You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Expanded the different types of weights that can be implemented based on:
http://proceedings.mlr.press/v48/jiang16.pdf: Per-decision weights are defined as the average weight at a given timepoint. This results in a different denominator for different timepoints. This is implemented with the following WISWeightNorm(avg_denom=True)
Combinations of different weights can be easily implemented for example 'average discounted weights' WISWeightNorm(discount=discount_value, avg_denom=True) however, these do not necessaily have backing from literature.
EffectiveSampleSize metric optinally returns nan if all weights are 0
Bug fixes:
Fix bug when running on cuda where tensors were not being pushed to CPU