forked from HKUNLP/icl-ceil
-
Notifications
You must be signed in to change notification settings - Fork 0
/
inferencer.py
175 lines (144 loc) · 7.11 KB
/
inferencer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
import glob
import json
import os
import logging
import hydra
import hydra.utils as hu
import torch
import tqdm
from accelerate import Accelerator
from omegaconf import OmegaConf
from torch.utils.data import DataLoader
from transformers import set_seed
from src.metrics import get_metric
from src.utils.collators import DataCollatorWithPaddingAndCuda
from src.utils.statistics import show_statistics
from src.models.api_client import run_api
from src.utils.misc import parallel_run, save_json
from src.models.model import ppl_generate
logger = logging.getLogger(__name__)
class Inferencer:
def __init__(self, cfg, accelerator=None) -> None:
self.dataset_reader = hu.instantiate(cfg.dataset_reader)
self.gen_field = cfg.dataset_reader.field
self.accelerator = accelerator
self.output_file = cfg.output_file
# OmegaConf DictConfig to dict
self.generation_kwargs = OmegaConf.to_object(cfg.model_config.generation_kwargs)
self.evaluator = get_metric(cfg.task_name)
self.model, self.dataloader = self.init_model_dataloader(cfg)
def init_model_dataloader(self, cfg):
self.dataset_reader.shard(self.accelerator)
if self.accelerator.is_main_process:
logger.info(f"Statistics after sharding: ")
show_statistics(self.dataset_reader.encoded_dataset, "main dataset")
show_statistics(self.dataset_reader.index_reader.encoded_dataset, "index dataset")
co = DataCollatorWithPaddingAndCuda(tokenizer=self.dataset_reader.tokenizer, device=self.accelerator.device)
dataloader = DataLoader(self.dataset_reader, batch_size=cfg.batch_size, collate_fn=co)
model = hu.instantiate(cfg.model_config.model).eval()
model = self.accelerator.prepare(model)
if hasattr(model, "module"):
model = model.module
return model, dataloader
def forward(self):
if self.accelerator.is_main_process:
dataloader = tqdm.tqdm(self.dataloader)
else:
dataloader = self.dataloader
avg_ice_num = 0
res = []
for i, entry in enumerate(dataloader):
metadata = entry.pop("metadata")
if 'choices' in self.dataset_reader.dataset_wrapper.field_getter:
# for classification tasks, we compare the ppl of provided generation_choices as generation
choices = [self.dataset_reader.dataset_wrapper.get_field(meta, 'choices') for meta in metadata]
choices_list = list(zip(*choices))
preds = ppl_generate([meta['prompt'] for meta in metadata],
model=self.model,
tokenizer=self.dataset_reader.tokenizer,
choices_list=choices_list,
device=self.accelerator.device)
for mdata, pred in zip(metadata, preds):
mdata['generated'] = pred
avg_ice_num += len(mdata['ice_prompts_list'])
else:
with torch.no_grad():
outputs = self.model.generate(input_ids=entry.input_ids,
attention_mask=entry.attention_mask,
eos_token_id=self.dataset_reader.tokenizer.encode("\n")[0],
pad_token_id=self.dataset_reader.tokenizer.pad_token_id,
do_sample=False, # always use greedy decode here
**self.generation_kwargs)
prompt_len = int(entry.attention_mask.shape[1])
for mdata, output in zip(metadata, outputs.tolist()):
generated = self.dataset_reader.tokenizer.decode(output[prompt_len:])
mdata['generated'] = generated.strip(self.dataset_reader.tokenizer.pad_token).strip()
avg_ice_num += len(mdata['ice_prompts_list'])
res.extend(metadata)
if i == 0:
logger.info(f"Prompt: {metadata[0]['prompt']}")
logger.info(f"Generated: {metadata[0]['generated']}")
logger.info(f"Number of ICE: {len(metadata[0]['ice_prompts_list'])}")
save_json(f"{self.output_file}tmp_{self.accelerator.device}.bin", res)
logger.info(f"Average number of in-context examples after truncating is {avg_ice_num / len(res)}")
def write_results(self):
data = []
for path in glob.glob(f"{self.output_file}tmp_*.bin"):
with open(path) as f:
data.extend(json.load(f))
# from src.utils.misc import load_json
# data = load_json(self.output_file)
preds = [i['generated'] for i in data]
metric = self.evaluator.evaluate(preds, data)
logger.info(f"metric: {str(metric)}")
save_json(self.output_file, data)
for path in glob.glob(f"{self.output_file}tmp_*.bin"):
os.remove(path)
return data
class APInferencer(Inferencer):
def init_model_dataloader(self, cfg):
model = hu.instantiate(cfg.model_config.model)
dataloader = self.dataset_reader
return model, dataloader
def forward(self):
prompts = [entry['metadata']['prompt'] for entry in self.dataloader]
if 'choices' in self.dataset_reader.dataset_wrapper.field_getter:
choices = [self.dataset_reader.dataset_wrapper.get_field(entry['metadata'], 'choices')
for entry in self.dataloader]
args_list = list(zip(prompts, choices))
else:
args_list = prompts
logger.info(str(prompts[0]))
responses = parallel_run(run_api, args_list=args_list,
n_processes=self.model.n_processes,
client=self.model,
**self.generation_kwargs)
data = []
for i, (entry, response) in enumerate(zip(self.dataloader, responses)):
if i == 0:
logger.info(prompts[i])
logger.info('\n***\n'.join([str(i) for i in response][:3]))
entry['metadata']['generated'] = response[0]['text']
data.append(entry['metadata'])
save_json(self.output_file, data)
avg_ice_num = sum([len(i['ice_prompts_list']) for i in data])/len(data)
logger.info(f"Average number of in-context examples after truncating is {avg_ice_num}")
preds = [i['generated'] for i in data]
metric = self.evaluator.evaluate(preds, data)
logger.info(f"metric: {str(metric)}")
@hydra.main(config_path="configs", config_name="inferencer")
def main(cfg):
logger.info(cfg)
set_seed(43)
if cfg.model_config.model_type == 'hf':
accelerator = Accelerator()
inferencer = Inferencer(cfg, accelerator)
inferencer.forward()
accelerator.wait_for_everyone()
if accelerator.is_main_process:
inferencer.write_results()
else:
inferencer = APInferencer(cfg)
inferencer.forward()
if __name__ == "__main__":
main()