otherwise use results directly - results : - matcherIn; - - // Find primary matches - if ( matcher ) { - matcher( matcherIn, matcherOut, context, xml ); - } - - // Apply postFilter - if ( postFilter ) { - temp = condense( matcherOut, postMap ); - postFilter( temp, [], context, xml ); - - // Un-match failing elements by moving them back to matcherIn - i = temp.length; - while ( i-- ) { - if ( ( elem = temp[ i ] ) ) { - matcherOut[ postMap[ i ] ] = !( matcherIn[ postMap[ i ] ] = elem ); - } - } - } - - if ( seed ) { - if ( postFinder || preFilter ) { - if ( postFinder ) { - - // Get the final matcherOut by condensing this intermediate into postFinder contexts - temp = []; - i = matcherOut.length; - while ( i-- ) { - if ( ( elem = matcherOut[ i ] ) ) { - - // Restore matcherIn since elem is not yet a final match - temp.push( ( matcherIn[ i ] = elem ) ); - } - } - postFinder( null, ( matcherOut = [] ), temp, xml ); - } - - // Move matched elements from seed to results to keep them synchronized - i = matcherOut.length; - while ( i-- ) { - if ( ( elem = matcherOut[ i ] ) && - ( temp = postFinder ? indexOf( seed, elem ) : preMap[ i ] ) > -1 ) { - - seed[ temp ] = !( results[ temp ] = elem ); - } - } - } - - // Add elements to results, through postFinder if defined - } else { - matcherOut = condense( - matcherOut === results ? - matcherOut.splice( preexisting, matcherOut.length ) : - matcherOut - ); - if ( postFinder ) { - postFinder( null, results, matcherOut, xml ); - } else { - push.apply( results, matcherOut ); - } - } - } ); -} - -function matcherFromTokens( tokens ) { - var checkContext, matcher, j, - len = tokens.length, - leadingRelative = Expr.relative[ tokens[ 0 ].type ], - implicitRelative = leadingRelative || Expr.relative[ " " ], - i = leadingRelative ? 1 : 0, - - // The foundational matcher ensures that elements are reachable from top-level context(s) - matchContext = addCombinator( function( elem ) { - return elem === checkContext; - }, implicitRelative, true ), - matchAnyContext = addCombinator( function( elem ) { - return indexOf( checkContext, elem ) > -1; - }, implicitRelative, true ), - matchers = [ function( elem, context, xml ) { - var ret = ( !leadingRelative && ( xml || context !== outermostContext ) ) || ( - ( checkContext = context ).nodeType ? - matchContext( elem, context, xml ) : - matchAnyContext( elem, context, xml ) ); - - // Avoid hanging onto element (issue #299) - checkContext = null; - return ret; - } ]; - - for ( ; i < len; i++ ) { - if ( ( matcher = Expr.relative[ tokens[ i ].type ] ) ) { - matchers = [ addCombinator( elementMatcher( matchers ), matcher ) ]; - } else { - matcher = Expr.filter[ tokens[ i ].type ].apply( null, tokens[ i ].matches ); - - // Return special upon seeing a positional matcher - if ( matcher[ expando ] ) { - - // Find the next relative operator (if any) for proper handling - j = ++i; - for ( ; j < len; j++ ) { - if ( Expr.relative[ tokens[ j ].type ] ) { - break; - } - } - return setMatcher( - i > 1 && elementMatcher( matchers ), - i > 1 && toSelector( - - // If the preceding token was a descendant combinator, insert an implicit any-element `*` - tokens - .slice( 0, i - 1 ) - .concat( { value: tokens[ i - 2 ].type === " " ? "*" : "" } ) - ).replace( rtrim, "$1" ), - matcher, - i < j && matcherFromTokens( tokens.slice( i, j ) ), - j < len && matcherFromTokens( ( tokens = tokens.slice( j ) ) ), - j < len && toSelector( tokens ) - ); - } - matchers.push( matcher ); - } - } - - return elementMatcher( matchers ); -} - -function matcherFromGroupMatchers( elementMatchers, setMatchers ) { - var bySet = setMatchers.length > 0, - byElement = elementMatchers.length > 0, - superMatcher = function( seed, context, xml, results, outermost ) { - var elem, j, matcher, - matchedCount = 0, - i = "0", - unmatched = seed && [], - setMatched = [], - contextBackup = outermostContext, - - // We must always have either seed elements or outermost context - elems = seed || byElement && Expr.find[ "TAG" ]( "*", outermost ), - - // Use integer dirruns iff this is the outermost matcher - dirrunsUnique = ( dirruns += contextBackup == null ? 1 : Math.random() || 0.1 ), - len = elems.length; - - if ( outermost ) { - - // Support: IE 11+, Edge 17 - 18+ - // IE/Edge sometimes throw a "Permission denied" error when strict-comparing - // two documents; shallow comparisons work. - // eslint-disable-next-line eqeqeq - outermostContext = context == document || context || outermost; - } - - // Add elements passing elementMatchers directly to results - // Support: IE<9, Safari - // Tolerate NodeList properties (IE: "length"; Safari: ) matching elements by id - for ( ; i !== len && ( elem = elems[ i ] ) != null; i++ ) { - if ( byElement && elem ) { - j = 0; - - // Support: IE 11+, Edge 17 - 18+ - // IE/Edge sometimes throw a "Permission denied" error when strict-comparing - // two documents; shallow comparisons work. - // eslint-disable-next-line eqeqeq - if ( !context && elem.ownerDocument != document ) { - setDocument( elem ); - xml = !documentIsHTML; - } - while ( ( matcher = elementMatchers[ j++ ] ) ) { - if ( matcher( elem, context || document, xml ) ) { - results.push( elem ); - break; - } - } - if ( outermost ) { - dirruns = dirrunsUnique; - } - } - - // Track unmatched elements for set filters - if ( bySet ) { - - // They will have gone through all possible matchers - if ( ( elem = !matcher && elem ) ) { - matchedCount--; - } - - // Lengthen the array for every element, matched or not - if ( seed ) { - unmatched.push( elem ); - } - } - } - - // `i` is now the count of elements visited above, and adding it to `matchedCount` - // makes the latter nonnegative. - matchedCount += i; - - // Apply set filters to unmatched elements - // NOTE: This can be skipped if there are no unmatched elements (i.e., `matchedCount` - // equals `i`), unless we didn't visit _any_ elements in the above loop because we have - // no element matchers and no seed. - // Incrementing an initially-string "0" `i` allows `i` to remain a string only in that - // case, which will result in a "00" `matchedCount` that differs from `i` but is also - // numerically zero. - if ( bySet && i !== matchedCount ) { - j = 0; - while ( ( matcher = setMatchers[ j++ ] ) ) { - matcher( unmatched, setMatched, context, xml ); - } - - if ( seed ) { - - // Reintegrate element matches to eliminate the need for sorting - if ( matchedCount > 0 ) { - while ( i-- ) { - if ( !( unmatched[ i ] || setMatched[ i ] ) ) { - setMatched[ i ] = pop.call( results ); - } - } - } - - // Discard index placeholder values to get only actual matches - setMatched = condense( setMatched ); - } - - // Add matches to results - push.apply( results, setMatched ); - - // Seedless set matches succeeding multiple successful matchers stipulate sorting - if ( outermost && !seed && setMatched.length > 0 && - ( matchedCount + setMatchers.length ) > 1 ) { - - Sizzle.uniqueSort( results ); - } - } - - // Override manipulation of globals by nested matchers - if ( outermost ) { - dirruns = dirrunsUnique; - outermostContext = contextBackup; - } - - return unmatched; - }; - - return bySet ? - markFunction( superMatcher ) : - superMatcher; -} - -compile = Sizzle.compile = function( selector, match /* Internal Use Only */ ) { - var i, - setMatchers = [], - elementMatchers = [], - cached = compilerCache[ selector + " " ]; - - if ( !cached ) { - - // Generate a function of recursive functions that can be used to check each element - if ( !match ) { - match = tokenize( selector ); - } - i = match.length; - while ( i-- ) { - cached = matcherFromTokens( match[ i ] ); - if ( cached[ expando ] ) { - setMatchers.push( cached ); - } else { - elementMatchers.push( cached ); - } - } - - // Cache the compiled function - cached = compilerCache( - selector, - matcherFromGroupMatchers( elementMatchers, setMatchers ) - ); - - // Save selector and tokenization - cached.selector = selector; - } - return cached; -}; - -/** - * A low-level selection function that works with Sizzle's compiled - * selector functions - * @param {String|Function} selector A selector or a pre-compiled - * selector function built with Sizzle.compile - * @param {Element} context - * @param {Array} [results] - * @param {Array} [seed] A set of elements to match against - */ -select = Sizzle.select = function( selector, context, results, seed ) { - var i, tokens, token, type, find, - compiled = typeof selector === "function" && selector, - match = !seed && tokenize( ( selector = compiled.selector || selector ) ); - - results = results || []; - - // Try to minimize operations if there is only one selector in the list and no seed - // (the latter of which guarantees us context) - if ( match.length === 1 ) { - - // Reduce context if the leading compound selector is an ID - tokens = match[ 0 ] = match[ 0 ].slice( 0 ); - if ( tokens.length > 2 && ( token = tokens[ 0 ] ).type === "ID" && - context.nodeType === 9 && documentIsHTML && Expr.relative[ tokens[ 1 ].type ] ) { - - context = ( Expr.find[ "ID" ]( token.matches[ 0 ] - .replace( runescape, funescape ), context ) || [] )[ 0 ]; - if ( !context ) { - return results; - - // Precompiled matchers will still verify ancestry, so step up a level - } else if ( compiled ) { - context = context.parentNode; - } - - selector = selector.slice( tokens.shift().value.length ); - } - - // Fetch a seed set for right-to-left matching - i = matchExpr[ "needsContext" ].test( selector ) ? 0 : tokens.length; - while ( i-- ) { - token = tokens[ i ]; - - // Abort if we hit a combinator - if ( Expr.relative[ ( type = token.type ) ] ) { - break; - } - if ( ( find = Expr.find[ type ] ) ) { - - // Search, expanding context for leading sibling combinators - if ( ( seed = find( - token.matches[ 0 ].replace( runescape, funescape ), - rsibling.test( tokens[ 0 ].type ) && testContext( context.parentNode ) || - context - ) ) ) { - - // If seed is empty or no tokens remain, we can return early - tokens.splice( i, 1 ); - selector = seed.length && toSelector( tokens ); - if ( !selector ) { - push.apply( results, seed ); - return results; - } - - break; - } - } - } - } - - // Compile and execute a filtering function if one is not provided - // Provide `match` to avoid retokenization if we modified the selector above - ( compiled || compile( selector, match ) )( - seed, - context, - !documentIsHTML, - results, - !context || rsibling.test( selector ) && testContext( context.parentNode ) || context - ); - return results; -}; - -// One-time assignments - -// Sort stability -support.sortStable = expando.split( "" ).sort( sortOrder ).join( "" ) === expando; - -// Support: Chrome 14-35+ -// Always assume duplicates if they aren't passed to the comparison function -support.detectDuplicates = !!hasDuplicate; - -// Initialize against the default document -setDocument(); - -// Support: Webkit<537.32 - Safari 6.0.3/Chrome 25 (fixed in Chrome 27) -// Detached nodes confoundingly follow *each other* -support.sortDetached = assert( function( el ) { - - // Should return 1, but returns 4 (following) - return el.compareDocumentPosition( document.createElement( "fieldset" ) ) & 1; -} ); - -// Support: IE<8 -// Prevent attribute/property "interpolation" -// https://msdn.microsoft.com/en-us/library/ms536429%28VS.85%29.aspx -if ( !assert( function( el ) { - el.innerHTML = ""; - return el.firstChild.getAttribute( "href" ) === "#"; -} ) ) { - addHandle( "type|href|height|width", function( elem, name, isXML ) { - if ( !isXML ) { - return elem.getAttribute( name, name.toLowerCase() === "type" ? 1 : 2 ); - } - } ); -} - -// Support: IE<9 -// Use defaultValue in place of getAttribute("value") -if ( !support.attributes || !assert( function( el ) { - el.innerHTML = ""; - el.firstChild.setAttribute( "value", "" ); - return el.firstChild.getAttribute( "value" ) === ""; -} ) ) { - addHandle( "value", function( elem, _name, isXML ) { - if ( !isXML && elem.nodeName.toLowerCase() === "input" ) { - return elem.defaultValue; - } - } ); -} - -// Support: IE<9 -// Use getAttributeNode to fetch booleans when getAttribute lies -if ( !assert( function( el ) { - return el.getAttribute( "disabled" ) == null; -} ) ) { - addHandle( booleans, function( elem, name, isXML ) { - var val; - if ( !isXML ) { - return elem[ name ] === true ? name.toLowerCase() : - ( val = elem.getAttributeNode( name ) ) && val.specified ? - val.value : - null; - } - } ); -} - -return Sizzle; - -} )( window ); - - - -jQuery.find = Sizzle; -jQuery.expr = Sizzle.selectors; - -// Deprecated -jQuery.expr[ ":" ] = jQuery.expr.pseudos; -jQuery.uniqueSort = jQuery.unique = Sizzle.uniqueSort; -jQuery.text = Sizzle.getText; -jQuery.isXMLDoc = Sizzle.isXML; -jQuery.contains = Sizzle.contains; -jQuery.escapeSelector = Sizzle.escape; - - - - -var dir = function( elem, dir, until ) { - var matched = [], - truncate = until !== undefined; - - while ( ( elem = elem[ dir ] ) && elem.nodeType !== 9 ) { - if ( elem.nodeType === 1 ) { - if ( truncate && jQuery( elem ).is( until ) ) { - break; - } - matched.push( elem ); - } - } - return matched; -}; - - -var siblings = function( n, elem ) { - var matched = []; - - for ( ; n; n = n.nextSibling ) { - if ( n.nodeType === 1 && n !== elem ) { - matched.push( n ); - } - } - - return matched; -}; - - -var rneedsContext = jQuery.expr.match.needsContext; - - - -function nodeName( elem, name ) { - - return elem.nodeName && elem.nodeName.toLowerCase() === name.toLowerCase(); - -} -var rsingleTag = ( /^<([a-z][^\/\0>:\x20\t\r\n\f]*)[\x20\t\r\n\f]*\/?>(?:<\/\1>|)$/i ); - - - -// Implement the identical functionality for filter and not -function winnow( elements, qualifier, not ) { - if ( isFunction( qualifier ) ) { - return jQuery.grep( elements, function( elem, i ) { - return !!qualifier.call( elem, i, elem ) !== not; - } ); - } - - // Single element - if ( qualifier.nodeType ) { - return jQuery.grep( elements, function( elem ) { - return ( elem === qualifier ) !== not; - } ); - } - - // Arraylike of elements (jQuery, arguments, Array) - if ( typeof qualifier !== "string" ) { - return jQuery.grep( elements, function( elem ) { - return ( indexOf.call( qualifier, elem ) > -1 ) !== not; - } ); - } - - // Filtered directly for both simple and complex selectors - return jQuery.filter( qualifier, elements, not ); -} - -jQuery.filter = function( expr, elems, not ) { - var elem = elems[ 0 ]; - - if ( not ) { - expr = ":not(" + expr + ")"; - } - - if ( elems.length === 1 && elem.nodeType === 1 ) { - return jQuery.find.matchesSelector( elem, expr ) ? [ elem ] : []; - } - - return jQuery.find.matches( expr, jQuery.grep( elems, function( elem ) { - return elem.nodeType === 1; - } ) ); -}; - -jQuery.fn.extend( { - find: function( selector ) { - var i, ret, - len = this.length, - self = this; - - if ( typeof selector !== "string" ) { - return this.pushStack( jQuery( selector ).filter( function() { - for ( i = 0; i < len; i++ ) { - if ( jQuery.contains( self[ i ], this ) ) { - return true; - } - } - } ) ); - } - - ret = this.pushStack( [] ); - - for ( i = 0; i < len; i++ ) { - jQuery.find( selector, self[ i ], ret ); - } - - return len > 1 ? jQuery.uniqueSort( ret ) : ret; - }, - filter: function( selector ) { - return this.pushStack( winnow( this, selector || [], false ) ); - }, - not: function( selector ) { - return this.pushStack( winnow( this, selector || [], true ) ); - }, - is: function( selector ) { - return !!winnow( - this, - - // If this is a positional/relative selector, check membership in the returned set - // so $("p:first").is("p:last") won't return true for a doc with two "p". - typeof selector === "string" && rneedsContext.test( selector ) ? - jQuery( selector ) : - selector || [], - false - ).length; - } -} ); - - -// Initialize a jQuery object - - -// A central reference to the root jQuery(document) -var rootjQuery, - - // A simple way to check for HTML strings - // Prioritize #id over to avoid XSS via location.hash (#9521) - // Strict HTML recognition (#11290: must start with <) - // Shortcut simple #id case for speed - rquickExpr = /^(?:\s*(<[\w\W]+>)[^>]*|#([\w-]+))$/, - - init = jQuery.fn.init = function( selector, context, root ) { - var match, elem; - - // HANDLE: $(""), $(null), $(undefined), $(false) - if ( !selector ) { - return this; - } - - // Method init() accepts an alternate rootjQuery - // so migrate can support jQuery.sub (gh-2101) - root = root || rootjQuery; - - // Handle HTML strings - if ( typeof selector === "string" ) { - if ( selector[ 0 ] === "<" && - selector[ selector.length - 1 ] === ">" && - selector.length >= 3 ) { - - // Assume that strings that start and end with <> are HTML and skip the regex check - match = [ null, selector, null ]; - - } else { - match = rquickExpr.exec( selector ); - } - - // Match html or make sure no context is specified for #id - if ( match && ( match[ 1 ] || !context ) ) { - - // HANDLE: $(html) -> $(array) - if ( match[ 1 ] ) { - context = context instanceof jQuery ? context[ 0 ] : context; - - // Option to run scripts is true for back-compat - // Intentionally let the error be thrown if parseHTML is not present - jQuery.merge( this, jQuery.parseHTML( - match[ 1 ], - context && context.nodeType ? context.ownerDocument || context : document, - true - ) ); - - // HANDLE: $(html, props) - if ( rsingleTag.test( match[ 1 ] ) && jQuery.isPlainObject( context ) ) { - for ( match in context ) { - - // Properties of context are called as methods if possible - if ( isFunction( this[ match ] ) ) { - this[ match ]( context[ match ] ); - - // ...and otherwise set as attributes - } else { - this.attr( match, context[ match ] ); - } - } - } - - return this; - - // HANDLE: $(#id) - } else { - elem = document.getElementById( match[ 2 ] ); - - if ( elem ) { - - // Inject the element directly into the jQuery object - this[ 0 ] = elem; - this.length = 1; - } - return this; - } - - // HANDLE: $(expr, $(...)) - } else if ( !context || context.jquery ) { - return ( context || root ).find( selector ); - - // HANDLE: $(expr, context) - // (which is just equivalent to: $(context).find(expr) - } else { - return this.constructor( context ).find( selector ); - } - - // HANDLE: $(DOMElement) - } else if ( selector.nodeType ) { - this[ 0 ] = selector; - this.length = 1; - return this; - - // HANDLE: $(function) - // Shortcut for document ready - } else if ( isFunction( selector ) ) { - return root.ready !== undefined ? - root.ready( selector ) : - - // Execute immediately if ready is not present - selector( jQuery ); - } - - return jQuery.makeArray( selector, this ); - }; - -// Give the init function the jQuery prototype for later instantiation -init.prototype = jQuery.fn; - -// Initialize central reference -rootjQuery = jQuery( document ); - - -var rparentsprev = /^(?:parents|prev(?:Until|All))/, - - // Methods guaranteed to produce a unique set when starting from a unique set - guaranteedUnique = { - children: true, - contents: true, - next: true, - prev: true - }; - -jQuery.fn.extend( { - has: function( target ) { - var targets = jQuery( target, this ), - l = targets.length; - - return this.filter( function() { - var i = 0; - for ( ; i < l; i++ ) { - if ( jQuery.contains( this, targets[ i ] ) ) { - return true; - } - } - } ); - }, - - closest: function( selectors, context ) { - var cur, - i = 0, - l = this.length, - matched = [], - targets = typeof selectors !== "string" && jQuery( selectors ); - - // Positional selectors never match, since there's no _selection_ context - if ( !rneedsContext.test( selectors ) ) { - for ( ; i < l; i++ ) { - for ( cur = this[ i ]; cur && cur !== context; cur = cur.parentNode ) { - - // Always skip document fragments - if ( cur.nodeType < 11 && ( targets ? - targets.index( cur ) > -1 : - - // Don't pass non-elements to Sizzle - cur.nodeType === 1 && - jQuery.find.matchesSelector( cur, selectors ) ) ) { - - matched.push( cur ); - break; - } - } - } - } - - return this.pushStack( matched.length > 1 ? jQuery.uniqueSort( matched ) : matched ); - }, - - // Determine the position of an element within the set - index: function( elem ) { - - // No argument, return index in parent - if ( !elem ) { - return ( this[ 0 ] && this[ 0 ].parentNode ) ? this.first().prevAll().length : -1; - } - - // Index in selector - if ( typeof elem === "string" ) { - return indexOf.call( jQuery( elem ), this[ 0 ] ); - } - - // Locate the position of the desired element - return indexOf.call( this, - - // If it receives a jQuery object, the first element is used - elem.jquery ? elem[ 0 ] : elem - ); - }, - - add: function( selector, context ) { - return this.pushStack( - jQuery.uniqueSort( - jQuery.merge( this.get(), jQuery( selector, context ) ) - ) - ); - }, - - addBack: function( selector ) { - return this.add( selector == null ? - this.prevObject : this.prevObject.filter( selector ) - ); - } -} ); - -function sibling( cur, dir ) { - while ( ( cur = cur[ dir ] ) && cur.nodeType !== 1 ) {} - return cur; -} - -jQuery.each( { - parent: function( elem ) { - var parent = elem.parentNode; - return parent && parent.nodeType !== 11 ? parent : null; - }, - parents: function( elem ) { - return dir( elem, "parentNode" ); - }, - parentsUntil: function( elem, _i, until ) { - return dir( elem, "parentNode", until ); - }, - next: function( elem ) { - return sibling( elem, "nextSibling" ); - }, - prev: function( elem ) { - return sibling( elem, "previousSibling" ); - }, - nextAll: function( elem ) { - return dir( elem, "nextSibling" ); - }, - prevAll: function( elem ) { - return dir( elem, "previousSibling" ); - }, - nextUntil: function( elem, _i, until ) { - return dir( elem, "nextSibling", until ); - }, - prevUntil: function( elem, _i, until ) { - return dir( elem, "previousSibling", until ); - }, - siblings: function( elem ) { - return siblings( ( elem.parentNode || {} ).firstChild, elem ); - }, - children: function( elem ) { - return siblings( elem.firstChild ); - }, - contents: function( elem ) { - if ( elem.contentDocument != null && - - // Support: IE 11+ - // elements with no `data` attribute has an object - // `contentDocument` with a `null` prototype. - getProto( elem.contentDocument ) ) { - - return elem.contentDocument; - } - - // Support: IE 9 - 11 only, iOS 7 only, Android Browser <=4.3 only - // Treat the template element as a regular one in browsers that - // don't support it. - if ( nodeName( elem, "template" ) ) { - elem = elem.content || elem; - } - - return jQuery.merge( [], elem.childNodes ); - } -}, function( name, fn ) { - jQuery.fn[ name ] = function( until, selector ) { - var matched = jQuery.map( this, fn, until ); - - if ( name.slice( -5 ) !== "Until" ) { - selector = until; - } - - if ( selector && typeof selector === "string" ) { - matched = jQuery.filter( selector, matched ); - } - - if ( this.length > 1 ) { - - // Remove duplicates - if ( !guaranteedUnique[ name ] ) { - jQuery.uniqueSort( matched ); - } - - // Reverse order for parents* and prev-derivatives - if ( rparentsprev.test( name ) ) { - matched.reverse(); - } - } - - return this.pushStack( matched ); - }; -} ); -var rnothtmlwhite = ( /[^\x20\t\r\n\f]+/g ); - - - -// Convert String-formatted options into Object-formatted ones -function createOptions( options ) { - var object = {}; - jQuery.each( options.match( rnothtmlwhite ) || [], function( _, flag ) { - object[ flag ] = true; - } ); - return object; -} - -/* - * Create a callback list using the following parameters: - * - * options: an optional list of space-separated options that will change how - * the callback list behaves or a more traditional option object - * - * By default a callback list will act like an event callback list and can be - * "fired" multiple times. - * - * Possible options: - * - * once: will ensure the callback list can only be fired once (like a Deferred) - * - * memory: will keep track of previous values and will call any callback added - * after the list has been fired right away with the latest "memorized" - * values (like a Deferred) - * - * unique: will ensure a callback can only be added once (no duplicate in the list) - * - * stopOnFalse: interrupt callings when a callback returns false - * - */ -jQuery.Callbacks = function( options ) { - - // Convert options from String-formatted to Object-formatted if needed - // (we check in cache first) - options = typeof options === "string" ? - createOptions( options ) : - jQuery.extend( {}, options ); - - var // Flag to know if list is currently firing - firing, - - // Last fire value for non-forgettable lists - memory, - - // Flag to know if list was already fired - fired, - - // Flag to prevent firing - locked, - - // Actual callback list - list = [], - - // Queue of execution data for repeatable lists - queue = [], - - // Index of currently firing callback (modified by add/remove as needed) - firingIndex = -1, - - // Fire callbacks - fire = function() { - - // Enforce single-firing - locked = locked || options.once; - - // Execute callbacks for all pending executions, - // respecting firingIndex overrides and runtime changes - fired = firing = true; - for ( ; queue.length; firingIndex = -1 ) { - memory = queue.shift(); - while ( ++firingIndex < list.length ) { - - // Run callback and check for early termination - if ( list[ firingIndex ].apply( memory[ 0 ], memory[ 1 ] ) === false && - options.stopOnFalse ) { - - // Jump to end and forget the data so .add doesn't re-fire - firingIndex = list.length; - memory = false; - } - } - } - - // Forget the data if we're done with it - if ( !options.memory ) { - memory = false; - } - - firing = false; - - // Clean up if we're done firing for good - if ( locked ) { - - // Keep an empty list if we have data for future add calls - if ( memory ) { - list = []; - - // Otherwise, this object is spent - } else { - list = ""; - } - } - }, - - // Actual Callbacks object - self = { - - // Add a callback or a collection of callbacks to the list - add: function() { - if ( list ) { - - // If we have memory from a past run, we should fire after adding - if ( memory && !firing ) { - firingIndex = list.length - 1; - queue.push( memory ); - } - - ( function add( args ) { - jQuery.each( args, function( _, arg ) { - if ( isFunction( arg ) ) { - if ( !options.unique || !self.has( arg ) ) { - list.push( arg ); - } - } else if ( arg && arg.length && toType( arg ) !== "string" ) { - - // Inspect recursively - add( arg ); - } - } ); - } )( arguments ); - - if ( memory && !firing ) { - fire(); - } - } - return this; - }, - - // Remove a callback from the list - remove: function() { - jQuery.each( arguments, function( _, arg ) { - var index; - while ( ( index = jQuery.inArray( arg, list, index ) ) > -1 ) { - list.splice( index, 1 ); - - // Handle firing indexes - if ( index <= firingIndex ) { - firingIndex--; - } - } - } ); - return this; - }, - - // Check if a given callback is in the list. - // If no argument is given, return whether or not list has callbacks attached. - has: function( fn ) { - return fn ? - jQuery.inArray( fn, list ) > -1 : - list.length > 0; - }, - - // Remove all callbacks from the list - empty: function() { - if ( list ) { - list = []; - } - return this; - }, - - // Disable .fire and .add - // Abort any current/pending executions - // Clear all callbacks and values - disable: function() { - locked = queue = []; - list = memory = ""; - return this; - }, - disabled: function() { - return !list; - }, - - // Disable .fire - // Also disable .add unless we have memory (since it would have no effect) - // Abort any pending executions - lock: function() { - locked = queue = []; - if ( !memory && !firing ) { - list = memory = ""; - } - return this; - }, - locked: function() { - return !!locked; - }, - - // Call all callbacks with the given context and arguments - fireWith: function( context, args ) { - if ( !locked ) { - args = args || []; - args = [ context, args.slice ? args.slice() : args ]; - queue.push( args ); - if ( !firing ) { - fire(); - } - } - return this; - }, - - // Call all the callbacks with the given arguments - fire: function() { - self.fireWith( this, arguments ); - return this; - }, - - // To know if the callbacks have already been called at least once - fired: function() { - return !!fired; - } - }; - - return self; -}; - - -function Identity( v ) { - return v; -} -function Thrower( ex ) { - throw ex; -} - -function adoptValue( value, resolve, reject, noValue ) { - var method; - - try { - - // Check for promise aspect first to privilege synchronous behavior - if ( value && isFunction( ( method = value.promise ) ) ) { - method.call( value ).done( resolve ).fail( reject ); - - // Other thenables - } else if ( value && isFunction( ( method = value.then ) ) ) { - method.call( value, resolve, reject ); - - // Other non-thenables - } else { - - // Control `resolve` arguments by letting Array#slice cast boolean `noValue` to integer: - // * false: [ value ].slice( 0 ) => resolve( value ) - // * true: [ value ].slice( 1 ) => resolve() - resolve.apply( undefined, [ value ].slice( noValue ) ); - } - - // For Promises/A+, convert exceptions into rejections - // Since jQuery.when doesn't unwrap thenables, we can skip the extra checks appearing in - // Deferred#then to conditionally suppress rejection. - } catch ( value ) { - - // Support: Android 4.0 only - // Strict mode functions invoked without .call/.apply get global-object context - reject.apply( undefined, [ value ] ); - } -} - -jQuery.extend( { - - Deferred: function( func ) { - var tuples = [ - - // action, add listener, callbacks, - // ... .then handlers, argument index, [final state] - [ "notify", "progress", jQuery.Callbacks( "memory" ), - jQuery.Callbacks( "memory" ), 2 ], - [ "resolve", "done", jQuery.Callbacks( "once memory" ), - jQuery.Callbacks( "once memory" ), 0, "resolved" ], - [ "reject", "fail", jQuery.Callbacks( "once memory" ), - jQuery.Callbacks( "once memory" ), 1, "rejected" ] - ], - state = "pending", - promise = { - state: function() { - return state; - }, - always: function() { - deferred.done( arguments ).fail( arguments ); - return this; - }, - "catch": function( fn ) { - return promise.then( null, fn ); - }, - - // Keep pipe for back-compat - pipe: function( /* fnDone, fnFail, fnProgress */ ) { - var fns = arguments; - - return jQuery.Deferred( function( newDefer ) { - jQuery.each( tuples, function( _i, tuple ) { - - // Map tuples (progress, done, fail) to arguments (done, fail, progress) - var fn = isFunction( fns[ tuple[ 4 ] ] ) && fns[ tuple[ 4 ] ]; - - // deferred.progress(function() { bind to newDefer or newDefer.notify }) - // deferred.done(function() { bind to newDefer or newDefer.resolve }) - // deferred.fail(function() { bind to newDefer or newDefer.reject }) - deferred[ tuple[ 1 ] ]( function() { - var returned = fn && fn.apply( this, arguments ); - if ( returned && isFunction( returned.promise ) ) { - returned.promise() - .progress( newDefer.notify ) - .done( newDefer.resolve ) - .fail( newDefer.reject ); - } else { - newDefer[ tuple[ 0 ] + "With" ]( - this, - fn ? [ returned ] : arguments - ); - } - } ); - } ); - fns = null; - } ).promise(); - }, - then: function( onFulfilled, onRejected, onProgress ) { - var maxDepth = 0; - function resolve( depth, deferred, handler, special ) { - return function() { - var that = this, - args = arguments, - mightThrow = function() { - var returned, then; - - // Support: Promises/A+ section 2.3.3.3.3 - // https://promisesaplus.com/#point-59 - // Ignore double-resolution attempts - if ( depth < maxDepth ) { - return; - } - - returned = handler.apply( that, args ); - - // Support: Promises/A+ section 2.3.1 - // https://promisesaplus.com/#point-48 - if ( returned === deferred.promise() ) { - throw new TypeError( "Thenable self-resolution" ); - } - - // Support: Promises/A+ sections 2.3.3.1, 3.5 - // https://promisesaplus.com/#point-54 - // https://promisesaplus.com/#point-75 - // Retrieve `then` only once - then = returned && - - // Support: Promises/A+ section 2.3.4 - // https://promisesaplus.com/#point-64 - // Only check objects and functions for thenability - ( typeof returned === "object" || - typeof returned === "function" ) && - returned.then; - - // Handle a returned thenable - if ( isFunction( then ) ) { - - // Special processors (notify) just wait for resolution - if ( special ) { - then.call( - returned, - resolve( maxDepth, deferred, Identity, special ), - resolve( maxDepth, deferred, Thrower, special ) - ); - - // Normal processors (resolve) also hook into progress - } else { - - // ...and disregard older resolution values - maxDepth++; - - then.call( - returned, - resolve( maxDepth, deferred, Identity, special ), - resolve( maxDepth, deferred, Thrower, special ), - resolve( maxDepth, deferred, Identity, - deferred.notifyWith ) - ); - } - - // Handle all other returned values - } else { - - // Only substitute handlers pass on context - // and multiple values (non-spec behavior) - if ( handler !== Identity ) { - that = undefined; - args = [ returned ]; - } - - // Process the value(s) - // Default process is resolve - ( special || deferred.resolveWith )( that, args ); - } - }, - - // Only normal processors (resolve) catch and reject exceptions - process = special ? - mightThrow : - function() { - try { - mightThrow(); - } catch ( e ) { - - if ( jQuery.Deferred.exceptionHook ) { - jQuery.Deferred.exceptionHook( e, - process.stackTrace ); - } - - // Support: Promises/A+ section 2.3.3.3.4.1 - // https://promisesaplus.com/#point-61 - // Ignore post-resolution exceptions - if ( depth + 1 >= maxDepth ) { - - // Only substitute handlers pass on context - // and multiple values (non-spec behavior) - if ( handler !== Thrower ) { - that = undefined; - args = [ e ]; - } - - deferred.rejectWith( that, args ); - } - } - }; - - // Support: Promises/A+ section 2.3.3.3.1 - // https://promisesaplus.com/#point-57 - // Re-resolve promises immediately to dodge false rejection from - // subsequent errors - if ( depth ) { - process(); - } else { - - // Call an optional hook to record the stack, in case of exception - // since it's otherwise lost when execution goes async - if ( jQuery.Deferred.getStackHook ) { - process.stackTrace = jQuery.Deferred.getStackHook(); - } - window.setTimeout( process ); - } - }; - } - - return jQuery.Deferred( function( newDefer ) { - - // progress_handlers.add( ... ) - tuples[ 0 ][ 3 ].add( - resolve( - 0, - newDefer, - isFunction( onProgress ) ? - onProgress : - Identity, - newDefer.notifyWith - ) - ); - - // fulfilled_handlers.add( ... ) - tuples[ 1 ][ 3 ].add( - resolve( - 0, - newDefer, - isFunction( onFulfilled ) ? - onFulfilled : - Identity - ) - ); - - // rejected_handlers.add( ... ) - tuples[ 2 ][ 3 ].add( - resolve( - 0, - newDefer, - isFunction( onRejected ) ? - onRejected : - Thrower - ) - ); - } ).promise(); - }, - - // Get a promise for this deferred - // If obj is provided, the promise aspect is added to the object - promise: function( obj ) { - return obj != null ? jQuery.extend( obj, promise ) : promise; - } - }, - deferred = {}; - - // Add list-specific methods - jQuery.each( tuples, function( i, tuple ) { - var list = tuple[ 2 ], - stateString = tuple[ 5 ]; - - // promise.progress = list.add - // promise.done = list.add - // promise.fail = list.add - promise[ tuple[ 1 ] ] = list.add; - - // Handle state - if ( stateString ) { - list.add( - function() { - - // state = "resolved" (i.e., fulfilled) - // state = "rejected" - state = stateString; - }, - - // rejected_callbacks.disable - // fulfilled_callbacks.disable - tuples[ 3 - i ][ 2 ].disable, - - // rejected_handlers.disable - // fulfilled_handlers.disable - tuples[ 3 - i ][ 3 ].disable, - - // progress_callbacks.lock - tuples[ 0 ][ 2 ].lock, - - // progress_handlers.lock - tuples[ 0 ][ 3 ].lock - ); - } - - // progress_handlers.fire - // fulfilled_handlers.fire - // rejected_handlers.fire - list.add( tuple[ 3 ].fire ); - - // deferred.notify = function() { deferred.notifyWith(...) } - // deferred.resolve = function() { deferred.resolveWith(...) } - // deferred.reject = function() { deferred.rejectWith(...) } - deferred[ tuple[ 0 ] ] = function() { - deferred[ tuple[ 0 ] + "With" ]( this === deferred ? undefined : this, arguments ); - return this; - }; - - // deferred.notifyWith = list.fireWith - // deferred.resolveWith = list.fireWith - // deferred.rejectWith = list.fireWith - deferred[ tuple[ 0 ] + "With" ] = list.fireWith; - } ); - - // Make the deferred a promise - promise.promise( deferred ); - - // Call given func if any - if ( func ) { - func.call( deferred, deferred ); - } - - // All done! - return deferred; - }, - - // Deferred helper - when: function( singleValue ) { - var - - // count of uncompleted subordinates - remaining = arguments.length, - - // count of unprocessed arguments - i = remaining, - - // subordinate fulfillment data - resolveContexts = Array( i ), - resolveValues = slice.call( arguments ), - - // the primary Deferred - primary = jQuery.Deferred(), - - // subordinate callback factory - updateFunc = function( i ) { - return function( value ) { - resolveContexts[ i ] = this; - resolveValues[ i ] = arguments.length > 1 ? slice.call( arguments ) : value; - if ( !( --remaining ) ) { - primary.resolveWith( resolveContexts, resolveValues ); - } - }; - }; - - // Single- and empty arguments are adopted like Promise.resolve - if ( remaining <= 1 ) { - adoptValue( singleValue, primary.done( updateFunc( i ) ).resolve, primary.reject, - !remaining ); - - // Use .then() to unwrap secondary thenables (cf. gh-3000) - if ( primary.state() === "pending" || - isFunction( resolveValues[ i ] && resolveValues[ i ].then ) ) { - - return primary.then(); - } - } - - // Multiple arguments are aggregated like Promise.all array elements - while ( i-- ) { - adoptValue( resolveValues[ i ], updateFunc( i ), primary.reject ); - } - - return primary.promise(); - } -} ); - - -// These usually indicate a programmer mistake during development, -// warn about them ASAP rather than swallowing them by default. -var rerrorNames = /^(Eval|Internal|Range|Reference|Syntax|Type|URI)Error$/; - -jQuery.Deferred.exceptionHook = function( error, stack ) { - - // Support: IE 8 - 9 only - // Console exists when dev tools are open, which can happen at any time - if ( window.console && window.console.warn && error && rerrorNames.test( error.name ) ) { - window.console.warn( "jQuery.Deferred exception: " + error.message, error.stack, stack ); - } -}; - - - - -jQuery.readyException = function( error ) { - window.setTimeout( function() { - throw error; - } ); -}; - - - - -// The deferred used on DOM ready -var readyList = jQuery.Deferred(); - -jQuery.fn.ready = function( fn ) { - - readyList - .then( fn ) - - // Wrap jQuery.readyException in a function so that the lookup - // happens at the time of error handling instead of callback - // registration. - .catch( function( error ) { - jQuery.readyException( error ); - } ); - - return this; -}; - -jQuery.extend( { - - // Is the DOM ready to be used? Set to true once it occurs. - isReady: false, - - // A counter to track how many items to wait for before - // the ready event fires. See #6781 - readyWait: 1, - - // Handle when the DOM is ready - ready: function( wait ) { - - // Abort if there are pending holds or we're already ready - if ( wait === true ? --jQuery.readyWait : jQuery.isReady ) { - return; - } - - // Remember that the DOM is ready - jQuery.isReady = true; - - // If a normal DOM Ready event fired, decrement, and wait if need be - if ( wait !== true && --jQuery.readyWait > 0 ) { - return; - } - - // If there are functions bound, to execute - readyList.resolveWith( document, [ jQuery ] ); - } -} ); - -jQuery.ready.then = readyList.then; - -// The ready event handler and self cleanup method -function completed() { - document.removeEventListener( "DOMContentLoaded", completed ); - window.removeEventListener( "load", completed ); - jQuery.ready(); -} - -// Catch cases where $(document).ready() is called -// after the browser event has already occurred. -// Support: IE <=9 - 10 only -// Older IE sometimes signals "interactive" too soon -if ( document.readyState === "complete" || - ( document.readyState !== "loading" && !document.documentElement.doScroll ) ) { - - // Handle it asynchronously to allow scripts the opportunity to delay ready - window.setTimeout( jQuery.ready ); - -} else { - - // Use the handy event callback - document.addEventListener( "DOMContentLoaded", completed ); - - // A fallback to window.onload, that will always work - window.addEventListener( "load", completed ); -} - - - - -// Multifunctional method to get and set values of a collection -// The value/s can optionally be executed if it's a function -var access = function( elems, fn, key, value, chainable, emptyGet, raw ) { - var i = 0, - len = elems.length, - bulk = key == null; - - // Sets many values - if ( toType( key ) === "object" ) { - chainable = true; - for ( i in key ) { - access( elems, fn, i, key[ i ], true, emptyGet, raw ); - } - - // Sets one value - } else if ( value !== undefined ) { - chainable = true; - - if ( !isFunction( value ) ) { - raw = true; - } - - if ( bulk ) { - - // Bulk operations run against the entire set - if ( raw ) { - fn.call( elems, value ); - fn = null; - - // ...except when executing function values - } else { - bulk = fn; - fn = function( elem, _key, value ) { - return bulk.call( jQuery( elem ), value ); - }; - } - } - - if ( fn ) { - for ( ; i < len; i++ ) { - fn( - elems[ i ], key, raw ? - value : - value.call( elems[ i ], i, fn( elems[ i ], key ) ) - ); - } - } - } - - if ( chainable ) { - return elems; - } - - // Gets - if ( bulk ) { - return fn.call( elems ); - } - - return len ? fn( elems[ 0 ], key ) : emptyGet; -}; - - -// Matches dashed string for camelizing -var rmsPrefix = /^-ms-/, - rdashAlpha = /-([a-z])/g; - -// Used by camelCase as callback to replace() -function fcamelCase( _all, letter ) { - return letter.toUpperCase(); -} - -// Convert dashed to camelCase; used by the css and data modules -// Support: IE <=9 - 11, Edge 12 - 15 -// Microsoft forgot to hump their vendor prefix (#9572) -function camelCase( string ) { - return string.replace( rmsPrefix, "ms-" ).replace( rdashAlpha, fcamelCase ); -} -var acceptData = function( owner ) { - - // Accepts only: - // - Node - // - Node.ELEMENT_NODE - // - Node.DOCUMENT_NODE - // - Object - // - Any - return owner.nodeType === 1 || owner.nodeType === 9 || !( +owner.nodeType ); -}; - - - - -function Data() { - this.expando = jQuery.expando + Data.uid++; -} - -Data.uid = 1; - -Data.prototype = { - - cache: function( owner ) { - - // Check if the owner object already has a cache - var value = owner[ this.expando ]; - - // If not, create one - if ( !value ) { - value = {}; - - // We can accept data for non-element nodes in modern browsers, - // but we should not, see #8335. - // Always return an empty object. - if ( acceptData( owner ) ) { - - // If it is a node unlikely to be stringify-ed or looped over - // use plain assignment - if ( owner.nodeType ) { - owner[ this.expando ] = value; - - // Otherwise secure it in a non-enumerable property - // configurable must be true to allow the property to be - // deleted when data is removed - } else { - Object.defineProperty( owner, this.expando, { - value: value, - configurable: true - } ); - } - } - } - - return value; - }, - set: function( owner, data, value ) { - var prop, - cache = this.cache( owner ); - - // Handle: [ owner, key, value ] args - // Always use camelCase key (gh-2257) - if ( typeof data === "string" ) { - cache[ camelCase( data ) ] = value; - - // Handle: [ owner, { properties } ] args - } else { - - // Copy the properties one-by-one to the cache object - for ( prop in data ) { - cache[ camelCase( prop ) ] = data[ prop ]; - } - } - return cache; - }, - get: function( owner, key ) { - return key === undefined ? - this.cache( owner ) : - - // Always use camelCase key (gh-2257) - owner[ this.expando ] && owner[ this.expando ][ camelCase( key ) ]; - }, - access: function( owner, key, value ) { - - // In cases where either: - // - // 1. No key was specified - // 2. A string key was specified, but no value provided - // - // Take the "read" path and allow the get method to determine - // which value to return, respectively either: - // - // 1. The entire cache object - // 2. The data stored at the key - // - if ( key === undefined || - ( ( key && typeof key === "string" ) && value === undefined ) ) { - - return this.get( owner, key ); - } - - // When the key is not a string, or both a key and value - // are specified, set or extend (existing objects) with either: - // - // 1. An object of properties - // 2. A key and value - // - this.set( owner, key, value ); - - // Since the "set" path can have two possible entry points - // return the expected data based on which path was taken[*] - return value !== undefined ? value : key; - }, - remove: function( owner, key ) { - var i, - cache = owner[ this.expando ]; - - if ( cache === undefined ) { - return; - } - - if ( key !== undefined ) { - - // Support array or space separated string of keys - if ( Array.isArray( key ) ) { - - // If key is an array of keys... - // We always set camelCase keys, so remove that. - key = key.map( camelCase ); - } else { - key = camelCase( key ); - - // If a key with the spaces exists, use it. - // Otherwise, create an array by matching non-whitespace - key = key in cache ? - [ key ] : - ( key.match( rnothtmlwhite ) || [] ); - } - - i = key.length; - - while ( i-- ) { - delete cache[ key[ i ] ]; - } - } - - // Remove the expando if there's no more data - if ( key === undefined || jQuery.isEmptyObject( cache ) ) { - - // Support: Chrome <=35 - 45 - // Webkit & Blink performance suffers when deleting properties - // from DOM nodes, so set to undefined instead - // https://bugs.chromium.org/p/chromium/issues/detail?id=378607 (bug restricted) - if ( owner.nodeType ) { - owner[ this.expando ] = undefined; - } else { - delete owner[ this.expando ]; - } - } - }, - hasData: function( owner ) { - var cache = owner[ this.expando ]; - return cache !== undefined && !jQuery.isEmptyObject( cache ); - } -}; -var dataPriv = new Data(); - -var dataUser = new Data(); - - - -// Implementation Summary -// -// 1. Enforce API surface and semantic compatibility with 1.9.x branch -// 2. Improve the module's maintainability by reducing the storage -// paths to a single mechanism. -// 3. Use the same single mechanism to support "private" and "user" data. -// 4. _Never_ expose "private" data to user code (TODO: Drop _data, _removeData) -// 5. Avoid exposing implementation details on user objects (eg. expando properties) -// 6. Provide a clear path for implementation upgrade to WeakMap in 2014 - -var rbrace = /^(?:\{[\w\W]*\}|\[[\w\W]*\])$/, - rmultiDash = /[A-Z]/g; - -function getData( data ) { - if ( data === "true" ) { - return true; - } - - if ( data === "false" ) { - return false; - } - - if ( data === "null" ) { - return null; - } - - // Only convert to a number if it doesn't change the string - if ( data === +data + "" ) { - return +data; - } - - if ( rbrace.test( data ) ) { - return JSON.parse( data ); - } - - return data; -} - -function dataAttr( elem, key, data ) { - var name; - - // If nothing was found internally, try to fetch any - // data from the HTML5 data-* attribute - if ( data === undefined && elem.nodeType === 1 ) { - name = "data-" + key.replace( rmultiDash, "-$&" ).toLowerCase(); - data = elem.getAttribute( name ); - - if ( typeof data === "string" ) { - try { - data = getData( data ); - } catch ( e ) {} - - // Make sure we set the data so it isn't changed later - dataUser.set( elem, key, data ); - } else { - data = undefined; - } - } - return data; -} - -jQuery.extend( { - hasData: function( elem ) { - return dataUser.hasData( elem ) || dataPriv.hasData( elem ); - }, - - data: function( elem, name, data ) { - return dataUser.access( elem, name, data ); - }, - - removeData: function( elem, name ) { - dataUser.remove( elem, name ); - }, - - // TODO: Now that all calls to _data and _removeData have been replaced - // with direct calls to dataPriv methods, these can be deprecated. - _data: function( elem, name, data ) { - return dataPriv.access( elem, name, data ); - }, - - _removeData: function( elem, name ) { - dataPriv.remove( elem, name ); - } -} ); - -jQuery.fn.extend( { - data: function( key, value ) { - var i, name, data, - elem = this[ 0 ], - attrs = elem && elem.attributes; - - // Gets all values - if ( key === undefined ) { - if ( this.length ) { - data = dataUser.get( elem ); - - if ( elem.nodeType === 1 && !dataPriv.get( elem, "hasDataAttrs" ) ) { - i = attrs.length; - while ( i-- ) { - - // Support: IE 11 only - // The attrs elements can be null (#14894) - if ( attrs[ i ] ) { - name = attrs[ i ].name; - if ( name.indexOf( "data-" ) === 0 ) { - name = camelCase( name.slice( 5 ) ); - dataAttr( elem, name, data[ name ] ); - } - } - } - dataPriv.set( elem, "hasDataAttrs", true ); - } - } - - return data; - } - - // Sets multiple values - if ( typeof key === "object" ) { - return this.each( function() { - dataUser.set( this, key ); - } ); - } - - return access( this, function( value ) { - var data; - - // The calling jQuery object (element matches) is not empty - // (and therefore has an element appears at this[ 0 ]) and the - // `value` parameter was not undefined. An empty jQuery object - // will result in `undefined` for elem = this[ 0 ] which will - // throw an exception if an attempt to read a data cache is made. - if ( elem && value === undefined ) { - - // Attempt to get data from the cache - // The key will always be camelCased in Data - data = dataUser.get( elem, key ); - if ( data !== undefined ) { - return data; - } - - // Attempt to "discover" the data in - // HTML5 custom data-* attrs - data = dataAttr( elem, key ); - if ( data !== undefined ) { - return data; - } - - // We tried really hard, but the data doesn't exist. - return; - } - - // Set the data... - this.each( function() { - - // We always store the camelCased key - dataUser.set( this, key, value ); - } ); - }, null, value, arguments.length > 1, null, true ); - }, - - removeData: function( key ) { - return this.each( function() { - dataUser.remove( this, key ); - } ); - } -} ); - - -jQuery.extend( { - queue: function( elem, type, data ) { - var queue; - - if ( elem ) { - type = ( type || "fx" ) + "queue"; - queue = dataPriv.get( elem, type ); - - // Speed up dequeue by getting out quickly if this is just a lookup - if ( data ) { - if ( !queue || Array.isArray( data ) ) { - queue = dataPriv.access( elem, type, jQuery.makeArray( data ) ); - } else { - queue.push( data ); - } - } - return queue || []; - } - }, - - dequeue: function( elem, type ) { - type = type || "fx"; - - var queue = jQuery.queue( elem, type ), - startLength = queue.length, - fn = queue.shift(), - hooks = jQuery._queueHooks( elem, type ), - next = function() { - jQuery.dequeue( elem, type ); - }; - - // If the fx queue is dequeued, always remove the progress sentinel - if ( fn === "inprogress" ) { - fn = queue.shift(); - startLength--; - } - - if ( fn ) { - - // Add a progress sentinel to prevent the fx queue from being - // automatically dequeued - if ( type === "fx" ) { - queue.unshift( "inprogress" ); - } - - // Clear up the last queue stop function - delete hooks.stop; - fn.call( elem, next, hooks ); - } - - if ( !startLength && hooks ) { - hooks.empty.fire(); - } - }, - - // Not public - generate a queueHooks object, or return the current one - _queueHooks: function( elem, type ) { - var key = type + "queueHooks"; - return dataPriv.get( elem, key ) || dataPriv.access( elem, key, { - empty: jQuery.Callbacks( "once memory" ).add( function() { - dataPriv.remove( elem, [ type + "queue", key ] ); - } ) - } ); - } -} ); - -jQuery.fn.extend( { - queue: function( type, data ) { - var setter = 2; - - if ( typeof type !== "string" ) { - data = type; - type = "fx"; - setter--; - } - - if ( arguments.length < setter ) { - return jQuery.queue( this[ 0 ], type ); - } - - return data === undefined ? - this : - this.each( function() { - var queue = jQuery.queue( this, type, data ); - - // Ensure a hooks for this queue - jQuery._queueHooks( this, type ); - - if ( type === "fx" && queue[ 0 ] !== "inprogress" ) { - jQuery.dequeue( this, type ); - } - } ); - }, - dequeue: function( type ) { - return this.each( function() { - jQuery.dequeue( this, type ); - } ); - }, - clearQueue: function( type ) { - return this.queue( type || "fx", [] ); - }, - - // Get a promise resolved when queues of a certain type - // are emptied (fx is the type by default) - promise: function( type, obj ) { - var tmp, - count = 1, - defer = jQuery.Deferred(), - elements = this, - i = this.length, - resolve = function() { - if ( !( --count ) ) { - defer.resolveWith( elements, [ elements ] ); - } - }; - - if ( typeof type !== "string" ) { - obj = type; - type = undefined; - } - type = type || "fx"; - - while ( i-- ) { - tmp = dataPriv.get( elements[ i ], type + "queueHooks" ); - if ( tmp && tmp.empty ) { - count++; - tmp.empty.add( resolve ); - } - } - resolve(); - return defer.promise( obj ); - } -} ); -var pnum = ( /[+-]?(?:\d*\.|)\d+(?:[eE][+-]?\d+|)/ ).source; - -var rcssNum = new RegExp( "^(?:([+-])=|)(" + pnum + ")([a-z%]*)$", "i" ); - - -var cssExpand = [ "Top", "Right", "Bottom", "Left" ]; - -var documentElement = document.documentElement; - - - - var isAttached = function( elem ) { - return jQuery.contains( elem.ownerDocument, elem ); - }, - composed = { composed: true }; - - // Support: IE 9 - 11+, Edge 12 - 18+, iOS 10.0 - 10.2 only - // Check attachment across shadow DOM boundaries when possible (gh-3504) - // Support: iOS 10.0-10.2 only - // Early iOS 10 versions support `attachShadow` but not `getRootNode`, - // leading to errors. We need to check for `getRootNode`. - if ( documentElement.getRootNode ) { - isAttached = function( elem ) { - return jQuery.contains( elem.ownerDocument, elem ) || - elem.getRootNode( composed ) === elem.ownerDocument; - }; - } -var isHiddenWithinTree = function( elem, el ) { - - // isHiddenWithinTree might be called from jQuery#filter function; - // in that case, element will be second argument - elem = el || elem; - - // Inline style trumps all - return elem.style.display === "none" || - elem.style.display === "" && - - // Otherwise, check computed style - // Support: Firefox <=43 - 45 - // Disconnected elements can have computed display: none, so first confirm that elem is - // in the document. - isAttached( elem ) && - - jQuery.css( elem, "display" ) === "none"; - }; - - - -function adjustCSS( elem, prop, valueParts, tween ) { - var adjusted, scale, - maxIterations = 20, - currentValue = tween ? - function() { - return tween.cur(); - } : - function() { - return jQuery.css( elem, prop, "" ); - }, - initial = currentValue(), - unit = valueParts && valueParts[ 3 ] || ( jQuery.cssNumber[ prop ] ? "" : "px" ), - - // Starting value computation is required for potential unit mismatches - initialInUnit = elem.nodeType && - ( jQuery.cssNumber[ prop ] || unit !== "px" && +initial ) && - rcssNum.exec( jQuery.css( elem, prop ) ); - - if ( initialInUnit && initialInUnit[ 3 ] !== unit ) { - - // Support: Firefox <=54 - // Halve the iteration target value to prevent interference from CSS upper bounds (gh-2144) - initial = initial / 2; - - // Trust units reported by jQuery.css - unit = unit || initialInUnit[ 3 ]; - - // Iteratively approximate from a nonzero starting point - initialInUnit = +initial || 1; - - while ( maxIterations-- ) { - - // Evaluate and update our best guess (doubling guesses that zero out). - // Finish if the scale equals or crosses 1 (making the old*new product non-positive). - jQuery.style( elem, prop, initialInUnit + unit ); - if ( ( 1 - scale ) * ( 1 - ( scale = currentValue() / initial || 0.5 ) ) <= 0 ) { - maxIterations = 0; - } - initialInUnit = initialInUnit / scale; - - } - - initialInUnit = initialInUnit * 2; - jQuery.style( elem, prop, initialInUnit + unit ); - - // Make sure we update the tween properties later on - valueParts = valueParts || []; - } - - if ( valueParts ) { - initialInUnit = +initialInUnit || +initial || 0; - - // Apply relative offset (+=/-=) if specified - adjusted = valueParts[ 1 ] ? - initialInUnit + ( valueParts[ 1 ] + 1 ) * valueParts[ 2 ] : - +valueParts[ 2 ]; - if ( tween ) { - tween.unit = unit; - tween.start = initialInUnit; - tween.end = adjusted; - } - } - return adjusted; -} - - -var defaultDisplayMap = {}; - -function getDefaultDisplay( elem ) { - var temp, - doc = elem.ownerDocument, - nodeName = elem.nodeName, - display = defaultDisplayMap[ nodeName ]; - - if ( display ) { - return display; - } - - temp = doc.body.appendChild( doc.createElement( nodeName ) ); - display = jQuery.css( temp, "display" ); - - temp.parentNode.removeChild( temp ); - - if ( display === "none" ) { - display = "block"; - } - defaultDisplayMap[ nodeName ] = display; - - return display; -} - -function showHide( elements, show ) { - var display, elem, - values = [], - index = 0, - length = elements.length; - - // Determine new display value for elements that need to change - for ( ; index < length; index++ ) { - elem = elements[ index ]; - if ( !elem.style ) { - continue; - } - - display = elem.style.display; - if ( show ) { - - // Since we force visibility upon cascade-hidden elements, an immediate (and slow) - // check is required in this first loop unless we have a nonempty display value (either - // inline or about-to-be-restored) - if ( display === "none" ) { - values[ index ] = dataPriv.get( elem, "display" ) || null; - if ( !values[ index ] ) { - elem.style.display = ""; - } - } - if ( elem.style.display === "" && isHiddenWithinTree( elem ) ) { - values[ index ] = getDefaultDisplay( elem ); - } - } else { - if ( display !== "none" ) { - values[ index ] = "none"; - - // Remember what we're overwriting - dataPriv.set( elem, "display", display ); - } - } - } - - // Set the display of the elements in a second loop to avoid constant reflow - for ( index = 0; index < length; index++ ) { - if ( values[ index ] != null ) { - elements[ index ].style.display = values[ index ]; - } - } - - return elements; -} - -jQuery.fn.extend( { - show: function() { - return showHide( this, true ); - }, - hide: function() { - return showHide( this ); - }, - toggle: function( state ) { - if ( typeof state === "boolean" ) { - return state ? this.show() : this.hide(); - } - - return this.each( function() { - if ( isHiddenWithinTree( this ) ) { - jQuery( this ).show(); - } else { - jQuery( this ).hide(); - } - } ); - } -} ); -var rcheckableType = ( /^(?:checkbox|radio)$/i ); - -var rtagName = ( /<([a-z][^\/\0>\x20\t\r\n\f]*)/i ); - -var rscriptType = ( /^$|^module$|\/(?:java|ecma)script/i ); - - - -( function() { - var fragment = document.createDocumentFragment(), - div = fragment.appendChild( document.createElement( "div" ) ), - input = document.createElement( "input" ); - - // Support: Android 4.0 - 4.3 only - // Check state lost if the name is set (#11217) - // Support: Windows Web Apps (WWA) - // `name` and `type` must use .setAttribute for WWA (#14901) - input.setAttribute( "type", "radio" ); - input.setAttribute( "checked", "checked" ); - input.setAttribute( "name", "t" ); - - div.appendChild( input ); - - // Support: Android <=4.1 only - // Older WebKit doesn't clone checked state correctly in fragments - support.checkClone = div.cloneNode( true ).cloneNode( true ).lastChild.checked; - - // Support: IE <=11 only - // Make sure textarea (and checkbox) defaultValue is properly cloned - div.innerHTML = ""; - support.noCloneChecked = !!div.cloneNode( true ).lastChild.defaultValue; - - // Support: IE <=9 only - // IE <=9 replaces "; - support.option = !!div.lastChild; -} )(); - - -// We have to close these tags to support XHTML (#13200) -var wrapMap = { - - // XHTML parsers do not magically insert elements in the - // same way that tag soup parsers do. So we cannot shorten - // this by omitting or other required elements. - thead: [ 1, "", "
    " ], - col: [ 2, "", "
    " ], - tr: [ 2, "", "
    " ], - td: [ 3, "", "
    " ], - - _default: [ 0, "", "" ] -}; - -wrapMap.tbody = wrapMap.tfoot = wrapMap.colgroup = wrapMap.caption = wrapMap.thead; -wrapMap.th = wrapMap.td; - -// Support: IE <=9 only -if ( !support.option ) { - wrapMap.optgroup = wrapMap.option = [ 1, "" ]; -} - - -function getAll( context, tag ) { - - // Support: IE <=9 - 11 only - // Use typeof to avoid zero-argument method invocation on host objects (#15151) - var ret; - - if ( typeof context.getElementsByTagName !== "undefined" ) { - ret = context.getElementsByTagName( tag || "*" ); - - } else if ( typeof context.querySelectorAll !== "undefined" ) { - ret = context.querySelectorAll( tag || "*" ); - - } else { - ret = []; - } - - if ( tag === undefined || tag && nodeName( context, tag ) ) { - return jQuery.merge( [ context ], ret ); - } - - return ret; -} - - -// Mark scripts as having already been evaluated -function setGlobalEval( elems, refElements ) { - var i = 0, - l = elems.length; - - for ( ; i < l; i++ ) { - dataPriv.set( - elems[ i ], - "globalEval", - !refElements || dataPriv.get( refElements[ i ], "globalEval" ) - ); - } -} - - -var rhtml = /<|&#?\w+;/; - -function buildFragment( elems, context, scripts, selection, ignored ) { - var elem, tmp, tag, wrap, attached, j, - fragment = context.createDocumentFragment(), - nodes = [], - i = 0, - l = elems.length; - - for ( ; i < l; i++ ) { - elem = elems[ i ]; - - if ( elem || elem === 0 ) { - - // Add nodes directly - if ( toType( elem ) === "object" ) { - - // Support: Android <=4.0 only, PhantomJS 1 only - // push.apply(_, arraylike) throws on ancient WebKit - jQuery.merge( nodes, elem.nodeType ? [ elem ] : elem ); - - // Convert non-html into a text node - } else if ( !rhtml.test( elem ) ) { - nodes.push( context.createTextNode( elem ) ); - - // Convert html into DOM nodes - } else { - tmp = tmp || fragment.appendChild( context.createElement( "div" ) ); - - // Deserialize a standard representation - tag = ( rtagName.exec( elem ) || [ "", "" ] )[ 1 ].toLowerCase(); - wrap = wrapMap[ tag ] || wrapMap._default; - tmp.innerHTML = wrap[ 1 ] + jQuery.htmlPrefilter( elem ) + wrap[ 2 ]; - - // Descend through wrappers to the right content - j = wrap[ 0 ]; - while ( j-- ) { - tmp = tmp.lastChild; - } - - // Support: Android <=4.0 only, PhantomJS 1 only - // push.apply(_, arraylike) throws on ancient WebKit - jQuery.merge( nodes, tmp.childNodes ); - - // Remember the top-level container - tmp = fragment.firstChild; - - // Ensure the created nodes are orphaned (#12392) - tmp.textContent = ""; - } - } - } - - // Remove wrapper from fragment - fragment.textContent = ""; - - i = 0; - while ( ( elem = nodes[ i++ ] ) ) { - - // Skip elements already in the context collection (trac-4087) - if ( selection && jQuery.inArray( elem, selection ) > -1 ) { - if ( ignored ) { - ignored.push( elem ); - } - continue; - } - - attached = isAttached( elem ); - - // Append to fragment - tmp = getAll( fragment.appendChild( elem ), "script" ); - - // Preserve script evaluation history - if ( attached ) { - setGlobalEval( tmp ); - } - - // Capture executables - if ( scripts ) { - j = 0; - while ( ( elem = tmp[ j++ ] ) ) { - if ( rscriptType.test( elem.type || "" ) ) { - scripts.push( elem ); - } - } - } - } - - return fragment; -} - - -var rtypenamespace = /^([^.]*)(?:\.(.+)|)/; - -function returnTrue() { - return true; -} - -function returnFalse() { - return false; -} - -// Support: IE <=9 - 11+ -// focus() and blur() are asynchronous, except when they are no-op. -// So expect focus to be synchronous when the element is already active, -// and blur to be synchronous when the element is not already active. -// (focus and blur are always synchronous in other supported browsers, -// this just defines when we can count on it). -function expectSync( elem, type ) { - return ( elem === safeActiveElement() ) === ( type === "focus" ); -} - -// Support: IE <=9 only -// Accessing document.activeElement can throw unexpectedly -// https://bugs.jquery.com/ticket/13393 -function safeActiveElement() { - try { - return document.activeElement; - } catch ( err ) { } -} - -function on( elem, types, selector, data, fn, one ) { - var origFn, type; - - // Types can be a map of types/handlers - if ( typeof types === "object" ) { - - // ( types-Object, selector, data ) - if ( typeof selector !== "string" ) { - - // ( types-Object, data ) - data = data || selector; - selector = undefined; - } - for ( type in types ) { - on( elem, type, selector, data, types[ type ], one ); - } - return elem; - } - - if ( data == null && fn == null ) { - - // ( types, fn ) - fn = selector; - data = selector = undefined; - } else if ( fn == null ) { - if ( typeof selector === "string" ) { - - // ( types, selector, fn ) - fn = data; - data = undefined; - } else { - - // ( types, data, fn ) - fn = data; - data = selector; - selector = undefined; - } - } - if ( fn === false ) { - fn = returnFalse; - } else if ( !fn ) { - return elem; - } - - if ( one === 1 ) { - origFn = fn; - fn = function( event ) { - - // Can use an empty set, since event contains the info - jQuery().off( event ); - return origFn.apply( this, arguments ); - }; - - // Use same guid so caller can remove using origFn - fn.guid = origFn.guid || ( origFn.guid = jQuery.guid++ ); - } - return elem.each( function() { - jQuery.event.add( this, types, fn, data, selector ); - } ); -} - -/* - * Helper functions for managing events -- not part of the public interface. - * Props to Dean Edwards' addEvent library for many of the ideas. - */ -jQuery.event = { - - global: {}, - - add: function( elem, types, handler, data, selector ) { - - var handleObjIn, eventHandle, tmp, - events, t, handleObj, - special, handlers, type, namespaces, origType, - elemData = dataPriv.get( elem ); - - // Only attach events to objects that accept data - if ( !acceptData( elem ) ) { - return; - } - - // Caller can pass in an object of custom data in lieu of the handler - if ( handler.handler ) { - handleObjIn = handler; - handler = handleObjIn.handler; - selector = handleObjIn.selector; - } - - // Ensure that invalid selectors throw exceptions at attach time - // Evaluate against documentElement in case elem is a non-element node (e.g., document) - if ( selector ) { - jQuery.find.matchesSelector( documentElement, selector ); - } - - // Make sure that the handler has a unique ID, used to find/remove it later - if ( !handler.guid ) { - handler.guid = jQuery.guid++; - } - - // Init the element's event structure and main handler, if this is the first - if ( !( events = elemData.events ) ) { - events = elemData.events = Object.create( null ); - } - if ( !( eventHandle = elemData.handle ) ) { - eventHandle = elemData.handle = function( e ) { - - // Discard the second event of a jQuery.event.trigger() and - // when an event is called after a page has unloaded - return typeof jQuery !== "undefined" && jQuery.event.triggered !== e.type ? - jQuery.event.dispatch.apply( elem, arguments ) : undefined; - }; - } - - // Handle multiple events separated by a space - types = ( types || "" ).match( rnothtmlwhite ) || [ "" ]; - t = types.length; - while ( t-- ) { - tmp = rtypenamespace.exec( types[ t ] ) || []; - type = origType = tmp[ 1 ]; - namespaces = ( tmp[ 2 ] || "" ).split( "." ).sort(); - - // There *must* be a type, no attaching namespace-only handlers - if ( !type ) { - continue; - } - - // If event changes its type, use the special event handlers for the changed type - special = jQuery.event.special[ type ] || {}; - - // If selector defined, determine special event api type, otherwise given type - type = ( selector ? special.delegateType : special.bindType ) || type; - - // Update special based on newly reset type - special = jQuery.event.special[ type ] || {}; - - // handleObj is passed to all event handlers - handleObj = jQuery.extend( { - type: type, - origType: origType, - data: data, - handler: handler, - guid: handler.guid, - selector: selector, - needsContext: selector && jQuery.expr.match.needsContext.test( selector ), - namespace: namespaces.join( "." ) - }, handleObjIn ); - - // Init the event handler queue if we're the first - if ( !( handlers = events[ type ] ) ) { - handlers = events[ type ] = []; - handlers.delegateCount = 0; - - // Only use addEventListener if the special events handler returns false - if ( !special.setup || - special.setup.call( elem, data, namespaces, eventHandle ) === false ) { - - if ( elem.addEventListener ) { - elem.addEventListener( type, eventHandle ); - } - } - } - - if ( special.add ) { - special.add.call( elem, handleObj ); - - if ( !handleObj.handler.guid ) { - handleObj.handler.guid = handler.guid; - } - } - - // Add to the element's handler list, delegates in front - if ( selector ) { - handlers.splice( handlers.delegateCount++, 0, handleObj ); - } else { - handlers.push( handleObj ); - } - - // Keep track of which events have ever been used, for event optimization - jQuery.event.global[ type ] = true; - } - - }, - - // Detach an event or set of events from an element - remove: function( elem, types, handler, selector, mappedTypes ) { - - var j, origCount, tmp, - events, t, handleObj, - special, handlers, type, namespaces, origType, - elemData = dataPriv.hasData( elem ) && dataPriv.get( elem ); - - if ( !elemData || !( events = elemData.events ) ) { - return; - } - - // Once for each type.namespace in types; type may be omitted - types = ( types || "" ).match( rnothtmlwhite ) || [ "" ]; - t = types.length; - while ( t-- ) { - tmp = rtypenamespace.exec( types[ t ] ) || []; - type = origType = tmp[ 1 ]; - namespaces = ( tmp[ 2 ] || "" ).split( "." ).sort(); - - // Unbind all events (on this namespace, if provided) for the element - if ( !type ) { - for ( type in events ) { - jQuery.event.remove( elem, type + types[ t ], handler, selector, true ); - } - continue; - } - - special = jQuery.event.special[ type ] || {}; - type = ( selector ? special.delegateType : special.bindType ) || type; - handlers = events[ type ] || []; - tmp = tmp[ 2 ] && - new RegExp( "(^|\\.)" + namespaces.join( "\\.(?:.*\\.|)" ) + "(\\.|$)" ); - - // Remove matching events - origCount = j = handlers.length; - while ( j-- ) { - handleObj = handlers[ j ]; - - if ( ( mappedTypes || origType === handleObj.origType ) && - ( !handler || handler.guid === handleObj.guid ) && - ( !tmp || tmp.test( handleObj.namespace ) ) && - ( !selector || selector === handleObj.selector || - selector === "**" && handleObj.selector ) ) { - handlers.splice( j, 1 ); - - if ( handleObj.selector ) { - handlers.delegateCount--; - } - if ( special.remove ) { - special.remove.call( elem, handleObj ); - } - } - } - - // Remove generic event handler if we removed something and no more handlers exist - // (avoids potential for endless recursion during removal of special event handlers) - if ( origCount && !handlers.length ) { - if ( !special.teardown || - special.teardown.call( elem, namespaces, elemData.handle ) === false ) { - - jQuery.removeEvent( elem, type, elemData.handle ); - } - - delete events[ type ]; - } - } - - // Remove data and the expando if it's no longer used - if ( jQuery.isEmptyObject( events ) ) { - dataPriv.remove( elem, "handle events" ); - } - }, - - dispatch: function( nativeEvent ) { - - var i, j, ret, matched, handleObj, handlerQueue, - args = new Array( arguments.length ), - - // Make a writable jQuery.Event from the native event object - event = jQuery.event.fix( nativeEvent ), - - handlers = ( - dataPriv.get( this, "events" ) || Object.create( null ) - )[ event.type ] || [], - special = jQuery.event.special[ event.type ] || {}; - - // Use the fix-ed jQuery.Event rather than the (read-only) native event - args[ 0 ] = event; - - for ( i = 1; i < arguments.length; i++ ) { - args[ i ] = arguments[ i ]; - } - - event.delegateTarget = this; - - // Call the preDispatch hook for the mapped type, and let it bail if desired - if ( special.preDispatch && special.preDispatch.call( this, event ) === false ) { - return; - } - - // Determine handlers - handlerQueue = jQuery.event.handlers.call( this, event, handlers ); - - // Run delegates first; they may want to stop propagation beneath us - i = 0; - while ( ( matched = handlerQueue[ i++ ] ) && !event.isPropagationStopped() ) { - event.currentTarget = matched.elem; - - j = 0; - while ( ( handleObj = matched.handlers[ j++ ] ) && - !event.isImmediatePropagationStopped() ) { - - // If the event is namespaced, then each handler is only invoked if it is - // specially universal or its namespaces are a superset of the event's. - if ( !event.rnamespace || handleObj.namespace === false || - event.rnamespace.test( handleObj.namespace ) ) { - - event.handleObj = handleObj; - event.data = handleObj.data; - - ret = ( ( jQuery.event.special[ handleObj.origType ] || {} ).handle || - handleObj.handler ).apply( matched.elem, args ); - - if ( ret !== undefined ) { - if ( ( event.result = ret ) === false ) { - event.preventDefault(); - event.stopPropagation(); - } - } - } - } - } - - // Call the postDispatch hook for the mapped type - if ( special.postDispatch ) { - special.postDispatch.call( this, event ); - } - - return event.result; - }, - - handlers: function( event, handlers ) { - var i, handleObj, sel, matchedHandlers, matchedSelectors, - handlerQueue = [], - delegateCount = handlers.delegateCount, - cur = event.target; - - // Find delegate handlers - if ( delegateCount && - - // Support: IE <=9 - // Black-hole SVG instance trees (trac-13180) - cur.nodeType && - - // Support: Firefox <=42 - // Suppress spec-violating clicks indicating a non-primary pointer button (trac-3861) - // https://www.w3.org/TR/DOM-Level-3-Events/#event-type-click - // Support: IE 11 only - // ...but not arrow key "clicks" of radio inputs, which can have `button` -1 (gh-2343) - !( event.type === "click" && event.button >= 1 ) ) { - - for ( ; cur !== this; cur = cur.parentNode || this ) { - - // Don't check non-elements (#13208) - // Don't process clicks on disabled elements (#6911, #8165, #11382, #11764) - if ( cur.nodeType === 1 && !( event.type === "click" && cur.disabled === true ) ) { - matchedHandlers = []; - matchedSelectors = {}; - for ( i = 0; i < delegateCount; i++ ) { - handleObj = handlers[ i ]; - - // Don't conflict with Object.prototype properties (#13203) - sel = handleObj.selector + " "; - - if ( matchedSelectors[ sel ] === undefined ) { - matchedSelectors[ sel ] = handleObj.needsContext ? - jQuery( sel, this ).index( cur ) > -1 : - jQuery.find( sel, this, null, [ cur ] ).length; - } - if ( matchedSelectors[ sel ] ) { - matchedHandlers.push( handleObj ); - } - } - if ( matchedHandlers.length ) { - handlerQueue.push( { elem: cur, handlers: matchedHandlers } ); - } - } - } - } - - // Add the remaining (directly-bound) handlers - cur = this; - if ( delegateCount < handlers.length ) { - handlerQueue.push( { elem: cur, handlers: handlers.slice( delegateCount ) } ); - } - - return handlerQueue; - }, - - addProp: function( name, hook ) { - Object.defineProperty( jQuery.Event.prototype, name, { - enumerable: true, - configurable: true, - - get: isFunction( hook ) ? - function() { - if ( this.originalEvent ) { - return hook( this.originalEvent ); - } - } : - function() { - if ( this.originalEvent ) { - return this.originalEvent[ name ]; - } - }, - - set: function( value ) { - Object.defineProperty( this, name, { - enumerable: true, - configurable: true, - writable: true, - value: value - } ); - } - } ); - }, - - fix: function( originalEvent ) { - return originalEvent[ jQuery.expando ] ? - originalEvent : - new jQuery.Event( originalEvent ); - }, - - special: { - load: { - - // Prevent triggered image.load events from bubbling to window.load - noBubble: true - }, - click: { - - // Utilize native event to ensure correct state for checkable inputs - setup: function( data ) { - - // For mutual compressibility with _default, replace `this` access with a local var. - // `|| data` is dead code meant only to preserve the variable through minification. - var el = this || data; - - // Claim the first handler - if ( rcheckableType.test( el.type ) && - el.click && nodeName( el, "input" ) ) { - - // dataPriv.set( el, "click", ... ) - leverageNative( el, "click", returnTrue ); - } - - // Return false to allow normal processing in the caller - return false; - }, - trigger: function( data ) { - - // For mutual compressibility with _default, replace `this` access with a local var. - // `|| data` is dead code meant only to preserve the variable through minification. - var el = this || data; - - // Force setup before triggering a click - if ( rcheckableType.test( el.type ) && - el.click && nodeName( el, "input" ) ) { - - leverageNative( el, "click" ); - } - - // Return non-false to allow normal event-path propagation - return true; - }, - - // For cross-browser consistency, suppress native .click() on links - // Also prevent it if we're currently inside a leveraged native-event stack - _default: function( event ) { - var target = event.target; - return rcheckableType.test( target.type ) && - target.click && nodeName( target, "input" ) && - dataPriv.get( target, "click" ) || - nodeName( target, "a" ); - } - }, - - beforeunload: { - postDispatch: function( event ) { - - // Support: Firefox 20+ - // Firefox doesn't alert if the returnValue field is not set. - if ( event.result !== undefined && event.originalEvent ) { - event.originalEvent.returnValue = event.result; - } - } - } - } -}; - -// Ensure the presence of an event listener that handles manually-triggered -// synthetic events by interrupting progress until reinvoked in response to -// *native* events that it fires directly, ensuring that state changes have -// already occurred before other listeners are invoked. -function leverageNative( el, type, expectSync ) { - - // Missing expectSync indicates a trigger call, which must force setup through jQuery.event.add - if ( !expectSync ) { - if ( dataPriv.get( el, type ) === undefined ) { - jQuery.event.add( el, type, returnTrue ); - } - return; - } - - // Register the controller as a special universal handler for all event namespaces - dataPriv.set( el, type, false ); - jQuery.event.add( el, type, { - namespace: false, - handler: function( event ) { - var notAsync, result, - saved = dataPriv.get( this, type ); - - if ( ( event.isTrigger & 1 ) && this[ type ] ) { - - // Interrupt processing of the outer synthetic .trigger()ed event - // Saved data should be false in such cases, but might be a leftover capture object - // from an async native handler (gh-4350) - if ( !saved.length ) { - - // Store arguments for use when handling the inner native event - // There will always be at least one argument (an event object), so this array - // will not be confused with a leftover capture object. - saved = slice.call( arguments ); - dataPriv.set( this, type, saved ); - - // Trigger the native event and capture its result - // Support: IE <=9 - 11+ - // focus() and blur() are asynchronous - notAsync = expectSync( this, type ); - this[ type ](); - result = dataPriv.get( this, type ); - if ( saved !== result || notAsync ) { - dataPriv.set( this, type, false ); - } else { - result = {}; - } - if ( saved !== result ) { - - // Cancel the outer synthetic event - event.stopImmediatePropagation(); - event.preventDefault(); - - // Support: Chrome 86+ - // In Chrome, if an element having a focusout handler is blurred by - // clicking outside of it, it invokes the handler synchronously. If - // that handler calls `.remove()` on the element, the data is cleared, - // leaving `result` undefined. We need to guard against this. - return result && result.value; - } - - // If this is an inner synthetic event for an event with a bubbling surrogate - // (focus or blur), assume that the surrogate already propagated from triggering the - // native event and prevent that from happening again here. - // This technically gets the ordering wrong w.r.t. to `.trigger()` (in which the - // bubbling surrogate propagates *after* the non-bubbling base), but that seems - // less bad than duplication. - } else if ( ( jQuery.event.special[ type ] || {} ).delegateType ) { - event.stopPropagation(); - } - - // If this is a native event triggered above, everything is now in order - // Fire an inner synthetic event with the original arguments - } else if ( saved.length ) { - - // ...and capture the result - dataPriv.set( this, type, { - value: jQuery.event.trigger( - - // Support: IE <=9 - 11+ - // Extend with the prototype to reset the above stopImmediatePropagation() - jQuery.extend( saved[ 0 ], jQuery.Event.prototype ), - saved.slice( 1 ), - this - ) - } ); - - // Abort handling of the native event - event.stopImmediatePropagation(); - } - } - } ); -} - -jQuery.removeEvent = function( elem, type, handle ) { - - // This "if" is needed for plain objects - if ( elem.removeEventListener ) { - elem.removeEventListener( type, handle ); - } -}; - -jQuery.Event = function( src, props ) { - - // Allow instantiation without the 'new' keyword - if ( !( this instanceof jQuery.Event ) ) { - return new jQuery.Event( src, props ); - } - - // Event object - if ( src && src.type ) { - this.originalEvent = src; - this.type = src.type; - - // Events bubbling up the document may have been marked as prevented - // by a handler lower down the tree; reflect the correct value. - this.isDefaultPrevented = src.defaultPrevented || - src.defaultPrevented === undefined && - - // Support: Android <=2.3 only - src.returnValue === false ? - returnTrue : - returnFalse; - - // Create target properties - // Support: Safari <=6 - 7 only - // Target should not be a text node (#504, #13143) - this.target = ( src.target && src.target.nodeType === 3 ) ? - src.target.parentNode : - src.target; - - this.currentTarget = src.currentTarget; - this.relatedTarget = src.relatedTarget; - - // Event type - } else { - this.type = src; - } - - // Put explicitly provided properties onto the event object - if ( props ) { - jQuery.extend( this, props ); - } - - // Create a timestamp if incoming event doesn't have one - this.timeStamp = src && src.timeStamp || Date.now(); - - // Mark it as fixed - this[ jQuery.expando ] = true; -}; - -// jQuery.Event is based on DOM3 Events as specified by the ECMAScript Language Binding -// https://www.w3.org/TR/2003/WD-DOM-Level-3-Events-20030331/ecma-script-binding.html -jQuery.Event.prototype = { - constructor: jQuery.Event, - isDefaultPrevented: returnFalse, - isPropagationStopped: returnFalse, - isImmediatePropagationStopped: returnFalse, - isSimulated: false, - - preventDefault: function() { - var e = this.originalEvent; - - this.isDefaultPrevented = returnTrue; - - if ( e && !this.isSimulated ) { - e.preventDefault(); - } - }, - stopPropagation: function() { - var e = this.originalEvent; - - this.isPropagationStopped = returnTrue; - - if ( e && !this.isSimulated ) { - e.stopPropagation(); - } - }, - stopImmediatePropagation: function() { - var e = this.originalEvent; - - this.isImmediatePropagationStopped = returnTrue; - - if ( e && !this.isSimulated ) { - e.stopImmediatePropagation(); - } - - this.stopPropagation(); - } -}; - -// Includes all common event props including KeyEvent and MouseEvent specific props -jQuery.each( { - altKey: true, - bubbles: true, - cancelable: true, - changedTouches: true, - ctrlKey: true, - detail: true, - eventPhase: true, - metaKey: true, - pageX: true, - pageY: true, - shiftKey: true, - view: true, - "char": true, - code: true, - charCode: true, - key: true, - keyCode: true, - button: true, - buttons: true, - clientX: true, - clientY: true, - offsetX: true, - offsetY: true, - pointerId: true, - pointerType: true, - screenX: true, - screenY: true, - targetTouches: true, - toElement: true, - touches: true, - which: true -}, jQuery.event.addProp ); - -jQuery.each( { focus: "focusin", blur: "focusout" }, function( type, delegateType ) { - jQuery.event.special[ type ] = { - - // Utilize native event if possible so blur/focus sequence is correct - setup: function() { - - // Claim the first handler - // dataPriv.set( this, "focus", ... ) - // dataPriv.set( this, "blur", ... ) - leverageNative( this, type, expectSync ); - - // Return false to allow normal processing in the caller - return false; - }, - trigger: function() { - - // Force setup before trigger - leverageNative( this, type ); - - // Return non-false to allow normal event-path propagation - return true; - }, - - // Suppress native focus or blur as it's already being fired - // in leverageNative. - _default: function() { - return true; - }, - - delegateType: delegateType - }; -} ); - -// Create mouseenter/leave events using mouseover/out and event-time checks -// so that event delegation works in jQuery. -// Do the same for pointerenter/pointerleave and pointerover/pointerout -// -// Support: Safari 7 only -// Safari sends mouseenter too often; see: -// https://bugs.chromium.org/p/chromium/issues/detail?id=470258 -// for the description of the bug (it existed in older Chrome versions as well). -jQuery.each( { - mouseenter: "mouseover", - mouseleave: "mouseout", - pointerenter: "pointerover", - pointerleave: "pointerout" -}, function( orig, fix ) { - jQuery.event.special[ orig ] = { - delegateType: fix, - bindType: fix, - - handle: function( event ) { - var ret, - target = this, - related = event.relatedTarget, - handleObj = event.handleObj; - - // For mouseenter/leave call the handler if related is outside the target. - // NB: No relatedTarget if the mouse left/entered the browser window - if ( !related || ( related !== target && !jQuery.contains( target, related ) ) ) { - event.type = handleObj.origType; - ret = handleObj.handler.apply( this, arguments ); - event.type = fix; - } - return ret; - } - }; -} ); - -jQuery.fn.extend( { - - on: function( types, selector, data, fn ) { - return on( this, types, selector, data, fn ); - }, - one: function( types, selector, data, fn ) { - return on( this, types, selector, data, fn, 1 ); - }, - off: function( types, selector, fn ) { - var handleObj, type; - if ( types && types.preventDefault && types.handleObj ) { - - // ( event ) dispatched jQuery.Event - handleObj = types.handleObj; - jQuery( types.delegateTarget ).off( - handleObj.namespace ? - handleObj.origType + "." + handleObj.namespace : - handleObj.origType, - handleObj.selector, - handleObj.handler - ); - return this; - } - if ( typeof types === "object" ) { - - // ( types-object [, selector] ) - for ( type in types ) { - this.off( type, selector, types[ type ] ); - } - return this; - } - if ( selector === false || typeof selector === "function" ) { - - // ( types [, fn] ) - fn = selector; - selector = undefined; - } - if ( fn === false ) { - fn = returnFalse; - } - return this.each( function() { - jQuery.event.remove( this, types, fn, selector ); - } ); - } -} ); - - -var - - // Support: IE <=10 - 11, Edge 12 - 13 only - // In IE/Edge using regex groups here causes severe slowdowns. - // See https://connect.microsoft.com/IE/feedback/details/1736512/ - rnoInnerhtml = /\s*$/g; - -// Prefer a tbody over its parent table for containing new rows -function manipulationTarget( elem, content ) { - if ( nodeName( elem, "table" ) && - nodeName( content.nodeType !== 11 ? content : content.firstChild, "tr" ) ) { - - return jQuery( elem ).children( "tbody" )[ 0 ] || elem; - } - - return elem; -} - -// Replace/restore the type attribute of script elements for safe DOM manipulation -function disableScript( elem ) { - elem.type = ( elem.getAttribute( "type" ) !== null ) + "/" + elem.type; - return elem; -} -function restoreScript( elem ) { - if ( ( elem.type || "" ).slice( 0, 5 ) === "true/" ) { - elem.type = elem.type.slice( 5 ); - } else { - elem.removeAttribute( "type" ); - } - - return elem; -} - -function cloneCopyEvent( src, dest ) { - var i, l, type, pdataOld, udataOld, udataCur, events; - - if ( dest.nodeType !== 1 ) { - return; - } - - // 1. Copy private data: events, handlers, etc. - if ( dataPriv.hasData( src ) ) { - pdataOld = dataPriv.get( src ); - events = pdataOld.events; - - if ( events ) { - dataPriv.remove( dest, "handle events" ); - - for ( type in events ) { - for ( i = 0, l = events[ type ].length; i < l; i++ ) { - jQuery.event.add( dest, type, events[ type ][ i ] ); - } - } - } - } - - // 2. Copy user data - if ( dataUser.hasData( src ) ) { - udataOld = dataUser.access( src ); - udataCur = jQuery.extend( {}, udataOld ); - - dataUser.set( dest, udataCur ); - } -} - -// Fix IE bugs, see support tests -function fixInput( src, dest ) { - var nodeName = dest.nodeName.toLowerCase(); - - // Fails to persist the checked state of a cloned checkbox or radio button. - if ( nodeName === "input" && rcheckableType.test( src.type ) ) { - dest.checked = src.checked; - - // Fails to return the selected option to the default selected state when cloning options - } else if ( nodeName === "input" || nodeName === "textarea" ) { - dest.defaultValue = src.defaultValue; - } -} - -function domManip( collection, args, callback, ignored ) { - - // Flatten any nested arrays - args = flat( args ); - - var fragment, first, scripts, hasScripts, node, doc, - i = 0, - l = collection.length, - iNoClone = l - 1, - value = args[ 0 ], - valueIsFunction = isFunction( value ); - - // We can't cloneNode fragments that contain checked, in WebKit - if ( valueIsFunction || - ( l > 1 && typeof value === "string" && - !support.checkClone && rchecked.test( value ) ) ) { - return collection.each( function( index ) { - var self = collection.eq( index ); - if ( valueIsFunction ) { - args[ 0 ] = value.call( this, index, self.html() ); - } - domManip( self, args, callback, ignored ); - } ); - } - - if ( l ) { - fragment = buildFragment( args, collection[ 0 ].ownerDocument, false, collection, ignored ); - first = fragment.firstChild; - - if ( fragment.childNodes.length === 1 ) { - fragment = first; - } - - // Require either new content or an interest in ignored elements to invoke the callback - if ( first || ignored ) { - scripts = jQuery.map( getAll( fragment, "script" ), disableScript ); - hasScripts = scripts.length; - - // Use the original fragment for the last item - // instead of the first because it can end up - // being emptied incorrectly in certain situations (#8070). - for ( ; i < l; i++ ) { - node = fragment; - - if ( i !== iNoClone ) { - node = jQuery.clone( node, true, true ); - - // Keep references to cloned scripts for later restoration - if ( hasScripts ) { - - // Support: Android <=4.0 only, PhantomJS 1 only - // push.apply(_, arraylike) throws on ancient WebKit - jQuery.merge( scripts, getAll( node, "script" ) ); - } - } - - callback.call( collection[ i ], node, i ); - } - - if ( hasScripts ) { - doc = scripts[ scripts.length - 1 ].ownerDocument; - - // Reenable scripts - jQuery.map( scripts, restoreScript ); - - // Evaluate executable scripts on first document insertion - for ( i = 0; i < hasScripts; i++ ) { - node = scripts[ i ]; - if ( rscriptType.test( node.type || "" ) && - !dataPriv.access( node, "globalEval" ) && - jQuery.contains( doc, node ) ) { - - if ( node.src && ( node.type || "" ).toLowerCase() !== "module" ) { - - // Optional AJAX dependency, but won't run scripts if not present - if ( jQuery._evalUrl && !node.noModule ) { - jQuery._evalUrl( node.src, { - nonce: node.nonce || node.getAttribute( "nonce" ) - }, doc ); - } - } else { - DOMEval( node.textContent.replace( rcleanScript, "" ), node, doc ); - } - } - } - } - } - } - - return collection; -} - -function remove( elem, selector, keepData ) { - var node, - nodes = selector ? jQuery.filter( selector, elem ) : elem, - i = 0; - - for ( ; ( node = nodes[ i ] ) != null; i++ ) { - if ( !keepData && node.nodeType === 1 ) { - jQuery.cleanData( getAll( node ) ); - } - - if ( node.parentNode ) { - if ( keepData && isAttached( node ) ) { - setGlobalEval( getAll( node, "script" ) ); - } - node.parentNode.removeChild( node ); - } - } - - return elem; -} - -jQuery.extend( { - htmlPrefilter: function( html ) { - return html; - }, - - clone: function( elem, dataAndEvents, deepDataAndEvents ) { - var i, l, srcElements, destElements, - clone = elem.cloneNode( true ), - inPage = isAttached( elem ); - - // Fix IE cloning issues - if ( !support.noCloneChecked && ( elem.nodeType === 1 || elem.nodeType === 11 ) && - !jQuery.isXMLDoc( elem ) ) { - - // We eschew Sizzle here for performance reasons: https://jsperf.com/getall-vs-sizzle/2 - destElements = getAll( clone ); - srcElements = getAll( elem ); - - for ( i = 0, l = srcElements.length; i < l; i++ ) { - fixInput( srcElements[ i ], destElements[ i ] ); - } - } - - // Copy the events from the original to the clone - if ( dataAndEvents ) { - if ( deepDataAndEvents ) { - srcElements = srcElements || getAll( elem ); - destElements = destElements || getAll( clone ); - - for ( i = 0, l = srcElements.length; i < l; i++ ) { - cloneCopyEvent( srcElements[ i ], destElements[ i ] ); - } - } else { - cloneCopyEvent( elem, clone ); - } - } - - // Preserve script evaluation history - destElements = getAll( clone, "script" ); - if ( destElements.length > 0 ) { - setGlobalEval( destElements, !inPage && getAll( elem, "script" ) ); - } - - // Return the cloned set - return clone; - }, - - cleanData: function( elems ) { - var data, elem, type, - special = jQuery.event.special, - i = 0; - - for ( ; ( elem = elems[ i ] ) !== undefined; i++ ) { - if ( acceptData( elem ) ) { - if ( ( data = elem[ dataPriv.expando ] ) ) { - if ( data.events ) { - for ( type in data.events ) { - if ( special[ type ] ) { - jQuery.event.remove( elem, type ); - - // This is a shortcut to avoid jQuery.event.remove's overhead - } else { - jQuery.removeEvent( elem, type, data.handle ); - } - } - } - - // Support: Chrome <=35 - 45+ - // Assign undefined instead of using delete, see Data#remove - elem[ dataPriv.expando ] = undefined; - } - if ( elem[ dataUser.expando ] ) { - - // Support: Chrome <=35 - 45+ - // Assign undefined instead of using delete, see Data#remove - elem[ dataUser.expando ] = undefined; - } - } - } - } -} ); - -jQuery.fn.extend( { - detach: function( selector ) { - return remove( this, selector, true ); - }, - - remove: function( selector ) { - return remove( this, selector ); - }, - - text: function( value ) { - return access( this, function( value ) { - return value === undefined ? - jQuery.text( this ) : - this.empty().each( function() { - if ( this.nodeType === 1 || this.nodeType === 11 || this.nodeType === 9 ) { - this.textContent = value; - } - } ); - }, null, value, arguments.length ); - }, - - append: function() { - return domManip( this, arguments, function( elem ) { - if ( this.nodeType === 1 || this.nodeType === 11 || this.nodeType === 9 ) { - var target = manipulationTarget( this, elem ); - target.appendChild( elem ); - } - } ); - }, - - prepend: function() { - return domManip( this, arguments, function( elem ) { - if ( this.nodeType === 1 || this.nodeType === 11 || this.nodeType === 9 ) { - var target = manipulationTarget( this, elem ); - target.insertBefore( elem, target.firstChild ); - } - } ); - }, - - before: function() { - return domManip( this, arguments, function( elem ) { - if ( this.parentNode ) { - this.parentNode.insertBefore( elem, this ); - } - } ); - }, - - after: function() { - return domManip( this, arguments, function( elem ) { - if ( this.parentNode ) { - this.parentNode.insertBefore( elem, this.nextSibling ); - } - } ); - }, - - empty: function() { - var elem, - i = 0; - - for ( ; ( elem = this[ i ] ) != null; i++ ) { - if ( elem.nodeType === 1 ) { - - // Prevent memory leaks - jQuery.cleanData( getAll( elem, false ) ); - - // Remove any remaining nodes - elem.textContent = ""; - } - } - - return this; - }, - - clone: function( dataAndEvents, deepDataAndEvents ) { - dataAndEvents = dataAndEvents == null ? false : dataAndEvents; - deepDataAndEvents = deepDataAndEvents == null ? dataAndEvents : deepDataAndEvents; - - return this.map( function() { - return jQuery.clone( this, dataAndEvents, deepDataAndEvents ); - } ); - }, - - html: function( value ) { - return access( this, function( value ) { - var elem = this[ 0 ] || {}, - i = 0, - l = this.length; - - if ( value === undefined && elem.nodeType === 1 ) { - return elem.innerHTML; - } - - // See if we can take a shortcut and just use innerHTML - if ( typeof value === "string" && !rnoInnerhtml.test( value ) && - !wrapMap[ ( rtagName.exec( value ) || [ "", "" ] )[ 1 ].toLowerCase() ] ) { - - value = jQuery.htmlPrefilter( value ); - - try { - for ( ; i < l; i++ ) { - elem = this[ i ] || {}; - - // Remove element nodes and prevent memory leaks - if ( elem.nodeType === 1 ) { - jQuery.cleanData( getAll( elem, false ) ); - elem.innerHTML = value; - } - } - - elem = 0; - - // If using innerHTML throws an exception, use the fallback method - } catch ( e ) {} - } - - if ( elem ) { - this.empty().append( value ); - } - }, null, value, arguments.length ); - }, - - replaceWith: function() { - var ignored = []; - - // Make the changes, replacing each non-ignored context element with the new content - return domManip( this, arguments, function( elem ) { - var parent = this.parentNode; - - if ( jQuery.inArray( this, ignored ) < 0 ) { - jQuery.cleanData( getAll( this ) ); - if ( parent ) { - parent.replaceChild( elem, this ); - } - } - - // Force callback invocation - }, ignored ); - } -} ); - -jQuery.each( { - appendTo: "append", - prependTo: "prepend", - insertBefore: "before", - insertAfter: "after", - replaceAll: "replaceWith" -}, function( name, original ) { - jQuery.fn[ name ] = function( selector ) { - var elems, - ret = [], - insert = jQuery( selector ), - last = insert.length - 1, - i = 0; - - for ( ; i <= last; i++ ) { - elems = i === last ? this : this.clone( true ); - jQuery( insert[ i ] )[ original ]( elems ); - - // Support: Android <=4.0 only, PhantomJS 1 only - // .get() because push.apply(_, arraylike) throws on ancient WebKit - push.apply( ret, elems.get() ); - } - - return this.pushStack( ret ); - }; -} ); -var rnumnonpx = new RegExp( "^(" + pnum + ")(?!px)[a-z%]+$", "i" ); - -var getStyles = function( elem ) { - - // Support: IE <=11 only, Firefox <=30 (#15098, #14150) - // IE throws on elements created in popups - // FF meanwhile throws on frame elements through "defaultView.getComputedStyle" - var view = elem.ownerDocument.defaultView; - - if ( !view || !view.opener ) { - view = window; - } - - return view.getComputedStyle( elem ); - }; - -var swap = function( elem, options, callback ) { - var ret, name, - old = {}; - - // Remember the old values, and insert the new ones - for ( name in options ) { - old[ name ] = elem.style[ name ]; - elem.style[ name ] = options[ name ]; - } - - ret = callback.call( elem ); - - // Revert the old values - for ( name in options ) { - elem.style[ name ] = old[ name ]; - } - - return ret; -}; - - -var rboxStyle = new RegExp( cssExpand.join( "|" ), "i" ); - - - -( function() { - - // Executing both pixelPosition & boxSizingReliable tests require only one layout - // so they're executed at the same time to save the second computation. - function computeStyleTests() { - - // This is a singleton, we need to execute it only once - if ( !div ) { - return; - } - - container.style.cssText = "position:absolute;left:-11111px;width:60px;" + - "margin-top:1px;padding:0;border:0"; - div.style.cssText = - "position:relative;display:block;box-sizing:border-box;overflow:scroll;" + - "margin:auto;border:1px;padding:1px;" + - "width:60%;top:1%"; - documentElement.appendChild( container ).appendChild( div ); - - var divStyle = window.getComputedStyle( div ); - pixelPositionVal = divStyle.top !== "1%"; - - // Support: Android 4.0 - 4.3 only, Firefox <=3 - 44 - reliableMarginLeftVal = roundPixelMeasures( divStyle.marginLeft ) === 12; - - // Support: Android 4.0 - 4.3 only, Safari <=9.1 - 10.1, iOS <=7.0 - 9.3 - // Some styles come back with percentage values, even though they shouldn't - div.style.right = "60%"; - pixelBoxStylesVal = roundPixelMeasures( divStyle.right ) === 36; - - // Support: IE 9 - 11 only - // Detect misreporting of content dimensions for box-sizing:border-box elements - boxSizingReliableVal = roundPixelMeasures( divStyle.width ) === 36; - - // Support: IE 9 only - // Detect overflow:scroll screwiness (gh-3699) - // Support: Chrome <=64 - // Don't get tricked when zoom affects offsetWidth (gh-4029) - div.style.position = "absolute"; - scrollboxSizeVal = roundPixelMeasures( div.offsetWidth / 3 ) === 12; - - documentElement.removeChild( container ); - - // Nullify the div so it wouldn't be stored in the memory and - // it will also be a sign that checks already performed - div = null; - } - - function roundPixelMeasures( measure ) { - return Math.round( parseFloat( measure ) ); - } - - var pixelPositionVal, boxSizingReliableVal, scrollboxSizeVal, pixelBoxStylesVal, - reliableTrDimensionsVal, reliableMarginLeftVal, - container = document.createElement( "div" ), - div = document.createElement( "div" ); - - // Finish early in limited (non-browser) environments - if ( !div.style ) { - return; - } - - // Support: IE <=9 - 11 only - // Style of cloned element affects source element cloned (#8908) - div.style.backgroundClip = "content-box"; - div.cloneNode( true ).style.backgroundClip = ""; - support.clearCloneStyle = div.style.backgroundClip === "content-box"; - - jQuery.extend( support, { - boxSizingReliable: function() { - computeStyleTests(); - return boxSizingReliableVal; - }, - pixelBoxStyles: function() { - computeStyleTests(); - return pixelBoxStylesVal; - }, - pixelPosition: function() { - computeStyleTests(); - return pixelPositionVal; - }, - reliableMarginLeft: function() { - computeStyleTests(); - return reliableMarginLeftVal; - }, - scrollboxSize: function() { - computeStyleTests(); - return scrollboxSizeVal; - }, - - // Support: IE 9 - 11+, Edge 15 - 18+ - // IE/Edge misreport `getComputedStyle` of table rows with width/height - // set in CSS while `offset*` properties report correct values. - // Behavior in IE 9 is more subtle than in newer versions & it passes - // some versions of this test; make sure not to make it pass there! - // - // Support: Firefox 70+ - // Only Firefox includes border widths - // in computed dimensions. (gh-4529) - reliableTrDimensions: function() { - var table, tr, trChild, trStyle; - if ( reliableTrDimensionsVal == null ) { - table = document.createElement( "table" ); - tr = document.createElement( "tr" ); - trChild = document.createElement( "div" ); - - table.style.cssText = "position:absolute;left:-11111px;border-collapse:separate"; - tr.style.cssText = "border:1px solid"; - - // Support: Chrome 86+ - // Height set through cssText does not get applied. - // Computed height then comes back as 0. - tr.style.height = "1px"; - trChild.style.height = "9px"; - - // Support: Android 8 Chrome 86+ - // In our bodyBackground.html iframe, - // display for all div elements is set to "inline", - // which causes a problem only in Android 8 Chrome 86. - // Ensuring the div is display: block - // gets around this issue. - trChild.style.display = "block"; - - documentElement - .appendChild( table ) - .appendChild( tr ) - .appendChild( trChild ); - - trStyle = window.getComputedStyle( tr ); - reliableTrDimensionsVal = ( parseInt( trStyle.height, 10 ) + - parseInt( trStyle.borderTopWidth, 10 ) + - parseInt( trStyle.borderBottomWidth, 10 ) ) === tr.offsetHeight; - - documentElement.removeChild( table ); - } - return reliableTrDimensionsVal; - } - } ); -} )(); - - -function curCSS( elem, name, computed ) { - var width, minWidth, maxWidth, ret, - - // Support: Firefox 51+ - // Retrieving style before computed somehow - // fixes an issue with getting wrong values - // on detached elements - style = elem.style; - - computed = computed || getStyles( elem ); - - // getPropertyValue is needed for: - // .css('filter') (IE 9 only, #12537) - // .css('--customProperty) (#3144) - if ( computed ) { - ret = computed.getPropertyValue( name ) || computed[ name ]; - - if ( ret === "" && !isAttached( elem ) ) { - ret = jQuery.style( elem, name ); - } - - // A tribute to the "awesome hack by Dean Edwards" - // Android Browser returns percentage for some values, - // but width seems to be reliably pixels. - // This is against the CSSOM draft spec: - // https://drafts.csswg.org/cssom/#resolved-values - if ( !support.pixelBoxStyles() && rnumnonpx.test( ret ) && rboxStyle.test( name ) ) { - - // Remember the original values - width = style.width; - minWidth = style.minWidth; - maxWidth = style.maxWidth; - - // Put in the new values to get a computed value out - style.minWidth = style.maxWidth = style.width = ret; - ret = computed.width; - - // Revert the changed values - style.width = width; - style.minWidth = minWidth; - style.maxWidth = maxWidth; - } - } - - return ret !== undefined ? - - // Support: IE <=9 - 11 only - // IE returns zIndex value as an integer. - ret + "" : - ret; -} - - -function addGetHookIf( conditionFn, hookFn ) { - - // Define the hook, we'll check on the first run if it's really needed. - return { - get: function() { - if ( conditionFn() ) { - - // Hook not needed (or it's not possible to use it due - // to missing dependency), remove it. - delete this.get; - return; - } - - // Hook needed; redefine it so that the support test is not executed again. - return ( this.get = hookFn ).apply( this, arguments ); - } - }; -} - - -var cssPrefixes = [ "Webkit", "Moz", "ms" ], - emptyStyle = document.createElement( "div" ).style, - vendorProps = {}; - -// Return a vendor-prefixed property or undefined -function vendorPropName( name ) { - - // Check for vendor prefixed names - var capName = name[ 0 ].toUpperCase() + name.slice( 1 ), - i = cssPrefixes.length; - - while ( i-- ) { - name = cssPrefixes[ i ] + capName; - if ( name in emptyStyle ) { - return name; - } - } -} - -// Return a potentially-mapped jQuery.cssProps or vendor prefixed property -function finalPropName( name ) { - var final = jQuery.cssProps[ name ] || vendorProps[ name ]; - - if ( final ) { - return final; - } - if ( name in emptyStyle ) { - return name; - } - return vendorProps[ name ] = vendorPropName( name ) || name; -} - - -var - - // Swappable if display is none or starts with table - // except "table", "table-cell", or "table-caption" - // See here for display values: https://developer.mozilla.org/en-US/docs/CSS/display - rdisplayswap = /^(none|table(?!-c[ea]).+)/, - rcustomProp = /^--/, - cssShow = { position: "absolute", visibility: "hidden", display: "block" }, - cssNormalTransform = { - letterSpacing: "0", - fontWeight: "400" - }; - -function setPositiveNumber( _elem, value, subtract ) { - - // Any relative (+/-) values have already been - // normalized at this point - var matches = rcssNum.exec( value ); - return matches ? - - // Guard against undefined "subtract", e.g., when used as in cssHooks - Math.max( 0, matches[ 2 ] - ( subtract || 0 ) ) + ( matches[ 3 ] || "px" ) : - value; -} - -function boxModelAdjustment( elem, dimension, box, isBorderBox, styles, computedVal ) { - var i = dimension === "width" ? 1 : 0, - extra = 0, - delta = 0; - - // Adjustment may not be necessary - if ( box === ( isBorderBox ? "border" : "content" ) ) { - return 0; - } - - for ( ; i < 4; i += 2 ) { - - // Both box models exclude margin - if ( box === "margin" ) { - delta += jQuery.css( elem, box + cssExpand[ i ], true, styles ); - } - - // If we get here with a content-box, we're seeking "padding" or "border" or "margin" - if ( !isBorderBox ) { - - // Add padding - delta += jQuery.css( elem, "padding" + cssExpand[ i ], true, styles ); - - // For "border" or "margin", add border - if ( box !== "padding" ) { - delta += jQuery.css( elem, "border" + cssExpand[ i ] + "Width", true, styles ); - - // But still keep track of it otherwise - } else { - extra += jQuery.css( elem, "border" + cssExpand[ i ] + "Width", true, styles ); - } - - // If we get here with a border-box (content + padding + border), we're seeking "content" or - // "padding" or "margin" - } else { - - // For "content", subtract padding - if ( box === "content" ) { - delta -= jQuery.css( elem, "padding" + cssExpand[ i ], true, styles ); - } - - // For "content" or "padding", subtract border - if ( box !== "margin" ) { - delta -= jQuery.css( elem, "border" + cssExpand[ i ] + "Width", true, styles ); - } - } - } - - // Account for positive content-box scroll gutter when requested by providing computedVal - if ( !isBorderBox && computedVal >= 0 ) { - - // offsetWidth/offsetHeight is a rounded sum of content, padding, scroll gutter, and border - // Assuming integer scroll gutter, subtract the rest and round down - delta += Math.max( 0, Math.ceil( - elem[ "offset" + dimension[ 0 ].toUpperCase() + dimension.slice( 1 ) ] - - computedVal - - delta - - extra - - 0.5 - - // If offsetWidth/offsetHeight is unknown, then we can't determine content-box scroll gutter - // Use an explicit zero to avoid NaN (gh-3964) - ) ) || 0; - } - - return delta; -} - -function getWidthOrHeight( elem, dimension, extra ) { - - // Start with computed style - var styles = getStyles( elem ), - - // To avoid forcing a reflow, only fetch boxSizing if we need it (gh-4322). - // Fake content-box until we know it's needed to know the true value. - boxSizingNeeded = !support.boxSizingReliable() || extra, - isBorderBox = boxSizingNeeded && - jQuery.css( elem, "boxSizing", false, styles ) === "border-box", - valueIsBorderBox = isBorderBox, - - val = curCSS( elem, dimension, styles ), - offsetProp = "offset" + dimension[ 0 ].toUpperCase() + dimension.slice( 1 ); - - // Support: Firefox <=54 - // Return a confounding non-pixel value or feign ignorance, as appropriate. - if ( rnumnonpx.test( val ) ) { - if ( !extra ) { - return val; - } - val = "auto"; - } - - - // Support: IE 9 - 11 only - // Use offsetWidth/offsetHeight for when box sizing is unreliable. - // In those cases, the computed value can be trusted to be border-box. - if ( ( !support.boxSizingReliable() && isBorderBox || - - // Support: IE 10 - 11+, Edge 15 - 18+ - // IE/Edge misreport `getComputedStyle` of table rows with width/height - // set in CSS while `offset*` properties report correct values. - // Interestingly, in some cases IE 9 doesn't suffer from this issue. - !support.reliableTrDimensions() && nodeName( elem, "tr" ) || - - // Fall back to offsetWidth/offsetHeight when value is "auto" - // This happens for inline elements with no explicit setting (gh-3571) - val === "auto" || - - // Support: Android <=4.1 - 4.3 only - // Also use offsetWidth/offsetHeight for misreported inline dimensions (gh-3602) - !parseFloat( val ) && jQuery.css( elem, "display", false, styles ) === "inline" ) && - - // Make sure the element is visible & connected - elem.getClientRects().length ) { - - isBorderBox = jQuery.css( elem, "boxSizing", false, styles ) === "border-box"; - - // Where available, offsetWidth/offsetHeight approximate border box dimensions. - // Where not available (e.g., SVG), assume unreliable box-sizing and interpret the - // retrieved value as a content box dimension. - valueIsBorderBox = offsetProp in elem; - if ( valueIsBorderBox ) { - val = elem[ offsetProp ]; - } - } - - // Normalize "" and auto - val = parseFloat( val ) || 0; - - // Adjust for the element's box model - return ( val + - boxModelAdjustment( - elem, - dimension, - extra || ( isBorderBox ? "border" : "content" ), - valueIsBorderBox, - styles, - - // Provide the current computed size to request scroll gutter calculation (gh-3589) - val - ) - ) + "px"; -} - -jQuery.extend( { - - // Add in style property hooks for overriding the default - // behavior of getting and setting a style property - cssHooks: { - opacity: { - get: function( elem, computed ) { - if ( computed ) { - - // We should always get a number back from opacity - var ret = curCSS( elem, "opacity" ); - return ret === "" ? "1" : ret; - } - } - } - }, - - // Don't automatically add "px" to these possibly-unitless properties - cssNumber: { - "animationIterationCount": true, - "columnCount": true, - "fillOpacity": true, - "flexGrow": true, - "flexShrink": true, - "fontWeight": true, - "gridArea": true, - "gridColumn": true, - "gridColumnEnd": true, - "gridColumnStart": true, - "gridRow": true, - "gridRowEnd": true, - "gridRowStart": true, - "lineHeight": true, - "opacity": true, - "order": true, - "orphans": true, - "widows": true, - "zIndex": true, - "zoom": true - }, - - // Add in properties whose names you wish to fix before - // setting or getting the value - cssProps: {}, - - // Get and set the style property on a DOM Node - style: function( elem, name, value, extra ) { - - // Don't set styles on text and comment nodes - if ( !elem || elem.nodeType === 3 || elem.nodeType === 8 || !elem.style ) { - return; - } - - // Make sure that we're working with the right name - var ret, type, hooks, - origName = camelCase( name ), - isCustomProp = rcustomProp.test( name ), - style = elem.style; - - // Make sure that we're working with the right name. We don't - // want to query the value if it is a CSS custom property - // since they are user-defined. - if ( !isCustomProp ) { - name = finalPropName( origName ); - } - - // Gets hook for the prefixed version, then unprefixed version - hooks = jQuery.cssHooks[ name ] || jQuery.cssHooks[ origName ]; - - // Check if we're setting a value - if ( value !== undefined ) { - type = typeof value; - - // Convert "+=" or "-=" to relative numbers (#7345) - if ( type === "string" && ( ret = rcssNum.exec( value ) ) && ret[ 1 ] ) { - value = adjustCSS( elem, name, ret ); - - // Fixes bug #9237 - type = "number"; - } - - // Make sure that null and NaN values aren't set (#7116) - if ( value == null || value !== value ) { - return; - } - - // If a number was passed in, add the unit (except for certain CSS properties) - // The isCustomProp check can be removed in jQuery 4.0 when we only auto-append - // "px" to a few hardcoded values. - if ( type === "number" && !isCustomProp ) { - value += ret && ret[ 3 ] || ( jQuery.cssNumber[ origName ] ? "" : "px" ); - } - - // background-* props affect original clone's values - if ( !support.clearCloneStyle && value === "" && name.indexOf( "background" ) === 0 ) { - style[ name ] = "inherit"; - } - - // If a hook was provided, use that value, otherwise just set the specified value - if ( !hooks || !( "set" in hooks ) || - ( value = hooks.set( elem, value, extra ) ) !== undefined ) { - - if ( isCustomProp ) { - style.setProperty( name, value ); - } else { - style[ name ] = value; - } - } - - } else { - - // If a hook was provided get the non-computed value from there - if ( hooks && "get" in hooks && - ( ret = hooks.get( elem, false, extra ) ) !== undefined ) { - - return ret; - } - - // Otherwise just get the value from the style object - return style[ name ]; - } - }, - - css: function( elem, name, extra, styles ) { - var val, num, hooks, - origName = camelCase( name ), - isCustomProp = rcustomProp.test( name ); - - // Make sure that we're working with the right name. We don't - // want to modify the value if it is a CSS custom property - // since they are user-defined. - if ( !isCustomProp ) { - name = finalPropName( origName ); - } - - // Try prefixed name followed by the unprefixed name - hooks = jQuery.cssHooks[ name ] || jQuery.cssHooks[ origName ]; - - // If a hook was provided get the computed value from there - if ( hooks && "get" in hooks ) { - val = hooks.get( elem, true, extra ); - } - - // Otherwise, if a way to get the computed value exists, use that - if ( val === undefined ) { - val = curCSS( elem, name, styles ); - } - - // Convert "normal" to computed value - if ( val === "normal" && name in cssNormalTransform ) { - val = cssNormalTransform[ name ]; - } - - // Make numeric if forced or a qualifier was provided and val looks numeric - if ( extra === "" || extra ) { - num = parseFloat( val ); - return extra === true || isFinite( num ) ? num || 0 : val; - } - - return val; - } -} ); - -jQuery.each( [ "height", "width" ], function( _i, dimension ) { - jQuery.cssHooks[ dimension ] = { - get: function( elem, computed, extra ) { - if ( computed ) { - - // Certain elements can have dimension info if we invisibly show them - // but it must have a current display style that would benefit - return rdisplayswap.test( jQuery.css( elem, "display" ) ) && - - // Support: Safari 8+ - // Table columns in Safari have non-zero offsetWidth & zero - // getBoundingClientRect().width unless display is changed. - // Support: IE <=11 only - // Running getBoundingClientRect on a disconnected node - // in IE throws an error. - ( !elem.getClientRects().length || !elem.getBoundingClientRect().width ) ? - swap( elem, cssShow, function() { - return getWidthOrHeight( elem, dimension, extra ); - } ) : - getWidthOrHeight( elem, dimension, extra ); - } - }, - - set: function( elem, value, extra ) { - var matches, - styles = getStyles( elem ), - - // Only read styles.position if the test has a chance to fail - // to avoid forcing a reflow. - scrollboxSizeBuggy = !support.scrollboxSize() && - styles.position === "absolute", - - // To avoid forcing a reflow, only fetch boxSizing if we need it (gh-3991) - boxSizingNeeded = scrollboxSizeBuggy || extra, - isBorderBox = boxSizingNeeded && - jQuery.css( elem, "boxSizing", false, styles ) === "border-box", - subtract = extra ? - boxModelAdjustment( - elem, - dimension, - extra, - isBorderBox, - styles - ) : - 0; - - // Account for unreliable border-box dimensions by comparing offset* to computed and - // faking a content-box to get border and padding (gh-3699) - if ( isBorderBox && scrollboxSizeBuggy ) { - subtract -= Math.ceil( - elem[ "offset" + dimension[ 0 ].toUpperCase() + dimension.slice( 1 ) ] - - parseFloat( styles[ dimension ] ) - - boxModelAdjustment( elem, dimension, "border", false, styles ) - - 0.5 - ); - } - - // Convert to pixels if value adjustment is needed - if ( subtract && ( matches = rcssNum.exec( value ) ) && - ( matches[ 3 ] || "px" ) !== "px" ) { - - elem.style[ dimension ] = value; - value = jQuery.css( elem, dimension ); - } - - return setPositiveNumber( elem, value, subtract ); - } - }; -} ); - -jQuery.cssHooks.marginLeft = addGetHookIf( support.reliableMarginLeft, - function( elem, computed ) { - if ( computed ) { - return ( parseFloat( curCSS( elem, "marginLeft" ) ) || - elem.getBoundingClientRect().left - - swap( elem, { marginLeft: 0 }, function() { - return elem.getBoundingClientRect().left; - } ) - ) + "px"; - } - } -); - -// These hooks are used by animate to expand properties -jQuery.each( { - margin: "", - padding: "", - border: "Width" -}, function( prefix, suffix ) { - jQuery.cssHooks[ prefix + suffix ] = { - expand: function( value ) { - var i = 0, - expanded = {}, - - // Assumes a single number if not a string - parts = typeof value === "string" ? value.split( " " ) : [ value ]; - - for ( ; i < 4; i++ ) { - expanded[ prefix + cssExpand[ i ] + suffix ] = - parts[ i ] || parts[ i - 2 ] || parts[ 0 ]; - } - - return expanded; - } - }; - - if ( prefix !== "margin" ) { - jQuery.cssHooks[ prefix + suffix ].set = setPositiveNumber; - } -} ); - -jQuery.fn.extend( { - css: function( name, value ) { - return access( this, function( elem, name, value ) { - var styles, len, - map = {}, - i = 0; - - if ( Array.isArray( name ) ) { - styles = getStyles( elem ); - len = name.length; - - for ( ; i < len; i++ ) { - map[ name[ i ] ] = jQuery.css( elem, name[ i ], false, styles ); - } - - return map; - } - - return value !== undefined ? - jQuery.style( elem, name, value ) : - jQuery.css( elem, name ); - }, name, value, arguments.length > 1 ); - } -} ); - - -function Tween( elem, options, prop, end, easing ) { - return new Tween.prototype.init( elem, options, prop, end, easing ); -} -jQuery.Tween = Tween; - -Tween.prototype = { - constructor: Tween, - init: function( elem, options, prop, end, easing, unit ) { - this.elem = elem; - this.prop = prop; - this.easing = easing || jQuery.easing._default; - this.options = options; - this.start = this.now = this.cur(); - this.end = end; - this.unit = unit || ( jQuery.cssNumber[ prop ] ? "" : "px" ); - }, - cur: function() { - var hooks = Tween.propHooks[ this.prop ]; - - return hooks && hooks.get ? - hooks.get( this ) : - Tween.propHooks._default.get( this ); - }, - run: function( percent ) { - var eased, - hooks = Tween.propHooks[ this.prop ]; - - if ( this.options.duration ) { - this.pos = eased = jQuery.easing[ this.easing ]( - percent, this.options.duration * percent, 0, 1, this.options.duration - ); - } else { - this.pos = eased = percent; - } - this.now = ( this.end - this.start ) * eased + this.start; - - if ( this.options.step ) { - this.options.step.call( this.elem, this.now, this ); - } - - if ( hooks && hooks.set ) { - hooks.set( this ); - } else { - Tween.propHooks._default.set( this ); - } - return this; - } -}; - -Tween.prototype.init.prototype = Tween.prototype; - -Tween.propHooks = { - _default: { - get: function( tween ) { - var result; - - // Use a property on the element directly when it is not a DOM element, - // or when there is no matching style property that exists. - if ( tween.elem.nodeType !== 1 || - tween.elem[ tween.prop ] != null && tween.elem.style[ tween.prop ] == null ) { - return tween.elem[ tween.prop ]; - } - - // Passing an empty string as a 3rd parameter to .css will automatically - // attempt a parseFloat and fallback to a string if the parse fails. - // Simple values such as "10px" are parsed to Float; - // complex values such as "rotate(1rad)" are returned as-is. - result = jQuery.css( tween.elem, tween.prop, "" ); - - // Empty strings, null, undefined and "auto" are converted to 0. - return !result || result === "auto" ? 0 : result; - }, - set: function( tween ) { - - // Use step hook for back compat. - // Use cssHook if its there. - // Use .style if available and use plain properties where available. - if ( jQuery.fx.step[ tween.prop ] ) { - jQuery.fx.step[ tween.prop ]( tween ); - } else if ( tween.elem.nodeType === 1 && ( - jQuery.cssHooks[ tween.prop ] || - tween.elem.style[ finalPropName( tween.prop ) ] != null ) ) { - jQuery.style( tween.elem, tween.prop, tween.now + tween.unit ); - } else { - tween.elem[ tween.prop ] = tween.now; - } - } - } -}; - -// Support: IE <=9 only -// Panic based approach to setting things on disconnected nodes -Tween.propHooks.scrollTop = Tween.propHooks.scrollLeft = { - set: function( tween ) { - if ( tween.elem.nodeType && tween.elem.parentNode ) { - tween.elem[ tween.prop ] = tween.now; - } - } -}; - -jQuery.easing = { - linear: function( p ) { - return p; - }, - swing: function( p ) { - return 0.5 - Math.cos( p * Math.PI ) / 2; - }, - _default: "swing" -}; - -jQuery.fx = Tween.prototype.init; - -// Back compat <1.8 extension point -jQuery.fx.step = {}; - - - - -var - fxNow, inProgress, - rfxtypes = /^(?:toggle|show|hide)$/, - rrun = /queueHooks$/; - -function schedule() { - if ( inProgress ) { - if ( document.hidden === false && window.requestAnimationFrame ) { - window.requestAnimationFrame( schedule ); - } else { - window.setTimeout( schedule, jQuery.fx.interval ); - } - - jQuery.fx.tick(); - } -} - -// Animations created synchronously will run synchronously -function createFxNow() { - window.setTimeout( function() { - fxNow = undefined; - } ); - return ( fxNow = Date.now() ); -} - -// Generate parameters to create a standard animation -function genFx( type, includeWidth ) { - var which, - i = 0, - attrs = { height: type }; - - // If we include width, step value is 1 to do all cssExpand values, - // otherwise step value is 2 to skip over Left and Right - includeWidth = includeWidth ? 1 : 0; - for ( ; i < 4; i += 2 - includeWidth ) { - which = cssExpand[ i ]; - attrs[ "margin" + which ] = attrs[ "padding" + which ] = type; - } - - if ( includeWidth ) { - attrs.opacity = attrs.width = type; - } - - return attrs; -} - -function createTween( value, prop, animation ) { - var tween, - collection = ( Animation.tweeners[ prop ] || [] ).concat( Animation.tweeners[ "*" ] ), - index = 0, - length = collection.length; - for ( ; index < length; index++ ) { - if ( ( tween = collection[ index ].call( animation, prop, value ) ) ) { - - // We're done with this property - return tween; - } - } -} - -function defaultPrefilter( elem, props, opts ) { - var prop, value, toggle, hooks, oldfire, propTween, restoreDisplay, display, - isBox = "width" in props || "height" in props, - anim = this, - orig = {}, - style = elem.style, - hidden = elem.nodeType && isHiddenWithinTree( elem ), - dataShow = dataPriv.get( elem, "fxshow" ); - - // Queue-skipping animations hijack the fx hooks - if ( !opts.queue ) { - hooks = jQuery._queueHooks( elem, "fx" ); - if ( hooks.unqueued == null ) { - hooks.unqueued = 0; - oldfire = hooks.empty.fire; - hooks.empty.fire = function() { - if ( !hooks.unqueued ) { - oldfire(); - } - }; - } - hooks.unqueued++; - - anim.always( function() { - - // Ensure the complete handler is called before this completes - anim.always( function() { - hooks.unqueued--; - if ( !jQuery.queue( elem, "fx" ).length ) { - hooks.empty.fire(); - } - } ); - } ); - } - - // Detect show/hide animations - for ( prop in props ) { - value = props[ prop ]; - if ( rfxtypes.test( value ) ) { - delete props[ prop ]; - toggle = toggle || value === "toggle"; - if ( value === ( hidden ? "hide" : "show" ) ) { - - // Pretend to be hidden if this is a "show" and - // there is still data from a stopped show/hide - if ( value === "show" && dataShow && dataShow[ prop ] !== undefined ) { - hidden = true; - - // Ignore all other no-op show/hide data - } else { - continue; - } - } - orig[ prop ] = dataShow && dataShow[ prop ] || jQuery.style( elem, prop ); - } - } - - // Bail out if this is a no-op like .hide().hide() - propTween = !jQuery.isEmptyObject( props ); - if ( !propTween && jQuery.isEmptyObject( orig ) ) { - return; - } - - // Restrict "overflow" and "display" styles during box animations - if ( isBox && elem.nodeType === 1 ) { - - // Support: IE <=9 - 11, Edge 12 - 15 - // Record all 3 overflow attributes because IE does not infer the shorthand - // from identically-valued overflowX and overflowY and Edge just mirrors - // the overflowX value there. - opts.overflow = [ style.overflow, style.overflowX, style.overflowY ]; - - // Identify a display type, preferring old show/hide data over the CSS cascade - restoreDisplay = dataShow && dataShow.display; - if ( restoreDisplay == null ) { - restoreDisplay = dataPriv.get( elem, "display" ); - } - display = jQuery.css( elem, "display" ); - if ( display === "none" ) { - if ( restoreDisplay ) { - display = restoreDisplay; - } else { - - // Get nonempty value(s) by temporarily forcing visibility - showHide( [ elem ], true ); - restoreDisplay = elem.style.display || restoreDisplay; - display = jQuery.css( elem, "display" ); - showHide( [ elem ] ); - } - } - - // Animate inline elements as inline-block - if ( display === "inline" || display === "inline-block" && restoreDisplay != null ) { - if ( jQuery.css( elem, "float" ) === "none" ) { - - // Restore the original display value at the end of pure show/hide animations - if ( !propTween ) { - anim.done( function() { - style.display = restoreDisplay; - } ); - if ( restoreDisplay == null ) { - display = style.display; - restoreDisplay = display === "none" ? "" : display; - } - } - style.display = "inline-block"; - } - } - } - - if ( opts.overflow ) { - style.overflow = "hidden"; - anim.always( function() { - style.overflow = opts.overflow[ 0 ]; - style.overflowX = opts.overflow[ 1 ]; - style.overflowY = opts.overflow[ 2 ]; - } ); - } - - // Implement show/hide animations - propTween = false; - for ( prop in orig ) { - - // General show/hide setup for this element animation - if ( !propTween ) { - if ( dataShow ) { - if ( "hidden" in dataShow ) { - hidden = dataShow.hidden; - } - } else { - dataShow = dataPriv.access( elem, "fxshow", { display: restoreDisplay } ); - } - - // Store hidden/visible for toggle so `.stop().toggle()` "reverses" - if ( toggle ) { - dataShow.hidden = !hidden; - } - - // Show elements before animating them - if ( hidden ) { - showHide( [ elem ], true ); - } - - /* eslint-disable no-loop-func */ - - anim.done( function() { - - /* eslint-enable no-loop-func */ - - // The final step of a "hide" animation is actually hiding the element - if ( !hidden ) { - showHide( [ elem ] ); - } - dataPriv.remove( elem, "fxshow" ); - for ( prop in orig ) { - jQuery.style( elem, prop, orig[ prop ] ); - } - } ); - } - - // Per-property setup - propTween = createTween( hidden ? dataShow[ prop ] : 0, prop, anim ); - if ( !( prop in dataShow ) ) { - dataShow[ prop ] = propTween.start; - if ( hidden ) { - propTween.end = propTween.start; - propTween.start = 0; - } - } - } -} - -function propFilter( props, specialEasing ) { - var index, name, easing, value, hooks; - - // camelCase, specialEasing and expand cssHook pass - for ( index in props ) { - name = camelCase( index ); - easing = specialEasing[ name ]; - value = props[ index ]; - if ( Array.isArray( value ) ) { - easing = value[ 1 ]; - value = props[ index ] = value[ 0 ]; - } - - if ( index !== name ) { - props[ name ] = value; - delete props[ index ]; - } - - hooks = jQuery.cssHooks[ name ]; - if ( hooks && "expand" in hooks ) { - value = hooks.expand( value ); - delete props[ name ]; - - // Not quite $.extend, this won't overwrite existing keys. - // Reusing 'index' because we have the correct "name" - for ( index in value ) { - if ( !( index in props ) ) { - props[ index ] = value[ index ]; - specialEasing[ index ] = easing; - } - } - } else { - specialEasing[ name ] = easing; - } - } -} - -function Animation( elem, properties, options ) { - var result, - stopped, - index = 0, - length = Animation.prefilters.length, - deferred = jQuery.Deferred().always( function() { - - // Don't match elem in the :animated selector - delete tick.elem; - } ), - tick = function() { - if ( stopped ) { - return false; - } - var currentTime = fxNow || createFxNow(), - remaining = Math.max( 0, animation.startTime + animation.duration - currentTime ), - - // Support: Android 2.3 only - // Archaic crash bug won't allow us to use `1 - ( 0.5 || 0 )` (#12497) - temp = remaining / animation.duration || 0, - percent = 1 - temp, - index = 0, - length = animation.tweens.length; - - for ( ; index < length; index++ ) { - animation.tweens[ index ].run( percent ); - } - - deferred.notifyWith( elem, [ animation, percent, remaining ] ); - - // If there's more to do, yield - if ( percent < 1 && length ) { - return remaining; - } - - // If this was an empty animation, synthesize a final progress notification - if ( !length ) { - deferred.notifyWith( elem, [ animation, 1, 0 ] ); - } - - // Resolve the animation and report its conclusion - deferred.resolveWith( elem, [ animation ] ); - return false; - }, - animation = deferred.promise( { - elem: elem, - props: jQuery.extend( {}, properties ), - opts: jQuery.extend( true, { - specialEasing: {}, - easing: jQuery.easing._default - }, options ), - originalProperties: properties, - originalOptions: options, - startTime: fxNow || createFxNow(), - duration: options.duration, - tweens: [], - createTween: function( prop, end ) { - var tween = jQuery.Tween( elem, animation.opts, prop, end, - animation.opts.specialEasing[ prop ] || animation.opts.easing ); - animation.tweens.push( tween ); - return tween; - }, - stop: function( gotoEnd ) { - var index = 0, - - // If we are going to the end, we want to run all the tweens - // otherwise we skip this part - length = gotoEnd ? animation.tweens.length : 0; - if ( stopped ) { - return this; - } - stopped = true; - for ( ; index < length; index++ ) { - animation.tweens[ index ].run( 1 ); - } - - // Resolve when we played the last frame; otherwise, reject - if ( gotoEnd ) { - deferred.notifyWith( elem, [ animation, 1, 0 ] ); - deferred.resolveWith( elem, [ animation, gotoEnd ] ); - } else { - deferred.rejectWith( elem, [ animation, gotoEnd ] ); - } - return this; - } - } ), - props = animation.props; - - propFilter( props, animation.opts.specialEasing ); - - for ( ; index < length; index++ ) { - result = Animation.prefilters[ index ].call( animation, elem, props, animation.opts ); - if ( result ) { - if ( isFunction( result.stop ) ) { - jQuery._queueHooks( animation.elem, animation.opts.queue ).stop = - result.stop.bind( result ); - } - return result; - } - } - - jQuery.map( props, createTween, animation ); - - if ( isFunction( animation.opts.start ) ) { - animation.opts.start.call( elem, animation ); - } - - // Attach callbacks from options - animation - .progress( animation.opts.progress ) - .done( animation.opts.done, animation.opts.complete ) - .fail( animation.opts.fail ) - .always( animation.opts.always ); - - jQuery.fx.timer( - jQuery.extend( tick, { - elem: elem, - anim: animation, - queue: animation.opts.queue - } ) - ); - - return animation; -} - -jQuery.Animation = jQuery.extend( Animation, { - - tweeners: { - "*": [ function( prop, value ) { - var tween = this.createTween( prop, value ); - adjustCSS( tween.elem, prop, rcssNum.exec( value ), tween ); - return tween; - } ] - }, - - tweener: function( props, callback ) { - if ( isFunction( props ) ) { - callback = props; - props = [ "*" ]; - } else { - props = props.match( rnothtmlwhite ); - } - - var prop, - index = 0, - length = props.length; - - for ( ; index < length; index++ ) { - prop = props[ index ]; - Animation.tweeners[ prop ] = Animation.tweeners[ prop ] || []; - Animation.tweeners[ prop ].unshift( callback ); - } - }, - - prefilters: [ defaultPrefilter ], - - prefilter: function( callback, prepend ) { - if ( prepend ) { - Animation.prefilters.unshift( callback ); - } else { - Animation.prefilters.push( callback ); - } - } -} ); - -jQuery.speed = function( speed, easing, fn ) { - var opt = speed && typeof speed === "object" ? jQuery.extend( {}, speed ) : { - complete: fn || !fn && easing || - isFunction( speed ) && speed, - duration: speed, - easing: fn && easing || easing && !isFunction( easing ) && easing - }; - - // Go to the end state if fx are off - if ( jQuery.fx.off ) { - opt.duration = 0; - - } else { - if ( typeof opt.duration !== "number" ) { - if ( opt.duration in jQuery.fx.speeds ) { - opt.duration = jQuery.fx.speeds[ opt.duration ]; - - } else { - opt.duration = jQuery.fx.speeds._default; - } - } - } - - // Normalize opt.queue - true/undefined/null -> "fx" - if ( opt.queue == null || opt.queue === true ) { - opt.queue = "fx"; - } - - // Queueing - opt.old = opt.complete; - - opt.complete = function() { - if ( isFunction( opt.old ) ) { - opt.old.call( this ); - } - - if ( opt.queue ) { - jQuery.dequeue( this, opt.queue ); - } - }; - - return opt; -}; - -jQuery.fn.extend( { - fadeTo: function( speed, to, easing, callback ) { - - // Show any hidden elements after setting opacity to 0 - return this.filter( isHiddenWithinTree ).css( "opacity", 0 ).show() - - // Animate to the value specified - .end().animate( { opacity: to }, speed, easing, callback ); - }, - animate: function( prop, speed, easing, callback ) { - var empty = jQuery.isEmptyObject( prop ), - optall = jQuery.speed( speed, easing, callback ), - doAnimation = function() { - - // Operate on a copy of prop so per-property easing won't be lost - var anim = Animation( this, jQuery.extend( {}, prop ), optall ); - - // Empty animations, or finishing resolves immediately - if ( empty || dataPriv.get( this, "finish" ) ) { - anim.stop( true ); - } - }; - - doAnimation.finish = doAnimation; - - return empty || optall.queue === false ? - this.each( doAnimation ) : - this.queue( optall.queue, doAnimation ); - }, - stop: function( type, clearQueue, gotoEnd ) { - var stopQueue = function( hooks ) { - var stop = hooks.stop; - delete hooks.stop; - stop( gotoEnd ); - }; - - if ( typeof type !== "string" ) { - gotoEnd = clearQueue; - clearQueue = type; - type = undefined; - } - if ( clearQueue ) { - this.queue( type || "fx", [] ); - } - - return this.each( function() { - var dequeue = true, - index = type != null && type + "queueHooks", - timers = jQuery.timers, - data = dataPriv.get( this ); - - if ( index ) { - if ( data[ index ] && data[ index ].stop ) { - stopQueue( data[ index ] ); - } - } else { - for ( index in data ) { - if ( data[ index ] && data[ index ].stop && rrun.test( index ) ) { - stopQueue( data[ index ] ); - } - } - } - - for ( index = timers.length; index--; ) { - if ( timers[ index ].elem === this && - ( type == null || timers[ index ].queue === type ) ) { - - timers[ index ].anim.stop( gotoEnd ); - dequeue = false; - timers.splice( index, 1 ); - } - } - - // Start the next in the queue if the last step wasn't forced. - // Timers currently will call their complete callbacks, which - // will dequeue but only if they were gotoEnd. - if ( dequeue || !gotoEnd ) { - jQuery.dequeue( this, type ); - } - } ); - }, - finish: function( type ) { - if ( type !== false ) { - type = type || "fx"; - } - return this.each( function() { - var index, - data = dataPriv.get( this ), - queue = data[ type + "queue" ], - hooks = data[ type + "queueHooks" ], - timers = jQuery.timers, - length = queue ? queue.length : 0; - - // Enable finishing flag on private data - data.finish = true; - - // Empty the queue first - jQuery.queue( this, type, [] ); - - if ( hooks && hooks.stop ) { - hooks.stop.call( this, true ); - } - - // Look for any active animations, and finish them - for ( index = timers.length; index--; ) { - if ( timers[ index ].elem === this && timers[ index ].queue === type ) { - timers[ index ].anim.stop( true ); - timers.splice( index, 1 ); - } - } - - // Look for any animations in the old queue and finish them - for ( index = 0; index < length; index++ ) { - if ( queue[ index ] && queue[ index ].finish ) { - queue[ index ].finish.call( this ); - } - } - - // Turn off finishing flag - delete data.finish; - } ); - } -} ); - -jQuery.each( [ "toggle", "show", "hide" ], function( _i, name ) { - var cssFn = jQuery.fn[ name ]; - jQuery.fn[ name ] = function( speed, easing, callback ) { - return speed == null || typeof speed === "boolean" ? - cssFn.apply( this, arguments ) : - this.animate( genFx( name, true ), speed, easing, callback ); - }; -} ); - -// Generate shortcuts for custom animations -jQuery.each( { - slideDown: genFx( "show" ), - slideUp: genFx( "hide" ), - slideToggle: genFx( "toggle" ), - fadeIn: { opacity: "show" }, - fadeOut: { opacity: "hide" }, - fadeToggle: { opacity: "toggle" } -}, function( name, props ) { - jQuery.fn[ name ] = function( speed, easing, callback ) { - return this.animate( props, speed, easing, callback ); - }; -} ); - -jQuery.timers = []; -jQuery.fx.tick = function() { - var timer, - i = 0, - timers = jQuery.timers; - - fxNow = Date.now(); - - for ( ; i < timers.length; i++ ) { - timer = timers[ i ]; - - // Run the timer and safely remove it when done (allowing for external removal) - if ( !timer() && timers[ i ] === timer ) { - timers.splice( i--, 1 ); - } - } - - if ( !timers.length ) { - jQuery.fx.stop(); - } - fxNow = undefined; -}; - -jQuery.fx.timer = function( timer ) { - jQuery.timers.push( timer ); - jQuery.fx.start(); -}; - -jQuery.fx.interval = 13; -jQuery.fx.start = function() { - if ( inProgress ) { - return; - } - - inProgress = true; - schedule(); -}; - -jQuery.fx.stop = function() { - inProgress = null; -}; - -jQuery.fx.speeds = { - slow: 600, - fast: 200, - - // Default speed - _default: 400 -}; - - -// Based off of the plugin by Clint Helfers, with permission. -// https://web.archive.org/web/20100324014747/http://blindsignals.com/index.php/2009/07/jquery-delay/ -jQuery.fn.delay = function( time, type ) { - time = jQuery.fx ? jQuery.fx.speeds[ time ] || time : time; - type = type || "fx"; - - return this.queue( type, function( next, hooks ) { - var timeout = window.setTimeout( next, time ); - hooks.stop = function() { - window.clearTimeout( timeout ); - }; - } ); -}; - - -( function() { - var input = document.createElement( "input" ), - select = document.createElement( "select" ), - opt = select.appendChild( document.createElement( "option" ) ); - - input.type = "checkbox"; - - // Support: Android <=4.3 only - // Default value for a checkbox should be "on" - support.checkOn = input.value !== ""; - - // Support: IE <=11 only - // Must access selectedIndex to make default options select - support.optSelected = opt.selected; - - // Support: IE <=11 only - // An input loses its value after becoming a radio - input = document.createElement( "input" ); - input.value = "t"; - input.type = "radio"; - support.radioValue = input.value === "t"; -} )(); - - -var boolHook, - attrHandle = jQuery.expr.attrHandle; - -jQuery.fn.extend( { - attr: function( name, value ) { - return access( this, jQuery.attr, name, value, arguments.length > 1 ); - }, - - removeAttr: function( name ) { - return this.each( function() { - jQuery.removeAttr( this, name ); - } ); - } -} ); - -jQuery.extend( { - attr: function( elem, name, value ) { - var ret, hooks, - nType = elem.nodeType; - - // Don't get/set attributes on text, comment and attribute nodes - if ( nType === 3 || nType === 8 || nType === 2 ) { - return; - } - - // Fallback to prop when attributes are not supported - if ( typeof elem.getAttribute === "undefined" ) { - return jQuery.prop( elem, name, value ); - } - - // Attribute hooks are determined by the lowercase version - // Grab necessary hook if one is defined - if ( nType !== 1 || !jQuery.isXMLDoc( elem ) ) { - hooks = jQuery.attrHooks[ name.toLowerCase() ] || - ( jQuery.expr.match.bool.test( name ) ? boolHook : undefined ); - } - - if ( value !== undefined ) { - if ( value === null ) { - jQuery.removeAttr( elem, name ); - return; - } - - if ( hooks && "set" in hooks && - ( ret = hooks.set( elem, value, name ) ) !== undefined ) { - return ret; - } - - elem.setAttribute( name, value + "" ); - return value; - } - - if ( hooks && "get" in hooks && ( ret = hooks.get( elem, name ) ) !== null ) { - return ret; - } - - ret = jQuery.find.attr( elem, name ); - - // Non-existent attributes return null, we normalize to undefined - return ret == null ? undefined : ret; - }, - - attrHooks: { - type: { - set: function( elem, value ) { - if ( !support.radioValue && value === "radio" && - nodeName( elem, "input" ) ) { - var val = elem.value; - elem.setAttribute( "type", value ); - if ( val ) { - elem.value = val; - } - return value; - } - } - } - }, - - removeAttr: function( elem, value ) { - var name, - i = 0, - - // Attribute names can contain non-HTML whitespace characters - // https://html.spec.whatwg.org/multipage/syntax.html#attributes-2 - attrNames = value && value.match( rnothtmlwhite ); - - if ( attrNames && elem.nodeType === 1 ) { - while ( ( name = attrNames[ i++ ] ) ) { - elem.removeAttribute( name ); - } - } - } -} ); - -// Hooks for boolean attributes -boolHook = { - set: function( elem, value, name ) { - if ( value === false ) { - - // Remove boolean attributes when set to false - jQuery.removeAttr( elem, name ); - } else { - elem.setAttribute( name, name ); - } - return name; - } -}; - -jQuery.each( jQuery.expr.match.bool.source.match( /\w+/g ), function( _i, name ) { - var getter = attrHandle[ name ] || jQuery.find.attr; - - attrHandle[ name ] = function( elem, name, isXML ) { - var ret, handle, - lowercaseName = name.toLowerCase(); - - if ( !isXML ) { - - // Avoid an infinite loop by temporarily removing this function from the getter - handle = attrHandle[ lowercaseName ]; - attrHandle[ lowercaseName ] = ret; - ret = getter( elem, name, isXML ) != null ? - lowercaseName : - null; - attrHandle[ lowercaseName ] = handle; - } - return ret; - }; -} ); - - - - -var rfocusable = /^(?:input|select|textarea|button)$/i, - rclickable = /^(?:a|area)$/i; - -jQuery.fn.extend( { - prop: function( name, value ) { - return access( this, jQuery.prop, name, value, arguments.length > 1 ); - }, - - removeProp: function( name ) { - return this.each( function() { - delete this[ jQuery.propFix[ name ] || name ]; - } ); - } -} ); - -jQuery.extend( { - prop: function( elem, name, value ) { - var ret, hooks, - nType = elem.nodeType; - - // Don't get/set properties on text, comment and attribute nodes - if ( nType === 3 || nType === 8 || nType === 2 ) { - return; - } - - if ( nType !== 1 || !jQuery.isXMLDoc( elem ) ) { - - // Fix name and attach hooks - name = jQuery.propFix[ name ] || name; - hooks = jQuery.propHooks[ name ]; - } - - if ( value !== undefined ) { - if ( hooks && "set" in hooks && - ( ret = hooks.set( elem, value, name ) ) !== undefined ) { - return ret; - } - - return ( elem[ name ] = value ); - } - - if ( hooks && "get" in hooks && ( ret = hooks.get( elem, name ) ) !== null ) { - return ret; - } - - return elem[ name ]; - }, - - propHooks: { - tabIndex: { - get: function( elem ) { - - // Support: IE <=9 - 11 only - // elem.tabIndex doesn't always return the - // correct value when it hasn't been explicitly set - // https://web.archive.org/web/20141116233347/http://fluidproject.org/blog/2008/01/09/getting-setting-and-removing-tabindex-values-with-javascript/ - // Use proper attribute retrieval(#12072) - var tabindex = jQuery.find.attr( elem, "tabindex" ); - - if ( tabindex ) { - return parseInt( tabindex, 10 ); - } - - if ( - rfocusable.test( elem.nodeName ) || - rclickable.test( elem.nodeName ) && - elem.href - ) { - return 0; - } - - return -1; - } - } - }, - - propFix: { - "for": "htmlFor", - "class": "className" - } -} ); - -// Support: IE <=11 only -// Accessing the selectedIndex property -// forces the browser to respect setting selected -// on the option -// The getter ensures a default option is selected -// when in an optgroup -// eslint rule "no-unused-expressions" is disabled for this code -// since it considers such accessions noop -if ( !support.optSelected ) { - jQuery.propHooks.selected = { - get: function( elem ) { - - /* eslint no-unused-expressions: "off" */ - - var parent = elem.parentNode; - if ( parent && parent.parentNode ) { - parent.parentNode.selectedIndex; - } - return null; - }, - set: function( elem ) { - - /* eslint no-unused-expressions: "off" */ - - var parent = elem.parentNode; - if ( parent ) { - parent.selectedIndex; - - if ( parent.parentNode ) { - parent.parentNode.selectedIndex; - } - } - } - }; -} - -jQuery.each( [ - "tabIndex", - "readOnly", - "maxLength", - "cellSpacing", - "cellPadding", - "rowSpan", - "colSpan", - "useMap", - "frameBorder", - "contentEditable" -], function() { - jQuery.propFix[ this.toLowerCase() ] = this; -} ); - - - - - // Strip and collapse whitespace according to HTML spec - // https://infra.spec.whatwg.org/#strip-and-collapse-ascii-whitespace - function stripAndCollapse( value ) { - var tokens = value.match( rnothtmlwhite ) || []; - return tokens.join( " " ); - } - - -function getClass( elem ) { - return elem.getAttribute && elem.getAttribute( "class" ) || ""; -} - -function classesToArray( value ) { - if ( Array.isArray( value ) ) { - return value; - } - if ( typeof value === "string" ) { - return value.match( rnothtmlwhite ) || []; - } - return []; -} - -jQuery.fn.extend( { - addClass: function( value ) { - var classes, elem, cur, curValue, clazz, j, finalValue, - i = 0; - - if ( isFunction( value ) ) { - return this.each( function( j ) { - jQuery( this ).addClass( value.call( this, j, getClass( this ) ) ); - } ); - } - - classes = classesToArray( value ); - - if ( classes.length ) { - while ( ( elem = this[ i++ ] ) ) { - curValue = getClass( elem ); - cur = elem.nodeType === 1 && ( " " + stripAndCollapse( curValue ) + " " ); - - if ( cur ) { - j = 0; - while ( ( clazz = classes[ j++ ] ) ) { - if ( cur.indexOf( " " + clazz + " " ) < 0 ) { - cur += clazz + " "; - } - } - - // Only assign if different to avoid unneeded rendering. - finalValue = stripAndCollapse( cur ); - if ( curValue !== finalValue ) { - elem.setAttribute( "class", finalValue ); - } - } - } - } - - return this; - }, - - removeClass: function( value ) { - var classes, elem, cur, curValue, clazz, j, finalValue, - i = 0; - - if ( isFunction( value ) ) { - return this.each( function( j ) { - jQuery( this ).removeClass( value.call( this, j, getClass( this ) ) ); - } ); - } - - if ( !arguments.length ) { - return this.attr( "class", "" ); - } - - classes = classesToArray( value ); - - if ( classes.length ) { - while ( ( elem = this[ i++ ] ) ) { - curValue = getClass( elem ); - - // This expression is here for better compressibility (see addClass) - cur = elem.nodeType === 1 && ( " " + stripAndCollapse( curValue ) + " " ); - - if ( cur ) { - j = 0; - while ( ( clazz = classes[ j++ ] ) ) { - - // Remove *all* instances - while ( cur.indexOf( " " + clazz + " " ) > -1 ) { - cur = cur.replace( " " + clazz + " ", " " ); - } - } - - // Only assign if different to avoid unneeded rendering. - finalValue = stripAndCollapse( cur ); - if ( curValue !== finalValue ) { - elem.setAttribute( "class", finalValue ); - } - } - } - } - - return this; - }, - - toggleClass: function( value, stateVal ) { - var type = typeof value, - isValidValue = type === "string" || Array.isArray( value ); - - if ( typeof stateVal === "boolean" && isValidValue ) { - return stateVal ? this.addClass( value ) : this.removeClass( value ); - } - - if ( isFunction( value ) ) { - return this.each( function( i ) { - jQuery( this ).toggleClass( - value.call( this, i, getClass( this ), stateVal ), - stateVal - ); - } ); - } - - return this.each( function() { - var className, i, self, classNames; - - if ( isValidValue ) { - - // Toggle individual class names - i = 0; - self = jQuery( this ); - classNames = classesToArray( value ); - - while ( ( className = classNames[ i++ ] ) ) { - - // Check each className given, space separated list - if ( self.hasClass( className ) ) { - self.removeClass( className ); - } else { - self.addClass( className ); - } - } - - // Toggle whole class name - } else if ( value === undefined || type === "boolean" ) { - className = getClass( this ); - if ( className ) { - - // Store className if set - dataPriv.set( this, "__className__", className ); - } - - // If the element has a class name or if we're passed `false`, - // then remove the whole classname (if there was one, the above saved it). - // Otherwise bring back whatever was previously saved (if anything), - // falling back to the empty string if nothing was stored. - if ( this.setAttribute ) { - this.setAttribute( "class", - className || value === false ? - "" : - dataPriv.get( this, "__className__" ) || "" - ); - } - } - } ); - }, - - hasClass: function( selector ) { - var className, elem, - i = 0; - - className = " " + selector + " "; - while ( ( elem = this[ i++ ] ) ) { - if ( elem.nodeType === 1 && - ( " " + stripAndCollapse( getClass( elem ) ) + " " ).indexOf( className ) > -1 ) { - return true; - } - } - - return false; - } -} ); - - - - -var rreturn = /\r/g; - -jQuery.fn.extend( { - val: function( value ) { - var hooks, ret, valueIsFunction, - elem = this[ 0 ]; - - if ( !arguments.length ) { - if ( elem ) { - hooks = jQuery.valHooks[ elem.type ] || - jQuery.valHooks[ elem.nodeName.toLowerCase() ]; - - if ( hooks && - "get" in hooks && - ( ret = hooks.get( elem, "value" ) ) !== undefined - ) { - return ret; - } - - ret = elem.value; - - // Handle most common string cases - if ( typeof ret === "string" ) { - return ret.replace( rreturn, "" ); - } - - // Handle cases where value is null/undef or number - return ret == null ? "" : ret; - } - - return; - } - - valueIsFunction = isFunction( value ); - - return this.each( function( i ) { - var val; - - if ( this.nodeType !== 1 ) { - return; - } - - if ( valueIsFunction ) { - val = value.call( this, i, jQuery( this ).val() ); - } else { - val = value; - } - - // Treat null/undefined as ""; convert numbers to string - if ( val == null ) { - val = ""; - - } else if ( typeof val === "number" ) { - val += ""; - - } else if ( Array.isArray( val ) ) { - val = jQuery.map( val, function( value ) { - return value == null ? "" : value + ""; - } ); - } - - hooks = jQuery.valHooks[ this.type ] || jQuery.valHooks[ this.nodeName.toLowerCase() ]; - - // If set returns undefined, fall back to normal setting - if ( !hooks || !( "set" in hooks ) || hooks.set( this, val, "value" ) === undefined ) { - this.value = val; - } - } ); - } -} ); - -jQuery.extend( { - valHooks: { - option: { - get: function( elem ) { - - var val = jQuery.find.attr( elem, "value" ); - return val != null ? - val : - - // Support: IE <=10 - 11 only - // option.text throws exceptions (#14686, #14858) - // Strip and collapse whitespace - // https://html.spec.whatwg.org/#strip-and-collapse-whitespace - stripAndCollapse( jQuery.text( elem ) ); - } - }, - select: { - get: function( elem ) { - var value, option, i, - options = elem.options, - index = elem.selectedIndex, - one = elem.type === "select-one", - values = one ? null : [], - max = one ? index + 1 : options.length; - - if ( index < 0 ) { - i = max; - - } else { - i = one ? index : 0; - } - - // Loop through all the selected options - for ( ; i < max; i++ ) { - option = options[ i ]; - - // Support: IE <=9 only - // IE8-9 doesn't update selected after form reset (#2551) - if ( ( option.selected || i === index ) && - - // Don't return options that are disabled or in a disabled optgroup - !option.disabled && - ( !option.parentNode.disabled || - !nodeName( option.parentNode, "optgroup" ) ) ) { - - // Get the specific value for the option - value = jQuery( option ).val(); - - // We don't need an array for one selects - if ( one ) { - return value; - } - - // Multi-Selects return an array - values.push( value ); - } - } - - return values; - }, - - set: function( elem, value ) { - var optionSet, option, - options = elem.options, - values = jQuery.makeArray( value ), - i = options.length; - - while ( i-- ) { - option = options[ i ]; - - /* eslint-disable no-cond-assign */ - - if ( option.selected = - jQuery.inArray( jQuery.valHooks.option.get( option ), values ) > -1 - ) { - optionSet = true; - } - - /* eslint-enable no-cond-assign */ - } - - // Force browsers to behave consistently when non-matching value is set - if ( !optionSet ) { - elem.selectedIndex = -1; - } - return values; - } - } - } -} ); - -// Radios and checkboxes getter/setter -jQuery.each( [ "radio", "checkbox" ], function() { - jQuery.valHooks[ this ] = { - set: function( elem, value ) { - if ( Array.isArray( value ) ) { - return ( elem.checked = jQuery.inArray( jQuery( elem ).val(), value ) > -1 ); - } - } - }; - if ( !support.checkOn ) { - jQuery.valHooks[ this ].get = function( elem ) { - return elem.getAttribute( "value" ) === null ? "on" : elem.value; - }; - } -} ); - - - - -// Return jQuery for attributes-only inclusion - - -support.focusin = "onfocusin" in window; - - -var rfocusMorph = /^(?:focusinfocus|focusoutblur)$/, - stopPropagationCallback = function( e ) { - e.stopPropagation(); - }; - -jQuery.extend( jQuery.event, { - - trigger: function( event, data, elem, onlyHandlers ) { - - var i, cur, tmp, bubbleType, ontype, handle, special, lastElement, - eventPath = [ elem || document ], - type = hasOwn.call( event, "type" ) ? event.type : event, - namespaces = hasOwn.call( event, "namespace" ) ? event.namespace.split( "." ) : []; - - cur = lastElement = tmp = elem = elem || document; - - // Don't do events on text and comment nodes - if ( elem.nodeType === 3 || elem.nodeType === 8 ) { - return; - } - - // focus/blur morphs to focusin/out; ensure we're not firing them right now - if ( rfocusMorph.test( type + jQuery.event.triggered ) ) { - return; - } - - if ( type.indexOf( "." ) > -1 ) { - - // Namespaced trigger; create a regexp to match event type in handle() - namespaces = type.split( "." ); - type = namespaces.shift(); - namespaces.sort(); - } - ontype = type.indexOf( ":" ) < 0 && "on" + type; - - // Caller can pass in a jQuery.Event object, Object, or just an event type string - event = event[ jQuery.expando ] ? - event : - new jQuery.Event( type, typeof event === "object" && event ); - - // Trigger bitmask: & 1 for native handlers; & 2 for jQuery (always true) - event.isTrigger = onlyHandlers ? 2 : 3; - event.namespace = namespaces.join( "." ); - event.rnamespace = event.namespace ? - new RegExp( "(^|\\.)" + namespaces.join( "\\.(?:.*\\.|)" ) + "(\\.|$)" ) : - null; - - // Clean up the event in case it is being reused - event.result = undefined; - if ( !event.target ) { - event.target = elem; - } - - // Clone any incoming data and prepend the event, creating the handler arg list - data = data == null ? - [ event ] : - jQuery.makeArray( data, [ event ] ); - - // Allow special events to draw outside the lines - special = jQuery.event.special[ type ] || {}; - if ( !onlyHandlers && special.trigger && special.trigger.apply( elem, data ) === false ) { - return; - } - - // Determine event propagation path in advance, per W3C events spec (#9951) - // Bubble up to document, then to window; watch for a global ownerDocument var (#9724) - if ( !onlyHandlers && !special.noBubble && !isWindow( elem ) ) { - - bubbleType = special.delegateType || type; - if ( !rfocusMorph.test( bubbleType + type ) ) { - cur = cur.parentNode; - } - for ( ; cur; cur = cur.parentNode ) { - eventPath.push( cur ); - tmp = cur; - } - - // Only add window if we got to document (e.g., not plain obj or detached DOM) - if ( tmp === ( elem.ownerDocument || document ) ) { - eventPath.push( tmp.defaultView || tmp.parentWindow || window ); - } - } - - // Fire handlers on the event path - i = 0; - while ( ( cur = eventPath[ i++ ] ) && !event.isPropagationStopped() ) { - lastElement = cur; - event.type = i > 1 ? - bubbleType : - special.bindType || type; - - // jQuery handler - handle = ( dataPriv.get( cur, "events" ) || Object.create( null ) )[ event.type ] && - dataPriv.get( cur, "handle" ); - if ( handle ) { - handle.apply( cur, data ); - } - - // Native handler - handle = ontype && cur[ ontype ]; - if ( handle && handle.apply && acceptData( cur ) ) { - event.result = handle.apply( cur, data ); - if ( event.result === false ) { - event.preventDefault(); - } - } - } - event.type = type; - - // If nobody prevented the default action, do it now - if ( !onlyHandlers && !event.isDefaultPrevented() ) { - - if ( ( !special._default || - special._default.apply( eventPath.pop(), data ) === false ) && - acceptData( elem ) ) { - - // Call a native DOM method on the target with the same name as the event. - // Don't do default actions on window, that's where global variables be (#6170) - if ( ontype && isFunction( elem[ type ] ) && !isWindow( elem ) ) { - - // Don't re-trigger an onFOO event when we call its FOO() method - tmp = elem[ ontype ]; - - if ( tmp ) { - elem[ ontype ] = null; - } - - // Prevent re-triggering of the same event, since we already bubbled it above - jQuery.event.triggered = type; - - if ( event.isPropagationStopped() ) { - lastElement.addEventListener( type, stopPropagationCallback ); - } - - elem[ type ](); - - if ( event.isPropagationStopped() ) { - lastElement.removeEventListener( type, stopPropagationCallback ); - } - - jQuery.event.triggered = undefined; - - if ( tmp ) { - elem[ ontype ] = tmp; - } - } - } - } - - return event.result; - }, - - // Piggyback on a donor event to simulate a different one - // Used only for `focus(in | out)` events - simulate: function( type, elem, event ) { - var e = jQuery.extend( - new jQuery.Event(), - event, - { - type: type, - isSimulated: true - } - ); - - jQuery.event.trigger( e, null, elem ); - } - -} ); - -jQuery.fn.extend( { - - trigger: function( type, data ) { - return this.each( function() { - jQuery.event.trigger( type, data, this ); - } ); - }, - triggerHandler: function( type, data ) { - var elem = this[ 0 ]; - if ( elem ) { - return jQuery.event.trigger( type, data, elem, true ); - } - } -} ); - - -// Support: Firefox <=44 -// Firefox doesn't have focus(in | out) events -// Related ticket - https://bugzilla.mozilla.org/show_bug.cgi?id=687787 -// -// Support: Chrome <=48 - 49, Safari <=9.0 - 9.1 -// focus(in | out) events fire after focus & blur events, -// which is spec violation - http://www.w3.org/TR/DOM-Level-3-Events/#events-focusevent-event-order -// Related ticket - https://bugs.chromium.org/p/chromium/issues/detail?id=449857 -if ( !support.focusin ) { - jQuery.each( { focus: "focusin", blur: "focusout" }, function( orig, fix ) { - - // Attach a single capturing handler on the document while someone wants focusin/focusout - var handler = function( event ) { - jQuery.event.simulate( fix, event.target, jQuery.event.fix( event ) ); - }; - - jQuery.event.special[ fix ] = { - setup: function() { - - // Handle: regular nodes (via `this.ownerDocument`), window - // (via `this.document`) & document (via `this`). - var doc = this.ownerDocument || this.document || this, - attaches = dataPriv.access( doc, fix ); - - if ( !attaches ) { - doc.addEventListener( orig, handler, true ); - } - dataPriv.access( doc, fix, ( attaches || 0 ) + 1 ); - }, - teardown: function() { - var doc = this.ownerDocument || this.document || this, - attaches = dataPriv.access( doc, fix ) - 1; - - if ( !attaches ) { - doc.removeEventListener( orig, handler, true ); - dataPriv.remove( doc, fix ); - - } else { - dataPriv.access( doc, fix, attaches ); - } - } - }; - } ); -} -var location = window.location; - -var nonce = { guid: Date.now() }; - -var rquery = ( /\?/ ); - - - -// Cross-browser xml parsing -jQuery.parseXML = function( data ) { - var xml, parserErrorElem; - if ( !data || typeof data !== "string" ) { - return null; - } - - // Support: IE 9 - 11 only - // IE throws on parseFromString with invalid input. - try { - xml = ( new window.DOMParser() ).parseFromString( data, "text/xml" ); - } catch ( e ) {} - - parserErrorElem = xml && xml.getElementsByTagName( "parsererror" )[ 0 ]; - if ( !xml || parserErrorElem ) { - jQuery.error( "Invalid XML: " + ( - parserErrorElem ? - jQuery.map( parserErrorElem.childNodes, function( el ) { - return el.textContent; - } ).join( "\n" ) : - data - ) ); - } - return xml; -}; - - -var - rbracket = /\[\]$/, - rCRLF = /\r?\n/g, - rsubmitterTypes = /^(?:submit|button|image|reset|file)$/i, - rsubmittable = /^(?:input|select|textarea|keygen)/i; - -function buildParams( prefix, obj, traditional, add ) { - var name; - - if ( Array.isArray( obj ) ) { - - // Serialize array item. - jQuery.each( obj, function( i, v ) { - if ( traditional || rbracket.test( prefix ) ) { - - // Treat each array item as a scalar. - add( prefix, v ); - - } else { - - // Item is non-scalar (array or object), encode its numeric index. - buildParams( - prefix + "[" + ( typeof v === "object" && v != null ? i : "" ) + "]", - v, - traditional, - add - ); - } - } ); - - } else if ( !traditional && toType( obj ) === "object" ) { - - // Serialize object item. - for ( name in obj ) { - buildParams( prefix + "[" + name + "]", obj[ name ], traditional, add ); - } - - } else { - - // Serialize scalar item. - add( prefix, obj ); - } -} - -// Serialize an array of form elements or a set of -// key/values into a query string -jQuery.param = function( a, traditional ) { - var prefix, - s = [], - add = function( key, valueOrFunction ) { - - // If value is a function, invoke it and use its return value - var value = isFunction( valueOrFunction ) ? - valueOrFunction() : - valueOrFunction; - - s[ s.length ] = encodeURIComponent( key ) + "=" + - encodeURIComponent( value == null ? "" : value ); - }; - - if ( a == null ) { - return ""; - } - - // If an array was passed in, assume that it is an array of form elements. - if ( Array.isArray( a ) || ( a.jquery && !jQuery.isPlainObject( a ) ) ) { - - // Serialize the form elements - jQuery.each( a, function() { - add( this.name, this.value ); - } ); - - } else { - - // If traditional, encode the "old" way (the way 1.3.2 or older - // did it), otherwise encode params recursively. - for ( prefix in a ) { - buildParams( prefix, a[ prefix ], traditional, add ); - } - } - - // Return the resulting serialization - return s.join( "&" ); -}; - -jQuery.fn.extend( { - serialize: function() { - return jQuery.param( this.serializeArray() ); - }, - serializeArray: function() { - return this.map( function() { - - // Can add propHook for "elements" to filter or add form elements - var elements = jQuery.prop( this, "elements" ); - return elements ? jQuery.makeArray( elements ) : this; - } ).filter( function() { - var type = this.type; - - // Use .is( ":disabled" ) so that fieldset[disabled] works - return this.name && !jQuery( this ).is( ":disabled" ) && - rsubmittable.test( this.nodeName ) && !rsubmitterTypes.test( type ) && - ( this.checked || !rcheckableType.test( type ) ); - } ).map( function( _i, elem ) { - var val = jQuery( this ).val(); - - if ( val == null ) { - return null; - } - - if ( Array.isArray( val ) ) { - return jQuery.map( val, function( val ) { - return { name: elem.name, value: val.replace( rCRLF, "\r\n" ) }; - } ); - } - - return { name: elem.name, value: val.replace( rCRLF, "\r\n" ) }; - } ).get(); - } -} ); - - -var - r20 = /%20/g, - rhash = /#.*$/, - rantiCache = /([?&])_=[^&]*/, - rheaders = /^(.*?):[ \t]*([^\r\n]*)$/mg, - - // #7653, #8125, #8152: local protocol detection - rlocalProtocol = /^(?:about|app|app-storage|.+-extension|file|res|widget):$/, - rnoContent = /^(?:GET|HEAD)$/, - rprotocol = /^\/\//, - - /* Prefilters - * 1) They are useful to introduce custom dataTypes (see ajax/jsonp.js for an example) - * 2) These are called: - * - BEFORE asking for a transport - * - AFTER param serialization (s.data is a string if s.processData is true) - * 3) key is the dataType - * 4) the catchall symbol "*" can be used - * 5) execution will start with transport dataType and THEN continue down to "*" if needed - */ - prefilters = {}, - - /* Transports bindings - * 1) key is the dataType - * 2) the catchall symbol "*" can be used - * 3) selection will start with transport dataType and THEN go to "*" if needed - */ - transports = {}, - - // Avoid comment-prolog char sequence (#10098); must appease lint and evade compression - allTypes = "*/".concat( "*" ), - - // Anchor tag for parsing the document origin - originAnchor = document.createElement( "a" ); - -originAnchor.href = location.href; - -// Base "constructor" for jQuery.ajaxPrefilter and jQuery.ajaxTransport -function addToPrefiltersOrTransports( structure ) { - - // dataTypeExpression is optional and defaults to "*" - return function( dataTypeExpression, func ) { - - if ( typeof dataTypeExpression !== "string" ) { - func = dataTypeExpression; - dataTypeExpression = "*"; - } - - var dataType, - i = 0, - dataTypes = dataTypeExpression.toLowerCase().match( rnothtmlwhite ) || []; - - if ( isFunction( func ) ) { - - // For each dataType in the dataTypeExpression - while ( ( dataType = dataTypes[ i++ ] ) ) { - - // Prepend if requested - if ( dataType[ 0 ] === "+" ) { - dataType = dataType.slice( 1 ) || "*"; - ( structure[ dataType ] = structure[ dataType ] || [] ).unshift( func ); - - // Otherwise append - } else { - ( structure[ dataType ] = structure[ dataType ] || [] ).push( func ); - } - } - } - }; -} - -// Base inspection function for prefilters and transports -function inspectPrefiltersOrTransports( structure, options, originalOptions, jqXHR ) { - - var inspected = {}, - seekingTransport = ( structure === transports ); - - function inspect( dataType ) { - var selected; - inspected[ dataType ] = true; - jQuery.each( structure[ dataType ] || [], function( _, prefilterOrFactory ) { - var dataTypeOrTransport = prefilterOrFactory( options, originalOptions, jqXHR ); - if ( typeof dataTypeOrTransport === "string" && - !seekingTransport && !inspected[ dataTypeOrTransport ] ) { - - options.dataTypes.unshift( dataTypeOrTransport ); - inspect( dataTypeOrTransport ); - return false; - } else if ( seekingTransport ) { - return !( selected = dataTypeOrTransport ); - } - } ); - return selected; - } - - return inspect( options.dataTypes[ 0 ] ) || !inspected[ "*" ] && inspect( "*" ); -} - -// A special extend for ajax options -// that takes "flat" options (not to be deep extended) -// Fixes #9887 -function ajaxExtend( target, src ) { - var key, deep, - flatOptions = jQuery.ajaxSettings.flatOptions || {}; - - for ( key in src ) { - if ( src[ key ] !== undefined ) { - ( flatOptions[ key ] ? target : ( deep || ( deep = {} ) ) )[ key ] = src[ key ]; - } - } - if ( deep ) { - jQuery.extend( true, target, deep ); - } - - return target; -} - -/* Handles responses to an ajax request: - * - finds the right dataType (mediates between content-type and expected dataType) - * - returns the corresponding response - */ -function ajaxHandleResponses( s, jqXHR, responses ) { - - var ct, type, finalDataType, firstDataType, - contents = s.contents, - dataTypes = s.dataTypes; - - // Remove auto dataType and get content-type in the process - while ( dataTypes[ 0 ] === "*" ) { - dataTypes.shift(); - if ( ct === undefined ) { - ct = s.mimeType || jqXHR.getResponseHeader( "Content-Type" ); - } - } - - // Check if we're dealing with a known content-type - if ( ct ) { - for ( type in contents ) { - if ( contents[ type ] && contents[ type ].test( ct ) ) { - dataTypes.unshift( type ); - break; - } - } - } - - // Check to see if we have a response for the expected dataType - if ( dataTypes[ 0 ] in responses ) { - finalDataType = dataTypes[ 0 ]; - } else { - - // Try convertible dataTypes - for ( type in responses ) { - if ( !dataTypes[ 0 ] || s.converters[ type + " " + dataTypes[ 0 ] ] ) { - finalDataType = type; - break; - } - if ( !firstDataType ) { - firstDataType = type; - } - } - - // Or just use first one - finalDataType = finalDataType || firstDataType; - } - - // If we found a dataType - // We add the dataType to the list if needed - // and return the corresponding response - if ( finalDataType ) { - if ( finalDataType !== dataTypes[ 0 ] ) { - dataTypes.unshift( finalDataType ); - } - return responses[ finalDataType ]; - } -} - -/* Chain conversions given the request and the original response - * Also sets the responseXXX fields on the jqXHR instance - */ -function ajaxConvert( s, response, jqXHR, isSuccess ) { - var conv2, current, conv, tmp, prev, - converters = {}, - - // Work with a copy of dataTypes in case we need to modify it for conversion - dataTypes = s.dataTypes.slice(); - - // Create converters map with lowercased keys - if ( dataTypes[ 1 ] ) { - for ( conv in s.converters ) { - converters[ conv.toLowerCase() ] = s.converters[ conv ]; - } - } - - current = dataTypes.shift(); - - // Convert to each sequential dataType - while ( current ) { - - if ( s.responseFields[ current ] ) { - jqXHR[ s.responseFields[ current ] ] = response; - } - - // Apply the dataFilter if provided - if ( !prev && isSuccess && s.dataFilter ) { - response = s.dataFilter( response, s.dataType ); - } - - prev = current; - current = dataTypes.shift(); - - if ( current ) { - - // There's only work to do if current dataType is non-auto - if ( current === "*" ) { - - current = prev; - - // Convert response if prev dataType is non-auto and differs from current - } else if ( prev !== "*" && prev !== current ) { - - // Seek a direct converter - conv = converters[ prev + " " + current ] || converters[ "* " + current ]; - - // If none found, seek a pair - if ( !conv ) { - for ( conv2 in converters ) { - - // If conv2 outputs current - tmp = conv2.split( " " ); - if ( tmp[ 1 ] === current ) { - - // If prev can be converted to accepted input - conv = converters[ prev + " " + tmp[ 0 ] ] || - converters[ "* " + tmp[ 0 ] ]; - if ( conv ) { - - // Condense equivalence converters - if ( conv === true ) { - conv = converters[ conv2 ]; - - // Otherwise, insert the intermediate dataType - } else if ( converters[ conv2 ] !== true ) { - current = tmp[ 0 ]; - dataTypes.unshift( tmp[ 1 ] ); - } - break; - } - } - } - } - - // Apply converter (if not an equivalence) - if ( conv !== true ) { - - // Unless errors are allowed to bubble, catch and return them - if ( conv && s.throws ) { - response = conv( response ); - } else { - try { - response = conv( response ); - } catch ( e ) { - return { - state: "parsererror", - error: conv ? e : "No conversion from " + prev + " to " + current - }; - } - } - } - } - } - } - - return { state: "success", data: response }; -} - -jQuery.extend( { - - // Counter for holding the number of active queries - active: 0, - - // Last-Modified header cache for next request - lastModified: {}, - etag: {}, - - ajaxSettings: { - url: location.href, - type: "GET", - isLocal: rlocalProtocol.test( location.protocol ), - global: true, - processData: true, - async: true, - contentType: "application/x-www-form-urlencoded; charset=UTF-8", - - /* - timeout: 0, - data: null, - dataType: null, - username: null, - password: null, - cache: null, - throws: false, - traditional: false, - headers: {}, - */ - - accepts: { - "*": allTypes, - text: "text/plain", - html: "text/html", - xml: "application/xml, text/xml", - json: "application/json, text/javascript" - }, - - contents: { - xml: /\bxml\b/, - html: /\bhtml/, - json: /\bjson\b/ - }, - - responseFields: { - xml: "responseXML", - text: "responseText", - json: "responseJSON" - }, - - // Data converters - // Keys separate source (or catchall "*") and destination types with a single space - converters: { - - // Convert anything to text - "* text": String, - - // Text to html (true = no transformation) - "text html": true, - - // Evaluate text as a json expression - "text json": JSON.parse, - - // Parse text as xml - "text xml": jQuery.parseXML - }, - - // For options that shouldn't be deep extended: - // you can add your own custom options here if - // and when you create one that shouldn't be - // deep extended (see ajaxExtend) - flatOptions: { - url: true, - context: true - } - }, - - // Creates a full fledged settings object into target - // with both ajaxSettings and settings fields. - // If target is omitted, writes into ajaxSettings. - ajaxSetup: function( target, settings ) { - return settings ? - - // Building a settings object - ajaxExtend( ajaxExtend( target, jQuery.ajaxSettings ), settings ) : - - // Extending ajaxSettings - ajaxExtend( jQuery.ajaxSettings, target ); - }, - - ajaxPrefilter: addToPrefiltersOrTransports( prefilters ), - ajaxTransport: addToPrefiltersOrTransports( transports ), - - // Main method - ajax: function( url, options ) { - - // If url is an object, simulate pre-1.5 signature - if ( typeof url === "object" ) { - options = url; - url = undefined; - } - - // Force options to be an object - options = options || {}; - - var transport, - - // URL without anti-cache param - cacheURL, - - // Response headers - responseHeadersString, - responseHeaders, - - // timeout handle - timeoutTimer, - - // Url cleanup var - urlAnchor, - - // Request state (becomes false upon send and true upon completion) - completed, - - // To know if global events are to be dispatched - fireGlobals, - - // Loop variable - i, - - // uncached part of the url - uncached, - - // Create the final options object - s = jQuery.ajaxSetup( {}, options ), - - // Callbacks context - callbackContext = s.context || s, - - // Context for global events is callbackContext if it is a DOM node or jQuery collection - globalEventContext = s.context && - ( callbackContext.nodeType || callbackContext.jquery ) ? - jQuery( callbackContext ) : - jQuery.event, - - // Deferreds - deferred = jQuery.Deferred(), - completeDeferred = jQuery.Callbacks( "once memory" ), - - // Status-dependent callbacks - statusCode = s.statusCode || {}, - - // Headers (they are sent all at once) - requestHeaders = {}, - requestHeadersNames = {}, - - // Default abort message - strAbort = "canceled", - - // Fake xhr - jqXHR = { - readyState: 0, - - // Builds headers hashtable if needed - getResponseHeader: function( key ) { - var match; - if ( completed ) { - if ( !responseHeaders ) { - responseHeaders = {}; - while ( ( match = rheaders.exec( responseHeadersString ) ) ) { - responseHeaders[ match[ 1 ].toLowerCase() + " " ] = - ( responseHeaders[ match[ 1 ].toLowerCase() + " " ] || [] ) - .concat( match[ 2 ] ); - } - } - match = responseHeaders[ key.toLowerCase() + " " ]; - } - return match == null ? null : match.join( ", " ); - }, - - // Raw string - getAllResponseHeaders: function() { - return completed ? responseHeadersString : null; - }, - - // Caches the header - setRequestHeader: function( name, value ) { - if ( completed == null ) { - name = requestHeadersNames[ name.toLowerCase() ] = - requestHeadersNames[ name.toLowerCase() ] || name; - requestHeaders[ name ] = value; - } - return this; - }, - - // Overrides response content-type header - overrideMimeType: function( type ) { - if ( completed == null ) { - s.mimeType = type; - } - return this; - }, - - // Status-dependent callbacks - statusCode: function( map ) { - var code; - if ( map ) { - if ( completed ) { - - // Execute the appropriate callbacks - jqXHR.always( map[ jqXHR.status ] ); - } else { - - // Lazy-add the new callbacks in a way that preserves old ones - for ( code in map ) { - statusCode[ code ] = [ statusCode[ code ], map[ code ] ]; - } - } - } - return this; - }, - - // Cancel the request - abort: function( statusText ) { - var finalText = statusText || strAbort; - if ( transport ) { - transport.abort( finalText ); - } - done( 0, finalText ); - return this; - } - }; - - // Attach deferreds - deferred.promise( jqXHR ); - - // Add protocol if not provided (prefilters might expect it) - // Handle falsy url in the settings object (#10093: consistency with old signature) - // We also use the url parameter if available - s.url = ( ( url || s.url || location.href ) + "" ) - .replace( rprotocol, location.protocol + "//" ); - - // Alias method option to type as per ticket #12004 - s.type = options.method || options.type || s.method || s.type; - - // Extract dataTypes list - s.dataTypes = ( s.dataType || "*" ).toLowerCase().match( rnothtmlwhite ) || [ "" ]; - - // A cross-domain request is in order when the origin doesn't match the current origin. - if ( s.crossDomain == null ) { - urlAnchor = document.createElement( "a" ); - - // Support: IE <=8 - 11, Edge 12 - 15 - // IE throws exception on accessing the href property if url is malformed, - // e.g. http://example.com:80x/ - try { - urlAnchor.href = s.url; - - // Support: IE <=8 - 11 only - // Anchor's host property isn't correctly set when s.url is relative - urlAnchor.href = urlAnchor.href; - s.crossDomain = originAnchor.protocol + "//" + originAnchor.host !== - urlAnchor.protocol + "//" + urlAnchor.host; - } catch ( e ) { - - // If there is an error parsing the URL, assume it is crossDomain, - // it can be rejected by the transport if it is invalid - s.crossDomain = true; - } - } - - // Convert data if not already a string - if ( s.data && s.processData && typeof s.data !== "string" ) { - s.data = jQuery.param( s.data, s.traditional ); - } - - // Apply prefilters - inspectPrefiltersOrTransports( prefilters, s, options, jqXHR ); - - // If request was aborted inside a prefilter, stop there - if ( completed ) { - return jqXHR; - } - - // We can fire global events as of now if asked to - // Don't fire events if jQuery.event is undefined in an AMD-usage scenario (#15118) - fireGlobals = jQuery.event && s.global; - - // Watch for a new set of requests - if ( fireGlobals && jQuery.active++ === 0 ) { - jQuery.event.trigger( "ajaxStart" ); - } - - // Uppercase the type - s.type = s.type.toUpperCase(); - - // Determine if request has content - s.hasContent = !rnoContent.test( s.type ); - - // Save the URL in case we're toying with the If-Modified-Since - // and/or If-None-Match header later on - // Remove hash to simplify url manipulation - cacheURL = s.url.replace( rhash, "" ); - - // More options handling for requests with no content - if ( !s.hasContent ) { - - // Remember the hash so we can put it back - uncached = s.url.slice( cacheURL.length ); - - // If data is available and should be processed, append data to url - if ( s.data && ( s.processData || typeof s.data === "string" ) ) { - cacheURL += ( rquery.test( cacheURL ) ? "&" : "?" ) + s.data; - - // #9682: remove data so that it's not used in an eventual retry - delete s.data; - } - - // Add or update anti-cache param if needed - if ( s.cache === false ) { - cacheURL = cacheURL.replace( rantiCache, "$1" ); - uncached = ( rquery.test( cacheURL ) ? "&" : "?" ) + "_=" + ( nonce.guid++ ) + - uncached; - } - - // Put hash and anti-cache on the URL that will be requested (gh-1732) - s.url = cacheURL + uncached; - - // Change '%20' to '+' if this is encoded form body content (gh-2658) - } else if ( s.data && s.processData && - ( s.contentType || "" ).indexOf( "application/x-www-form-urlencoded" ) === 0 ) { - s.data = s.data.replace( r20, "+" ); - } - - // Set the If-Modified-Since and/or If-None-Match header, if in ifModified mode. - if ( s.ifModified ) { - if ( jQuery.lastModified[ cacheURL ] ) { - jqXHR.setRequestHeader( "If-Modified-Since", jQuery.lastModified[ cacheURL ] ); - } - if ( jQuery.etag[ cacheURL ] ) { - jqXHR.setRequestHeader( "If-None-Match", jQuery.etag[ cacheURL ] ); - } - } - - // Set the correct header, if data is being sent - if ( s.data && s.hasContent && s.contentType !== false || options.contentType ) { - jqXHR.setRequestHeader( "Content-Type", s.contentType ); - } - - // Set the Accepts header for the server, depending on the dataType - jqXHR.setRequestHeader( - "Accept", - s.dataTypes[ 0 ] && s.accepts[ s.dataTypes[ 0 ] ] ? - s.accepts[ s.dataTypes[ 0 ] ] + - ( s.dataTypes[ 0 ] !== "*" ? ", " + allTypes + "; q=0.01" : "" ) : - s.accepts[ "*" ] - ); - - // Check for headers option - for ( i in s.headers ) { - jqXHR.setRequestHeader( i, s.headers[ i ] ); - } - - // Allow custom headers/mimetypes and early abort - if ( s.beforeSend && - ( s.beforeSend.call( callbackContext, jqXHR, s ) === false || completed ) ) { - - // Abort if not done already and return - return jqXHR.abort(); - } - - // Aborting is no longer a cancellation - strAbort = "abort"; - - // Install callbacks on deferreds - completeDeferred.add( s.complete ); - jqXHR.done( s.success ); - jqXHR.fail( s.error ); - - // Get transport - transport = inspectPrefiltersOrTransports( transports, s, options, jqXHR ); - - // If no transport, we auto-abort - if ( !transport ) { - done( -1, "No Transport" ); - } else { - jqXHR.readyState = 1; - - // Send global event - if ( fireGlobals ) { - globalEventContext.trigger( "ajaxSend", [ jqXHR, s ] ); - } - - // If request was aborted inside ajaxSend, stop there - if ( completed ) { - return jqXHR; - } - - // Timeout - if ( s.async && s.timeout > 0 ) { - timeoutTimer = window.setTimeout( function() { - jqXHR.abort( "timeout" ); - }, s.timeout ); - } - - try { - completed = false; - transport.send( requestHeaders, done ); - } catch ( e ) { - - // Rethrow post-completion exceptions - if ( completed ) { - throw e; - } - - // Propagate others as results - done( -1, e ); - } - } - - // Callback for when everything is done - function done( status, nativeStatusText, responses, headers ) { - var isSuccess, success, error, response, modified, - statusText = nativeStatusText; - - // Ignore repeat invocations - if ( completed ) { - return; - } - - completed = true; - - // Clear timeout if it exists - if ( timeoutTimer ) { - window.clearTimeout( timeoutTimer ); - } - - // Dereference transport for early garbage collection - // (no matter how long the jqXHR object will be used) - transport = undefined; - - // Cache response headers - responseHeadersString = headers || ""; - - // Set readyState - jqXHR.readyState = status > 0 ? 4 : 0; - - // Determine if successful - isSuccess = status >= 200 && status < 300 || status === 304; - - // Get response data - if ( responses ) { - response = ajaxHandleResponses( s, jqXHR, responses ); - } - - // Use a noop converter for missing script but not if jsonp - if ( !isSuccess && - jQuery.inArray( "script", s.dataTypes ) > -1 && - jQuery.inArray( "json", s.dataTypes ) < 0 ) { - s.converters[ "text script" ] = function() {}; - } - - // Convert no matter what (that way responseXXX fields are always set) - response = ajaxConvert( s, response, jqXHR, isSuccess ); - - // If successful, handle type chaining - if ( isSuccess ) { - - // Set the If-Modified-Since and/or If-None-Match header, if in ifModified mode. - if ( s.ifModified ) { - modified = jqXHR.getResponseHeader( "Last-Modified" ); - if ( modified ) { - jQuery.lastModified[ cacheURL ] = modified; - } - modified = jqXHR.getResponseHeader( "etag" ); - if ( modified ) { - jQuery.etag[ cacheURL ] = modified; - } - } - - // if no content - if ( status === 204 || s.type === "HEAD" ) { - statusText = "nocontent"; - - // if not modified - } else if ( status === 304 ) { - statusText = "notmodified"; - - // If we have data, let's convert it - } else { - statusText = response.state; - success = response.data; - error = response.error; - isSuccess = !error; - } - } else { - - // Extract error from statusText and normalize for non-aborts - error = statusText; - if ( status || !statusText ) { - statusText = "error"; - if ( status < 0 ) { - status = 0; - } - } - } - - // Set data for the fake xhr object - jqXHR.status = status; - jqXHR.statusText = ( nativeStatusText || statusText ) + ""; - - // Success/Error - if ( isSuccess ) { - deferred.resolveWith( callbackContext, [ success, statusText, jqXHR ] ); - } else { - deferred.rejectWith( callbackContext, [ jqXHR, statusText, error ] ); - } - - // Status-dependent callbacks - jqXHR.statusCode( statusCode ); - statusCode = undefined; - - if ( fireGlobals ) { - globalEventContext.trigger( isSuccess ? "ajaxSuccess" : "ajaxError", - [ jqXHR, s, isSuccess ? success : error ] ); - } - - // Complete - completeDeferred.fireWith( callbackContext, [ jqXHR, statusText ] ); - - if ( fireGlobals ) { - globalEventContext.trigger( "ajaxComplete", [ jqXHR, s ] ); - - // Handle the global AJAX counter - if ( !( --jQuery.active ) ) { - jQuery.event.trigger( "ajaxStop" ); - } - } - } - - return jqXHR; - }, - - getJSON: function( url, data, callback ) { - return jQuery.get( url, data, callback, "json" ); - }, - - getScript: function( url, callback ) { - return jQuery.get( url, undefined, callback, "script" ); - } -} ); - -jQuery.each( [ "get", "post" ], function( _i, method ) { - jQuery[ method ] = function( url, data, callback, type ) { - - // Shift arguments if data argument was omitted - if ( isFunction( data ) ) { - type = type || callback; - callback = data; - data = undefined; - } - - // The url can be an options object (which then must have .url) - return jQuery.ajax( jQuery.extend( { - url: url, - type: method, - dataType: type, - data: data, - success: callback - }, jQuery.isPlainObject( url ) && url ) ); - }; -} ); - -jQuery.ajaxPrefilter( function( s ) { - var i; - for ( i in s.headers ) { - if ( i.toLowerCase() === "content-type" ) { - s.contentType = s.headers[ i ] || ""; - } - } -} ); - - -jQuery._evalUrl = function( url, options, doc ) { - return jQuery.ajax( { - url: url, - - // Make this explicit, since user can override this through ajaxSetup (#11264) - type: "GET", - dataType: "script", - cache: true, - async: false, - global: false, - - // Only evaluate the response if it is successful (gh-4126) - // dataFilter is not invoked for failure responses, so using it instead - // of the default converter is kludgy but it works. - converters: { - "text script": function() {} - }, - dataFilter: function( response ) { - jQuery.globalEval( response, options, doc ); - } - } ); -}; - - -jQuery.fn.extend( { - wrapAll: function( html ) { - var wrap; - - if ( this[ 0 ] ) { - if ( isFunction( html ) ) { - html = html.call( this[ 0 ] ); - } - - // The elements to wrap the target around - wrap = jQuery( html, this[ 0 ].ownerDocument ).eq( 0 ).clone( true ); - - if ( this[ 0 ].parentNode ) { - wrap.insertBefore( this[ 0 ] ); - } - - wrap.map( function() { - var elem = this; - - while ( elem.firstElementChild ) { - elem = elem.firstElementChild; - } - - return elem; - } ).append( this ); - } - - return this; - }, - - wrapInner: function( html ) { - if ( isFunction( html ) ) { - return this.each( function( i ) { - jQuery( this ).wrapInner( html.call( this, i ) ); - } ); - } - - return this.each( function() { - var self = jQuery( this ), - contents = self.contents(); - - if ( contents.length ) { - contents.wrapAll( html ); - - } else { - self.append( html ); - } - } ); - }, - - wrap: function( html ) { - var htmlIsFunction = isFunction( html ); - - return this.each( function( i ) { - jQuery( this ).wrapAll( htmlIsFunction ? html.call( this, i ) : html ); - } ); - }, - - unwrap: function( selector ) { - this.parent( selector ).not( "body" ).each( function() { - jQuery( this ).replaceWith( this.childNodes ); - } ); - return this; - } -} ); - - -jQuery.expr.pseudos.hidden = function( elem ) { - return !jQuery.expr.pseudos.visible( elem ); -}; -jQuery.expr.pseudos.visible = function( elem ) { - return !!( elem.offsetWidth || elem.offsetHeight || elem.getClientRects().length ); -}; - - - - -jQuery.ajaxSettings.xhr = function() { - try { - return new window.XMLHttpRequest(); - } catch ( e ) {} -}; - -var xhrSuccessStatus = { - - // File protocol always yields status code 0, assume 200 - 0: 200, - - // Support: IE <=9 only - // #1450: sometimes IE returns 1223 when it should be 204 - 1223: 204 - }, - xhrSupported = jQuery.ajaxSettings.xhr(); - -support.cors = !!xhrSupported && ( "withCredentials" in xhrSupported ); -support.ajax = xhrSupported = !!xhrSupported; - -jQuery.ajaxTransport( function( options ) { - var callback, errorCallback; - - // Cross domain only allowed if supported through XMLHttpRequest - if ( support.cors || xhrSupported && !options.crossDomain ) { - return { - send: function( headers, complete ) { - var i, - xhr = options.xhr(); - - xhr.open( - options.type, - options.url, - options.async, - options.username, - options.password - ); - - // Apply custom fields if provided - if ( options.xhrFields ) { - for ( i in options.xhrFields ) { - xhr[ i ] = options.xhrFields[ i ]; - } - } - - // Override mime type if needed - if ( options.mimeType && xhr.overrideMimeType ) { - xhr.overrideMimeType( options.mimeType ); - } - - // X-Requested-With header - // For cross-domain requests, seeing as conditions for a preflight are - // akin to a jigsaw puzzle, we simply never set it to be sure. - // (it can always be set on a per-request basis or even using ajaxSetup) - // For same-domain requests, won't change header if already provided. - if ( !options.crossDomain && !headers[ "X-Requested-With" ] ) { - headers[ "X-Requested-With" ] = "XMLHttpRequest"; - } - - // Set headers - for ( i in headers ) { - xhr.setRequestHeader( i, headers[ i ] ); - } - - // Callback - callback = function( type ) { - return function() { - if ( callback ) { - callback = errorCallback = xhr.onload = - xhr.onerror = xhr.onabort = xhr.ontimeout = - xhr.onreadystatechange = null; - - if ( type === "abort" ) { - xhr.abort(); - } else if ( type === "error" ) { - - // Support: IE <=9 only - // On a manual native abort, IE9 throws - // errors on any property access that is not readyState - if ( typeof xhr.status !== "number" ) { - complete( 0, "error" ); - } else { - complete( - - // File: protocol always yields status 0; see #8605, #14207 - xhr.status, - xhr.statusText - ); - } - } else { - complete( - xhrSuccessStatus[ xhr.status ] || xhr.status, - xhr.statusText, - - // Support: IE <=9 only - // IE9 has no XHR2 but throws on binary (trac-11426) - // For XHR2 non-text, let the caller handle it (gh-2498) - ( xhr.responseType || "text" ) !== "text" || - typeof xhr.responseText !== "string" ? - { binary: xhr.response } : - { text: xhr.responseText }, - xhr.getAllResponseHeaders() - ); - } - } - }; - }; - - // Listen to events - xhr.onload = callback(); - errorCallback = xhr.onerror = xhr.ontimeout = callback( "error" ); - - // Support: IE 9 only - // Use onreadystatechange to replace onabort - // to handle uncaught aborts - if ( xhr.onabort !== undefined ) { - xhr.onabort = errorCallback; - } else { - xhr.onreadystatechange = function() { - - // Check readyState before timeout as it changes - if ( xhr.readyState === 4 ) { - - // Allow onerror to be called first, - // but that will not handle a native abort - // Also, save errorCallback to a variable - // as xhr.onerror cannot be accessed - window.setTimeout( function() { - if ( callback ) { - errorCallback(); - } - } ); - } - }; - } - - // Create the abort callback - callback = callback( "abort" ); - - try { - - // Do send the request (this may raise an exception) - xhr.send( options.hasContent && options.data || null ); - } catch ( e ) { - - // #14683: Only rethrow if this hasn't been notified as an error yet - if ( callback ) { - throw e; - } - } - }, - - abort: function() { - if ( callback ) { - callback(); - } - } - }; - } -} ); - - - - -// Prevent auto-execution of scripts when no explicit dataType was provided (See gh-2432) -jQuery.ajaxPrefilter( function( s ) { - if ( s.crossDomain ) { - s.contents.script = false; - } -} ); - -// Install script dataType -jQuery.ajaxSetup( { - accepts: { - script: "text/javascript, application/javascript, " + - "application/ecmascript, application/x-ecmascript" - }, - contents: { - script: /\b(?:java|ecma)script\b/ - }, - converters: { - "text script": function( text ) { - jQuery.globalEval( text ); - return text; - } - } -} ); - -// Handle cache's special case and crossDomain -jQuery.ajaxPrefilter( "script", function( s ) { - if ( s.cache === undefined ) { - s.cache = false; - } - if ( s.crossDomain ) { - s.type = "GET"; - } -} ); - -// Bind script tag hack transport -jQuery.ajaxTransport( "script", function( s ) { - - // This transport only deals with cross domain or forced-by-attrs requests - if ( s.crossDomain || s.scriptAttrs ) { - var script, callback; - return { - send: function( _, complete ) { - script = jQuery( " + + + + + + + + + + + + + + + + + + + + + + + + + + +
    +
    + + + + + + +
    +
    + + + + + + + + + + +
    + +
    + +
    + + + + +
    +
    + + + + +
    +
    + + + + + + + + + + + + + +
    +
    + + +
    +
    + Contents +
    + +
    +
    +
    +
    + +
    +

    Decompositions

    + +
    +
    + +
    +

    Contents

    +
    + +
    +
    +
    +
    + +
    + +
    +

    Decompositions#

    +
    +

    vec_to_mps#

    +
    +
    +tensorkrowch.decompositions.vec_to_mps(vec, n_batches=0, rank=None, cum_percentage=None, cutoff=None)[source]#
    +

    Splits a vector into a sequence of MPS tensors via consecutive SVD +decompositions. The resultant tensors can be used to instantiate a +MPS with boundary = "obc".

    +

    The number of resultant tensors and their respective physical dimensions +depend on the shape of the input vector. That is, if one expects to recover +a MPS with physical dimensions

    +
    +\[d_1 \times \cdots \times d_n\]
    +

    the input vector will have to be provided with that shape. This can be done +with reshape.

    +

    If the input vector has batch dimensions, having as shape

    +
    +\[b_1 \times \cdots \times b_m \times d_1 \times \cdots \times d_n\]
    +

    the number of batch dimensions \(m\) can be specified in n_batches. +In this case, the resultant tensors will all have the extra batch dimensions. +These tensors can be used to instantiate a MPSData +with boundary = "obc".

    +

    To specify the bond dimension of each cut done via SVD, one can use the +arguments rank, cum_percentage and cutoff. If more than +one is specified, the resulting rank will be the one that satisfies all +conditions.

    +
    +
    Parameters
    +
      +
    • vec (torch.Tensor) – Input vector to decompose.

    • +
    • n_batches (int) – Number of batch dimensions of the input vector. Each resultant tensor +will have also the corresponding batch dimensions. It should be between +0 and the rank of vec.

    • +
    • rank (int, optional) – Number of singular values to keep.

    • +
    • cum_percentage (float, optional) –

      Proportion that should be satisfied between the sum of all singular +values kept and the total sum of all singular values.

      +
      +\[\frac{\sum_{i \in \{kept\}}{s_i}}{\sum_{i \in \{all\}}{s_i}} \ge +cum\_percentage\]
      +

    • +
    • cutoff (float, optional) – Quantity that lower bounds singular values in order to be kept.

    • +
    +
    +
    Return type
    +

    List[torch.Tensor]

    +
    +
    +
    + +
    +
    +

    mat_to_mpo#

    +
    +
    +tensorkrowch.decompositions.mat_to_mpo(mat, rank=None, cum_percentage=None, cutoff=None)[source]#
    +

    Splits a matrix into a sequence of MPO tensors via consecutive SVD +decompositions. The resultant tensors can be used to instantiate a +MPO with boundary = "obc".

    +

    The number of resultant tensors and their respective input/output dimensions +depend on the shape of the input matrix. That is, if one expects to recover +a MPO with input/output dimensions

    +
    +\[in_1 \times out_1 \times \cdots \times in_n \times out_n\]
    +

    the input matrix will have to be provided with that shape. Thus it must +have an even number of dimensions. To accomplish this, it may happen that +some input/output dimensions are 1. This can be done with +reshape.

    +

    To specify the bond dimension of each cut done via SVD, one can use the +arguments rank, cum_percentage and cutoff. If more than +one is specified, the resulting rank will be the one that satisfies all +conditions.

    +
    +
    Parameters
    +
      +
    • mat (torch.Tensor) – Input matrix to decompose. It must have an even number of dimensions.

    • +
    • rank (int, optional) – Number of singular values to keep.

    • +
    • cum_percentage (float, optional) –

      Proportion that should be satisfied between the sum of all singular +values kept and the total sum of all singular values.

      +
      +\[\frac{\sum_{i \in \{kept\}}{s_i}}{\sum_{i \in \{all\}}{s_i}} \ge +cum\_percentage\]
      +

    • +
    • cutoff (float, optional) – Quantity that lower bounds singular values in order to be kept.

    • +
    +
    +
    Return type
    +

    List[torch.Tensor]

    +
    +
    +
    + +
    +
    + + +
    + +
    + +
    +
    + + +
    + + +
    +
    + + + + + + + \ No newline at end of file diff --git a/docs/_build/html/embeddings.html b/docs/_build/html/embeddings.html index 32cfdb1..c69e045 100644 --- a/docs/_build/html/embeddings.html +++ b/docs/_build/html/embeddings.html @@ -38,6 +38,7 @@ + @@ -181,6 +182,11 @@ Embeddings +
  • + + Decompositions + +
  • @@ -343,6 +349,16 @@ poly +
  • + + discretize + +
  • +
  • + + basis + +
  • @@ -377,6 +393,16 @@

    Contents

    poly +
  • + + discretize + +
  • +
  • + + basis + +
  • @@ -388,12 +414,12 @@

    Contents

    -

    Embeddings#

    +

    Embeddings#

    unit#

    -tensorkrowch.embeddings.unit(data, dim=2)[source]#
    +tensorkrowch.embeddings.unit(data, dim=2, axis=- 1)[source]#

    Embedds the data tensor using the local feature map defined in the original paper by E. Miles Stoudenmire and David J. Schwab.

    @@ -411,21 +437,22 @@

    unit#<
    • data (torch.Tensor) –

      Data tensor with shape

      -\[batch\_size \times n_{features}\]
      +\[(batch_0 \times \cdots \times batch_n \times) n_{features}\]

    That is, data is a (batch) vector with \(n_{features}\) -components. The \(batch\_size\) is optional.

    +components. The \(batch\) sizes are optional.

  • dim (int) – New feature dimension.

  • - - -
    Returns
    -

    New data tensor with shape

    +
  • axis (int) –

    Axis where the data tensor is ‘expanded’. Should be between 0 and +the rank of data. By default, it is -1, which returns a tensor with +shape

    -\[batch\_size \times n_{features} \times dim\]
    -

    +\[(batch_0 \times \cdots \times batch_n \times) n_{features} +\times dim\] +

  • +
    -
    Return type
    -

    torch.Tensor

    +
    Return type
    +

    torch.Tensor

    Examples

    @@ -444,9 +471,9 @@

    unit#<
    >>> b = torch.randn(100, 5)
    ->>> emb_b = tk.embeddings.unit(b)
    +>>> emb_b = tk.embeddings.unit(b, dim=6)
     >>> emb_b.shape
    -torch.Size([100, 5, 2])
    +torch.Size([100, 5, 6])
     
    @@ -477,15 +504,16 @@

    add_ones
    • data (torch.Tensor) –

      Data tensor with shape

      -\[batch\_size \times n_{features}\]
      +\[(batch_0 \times \cdots \times batch_n \times) n_{features}\]

      That is, data is a (batch) vector with \(n_{features}\) -components. The \(batch\_size\) is optional.

      +components. The \(batch\) sizes are optional.

    • -
    • axis (int) –

      Axis where the data tensor is ‘expanded’ with the 1’s. Should be -between 0 and the rank of data. By default, it is -1, which returns -a tensor with shape

      +
    • axis (int) –

      Axis where the data tensor is ‘expanded’. Should be between 0 and +the rank of data. By default, it is -1, which returns a tensor with +shape

      -\[batch\_size \times n_{features} \times 2\]
      +\[(batch_0 \times \cdots \times batch_n \times) n_{features} +\times 2\]

    @@ -543,16 +571,18 @@

    poly#<
    • data (torch.Tensor) –

      Data tensor with shape

      -\[batch\_size \times n_{features}\]
      +\[(batch_0 \times \cdots \times batch_n \times) n_{features}\]

      That is, data is a (batch) vector with \(n_{features}\) -components. The \(batch\_size\) is optional.

      +components. The \(batch\) sizes are optional.

    • -
    • degree (int) – Maximum degree of the monomials.

    • -
    • axis (int) –

      Axis where the data tensor is ‘expanded’ with monomials. Should be -between 0 and the rank of data. By default, it is -1, which returns -a tensor with shape

      +
    • degree (int) – Maximum degree of the monomials. The feature dimension will be +degree + 1.

    • +
    • axis (int) –

      Axis where the data tensor is ‘expanded’. Should be between 0 and +the rank of data. By default, it is -1, which returns a tensor with +shape

      -\[batch\_size \times n_{features} \times (degree + 1)\]
      +\[(batch_0 \times \cdots \times batch_n \times) n_{features} +\times (degree + 1)\]

    @@ -576,13 +606,156 @@

    poly#<
    >>> b = torch.randn(100, 5)
    ->>> emb_b = tk.embeddings.poly(b)
    +>>> emb_b = tk.embeddings.poly(b, degree=3)
    +>>> emb_b.shape
    +torch.Size([100, 5, 4])
    +
    +
    + + + +
    +

    discretize#

    +
    +
    +tensorkrowch.embeddings.discretize(data, level, base=2, axis=- 1)[source]#
    +

    Embedds the data tensor discretizing each variable in a certain basis +and with a certain level of precision, assuming the values to discretize +are all between 0 and 1. That is, given a vector

    +
    +\[\begin{split}x = \begin{bmatrix} + x_1\\ + \vdots\\ + x_N + \end{bmatrix}\end{split}\]
    +

    returns a matrix

    +
    +\[\begin{split}\hat{x} = \begin{bmatrix} + \lfloor x_1 b^1 \rfloor \mod b & \cdots & + \lfloor x_1 b^{l} \rfloor \mod b\\ + \vdots & \ddots & \vdots\\ + \lfloor x_N b^1 \rfloor \mod b & \cdots & + \lfloor x_N b^{l} \rfloor \mod b + \end{bmatrix}\end{split}\]
    +

    where \(b\) stands for base, and \(l\) for level.

    +
    +
    Parameters
    +
      +
    • data (torch.Tensor) –

      Data tensor with shape

      +
      +\[(batch_0 \times \cdots \times batch_n \times) n_{features}\]
      +

      That is, data is a (batch) vector with \(n_{features}\) +components. The \(batch\) sizes are optional. The data tensor +is assumed to have elements between 0 and 1.

      +

    • +
    • level (int) – Level of precision of the discretization. This will be the new feature +dimension.

    • +
    • base (int) – The base of the discretization.

    • +
    • axis (int) –

      Axis where the data tensor is ‘expanded’. Should be between 0 and +the rank of data. By default, it is -1, which returns a tensor with +shape

      +
      +\[(batch_0 \times \cdots \times batch_n \times) n_{features} +\times level\]
      +

    • +
    +
    +
    Return type
    +

    torch.Tensor

    +
    +
    +

    Examples

    +
    >>> a = torch.tensor([0, 0.5, 0.75, 1])
    +>>> a
    +tensor([0.0000, 0.5000, 0.7500, 1.0000])
    +
    +
    +
    >>> emb_a = tk.embeddings.discretize(a, level=3)
    +>>> emb_a
    +tensor([[0., 0., 0.],
    +        [1., 0., 0.],
    +        [1., 1., 0.],
    +        [1., 1., 1.]])
    +
    +
    +
    >>> b = torch.rand(100, 5)
    +>>> emb_b = tk.embeddings.discretize(b, level=3)
     >>> emb_b.shape
     torch.Size([100, 5, 3])
     
    +
    +
    +

    basis#

    +
    +
    +tensorkrowch.embeddings.basis(data, dim=2, axis=- 1)[source]#
    +

    Embedds the data tensor transforming each value, assumed to be an integer +between 0 and dim - 1, into the corresponding vector of the +computational basis. That is, given a vector

    +
    +\[\begin{split}x = \begin{bmatrix} + x_1\\ + \vdots\\ + x_N + \end{bmatrix}\end{split}\]
    +

    returns a matrix

    +
    +\[\begin{split}\hat{x} = \begin{bmatrix} + \lvert x_1 \rangle\\ + \vdots\\ + \lvert x_N \rangle + \end{bmatrix}\end{split}\]
    +
    +
    Parameters
    +
      +
    • data (torch.Tensor) –

      Data tensor with shape

      +
      +\[(batch_0 \times \cdots \times batch_n \times) n_{features}\]
      +

      That is, data is a (batch) vector with \(n_{features}\) +components. The \(batch\) sizes are optional. The data tensor +is assumed to have integer elements between 0 and dim - 1.

      +

    • +
    • dim (int) – The dimension of the computational basis. This will be the new feature +dimension.

    • +
    • axis (int) –

      Axis where the data tensor is ‘expanded’. Should be between 0 and +the rank of data. By default, it is -1, which returns a tensor with +shape

      +
      +\[(batch_0 \times \cdots \times batch_n \times) n_{features} +\times dim\]
      +

    • +
    +
    +
    Return type
    +

    torch.Tensor

    +
    +
    +

    Examples

    +
    >>> a = torch.arange(5)
    +>>> a
    +tensor([0, 1, 2, 3, 4])
    +
    +
    +
    >>> emb_a = tk.embeddings.basis(a, dim=5)
    +>>> emb_a
    +tensor([[1, 0, 0, 0, 0],
    +        [0, 1, 0, 0, 0],
    +        [0, 0, 1, 0, 0],
    +        [0, 0, 0, 1, 0],
    +        [0, 0, 0, 0, 1]])
    +
    +
    +
    >>> b = torch.randint(low=0, high=10, size=(100, 5))
    +>>> emb_b = tk.embeddings.basis(b, dim=10)
    +>>> emb_b.shape
    +torch.Size([100, 5, 10])
    +
    +
    +
    +
    @@ -601,6 +774,13 @@

    poly#<

    Initializers

    + +
    +

    next

    +

    Decompositions

    +
    + +
    diff --git a/docs/_build/html/genindex.html b/docs/_build/html/genindex.html index a8eb401..f14cfc7 100644 --- a/docs/_build/html/genindex.html +++ b/docs/_build/html/genindex.html @@ -178,6 +178,11 @@ Embeddings +
  • + + Decompositions + +
  • @@ -315,16 +320,20 @@

    A

  • add() (in module tensorkrowch)
  • -
  • add_data() (tensorkrowch.TensorNetwork method) +
  • add_data() (tensorkrowch.models.MPSData method) + +
  • add_ones() (in module tensorkrowch.embeddings)
  • auto_stack (tensorkrowch.TensorNetwork property) -
  • -
  • auto_unbind (tensorkrowch.TensorNetwork property)
  • @@ -900,6 +1005,14 @@

    P

    Q

    + - +
    • resultant_nodes (tensorkrowch.TensorNetwork property)
    • +
    • right_node (tensorkrowch.models.MPO property) + +
    • +
    • rq() (in module tensorkrowch) + +
    • rq_() (in module tensorkrowch)
        @@ -941,18 +1074,14 @@

        R

        S

        - +
        • StackNode (class in tensorkrowch)
        • std() (tensorkrowch.AbstractNode method) @@ -1029,10 +1158,22 @@

          S

        • sum() (tensorkrowch.AbstractNode method)
        • +
        • svd() (in module tensorkrowch) + +
        • svd_() (in module tensorkrowch)
        • +
        • svdr() (in module tensorkrowch) + +
        • svdr_() (in module tensorkrowch) @@ -1067,16 +1208,24 @@

          T

          U

            +
          • unit() (in module tensorkrowch.embeddings) +
          • unset_data_nodes() (tensorkrowch.TensorNetwork method)
          • unset_tensor() (tensorkrowch.AbstractNode method) @@ -1090,6 +1239,10 @@

            U

            V

            +
            diff --git a/docs/_build/html/initializers.html b/docs/_build/html/initializers.html index 5becb07..75d01e5 100644 --- a/docs/_build/html/initializers.html +++ b/docs/_build/html/initializers.html @@ -182,6 +182,11 @@ Embeddings +
          • + + Decompositions + +
          • diff --git a/docs/_build/html/installation.html b/docs/_build/html/installation.html index 4c02c1a..34a8762 100644 --- a/docs/_build/html/installation.html +++ b/docs/_build/html/installation.html @@ -181,6 +181,11 @@ Embeddings +
          • + + Decompositions + +
          • diff --git a/docs/_build/html/models.html b/docs/_build/html/models.html index 6967a8c..89c8ec2 100644 --- a/docs/_build/html/models.html +++ b/docs/_build/html/models.html @@ -182,6 +182,11 @@ Embeddings +
          • + + Decompositions + +
          • @@ -330,12 +335,22 @@