Skip to content

MITx: 6.00.2x Introduction to Computational Thinking and Data Science

Notifications You must be signed in to change notification settings

jpdjere/Computational-Thinking-and-Data-Science

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

4 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

#MITx: 6.00.2x Introduction to Computational Thinking and Data Science

Lecture 1 – Optimization and Knapsack Problem: • Computational models • Intro to optimization • 0/1 Knapsack Problem • Greedy solutions

Lecture 2 – Decision Trees and Dynamic Programming: • Decision tree solution to knapsack • Dynamic programming and knapsack • Divide and conquer

Lecture 3 – Graphs: • Graph problems • Shortest path • Depth first search • Breadth first search

Lecture 4 – Plotting: • Visualizing Results • Overlapping Displays • Adding More Documentation • Changing Data Display • An Example

Lecture 5 – Stochastic Thinking: • Rolling a Die • Random walks

Lecture 6 – Random Walks: • Drunk walk • Biased random walks • Treacherous fields

Lecture 7 – Inferential Statistics: • Probabilities • Confidence intervals

Lecture 8 – Monte Carlo Simulations:

Lecture 9 – Monte Carlo Simulations: • Sampling • Standard error

Lecture 10 – Experimental Data: • Errors in Experimental Observations • Curve Fitting

Lecture 11 – Experimental Data: • Goodness of Fit • Using a Model for Predictions

Lecture 12 – Machine Learning: • Feature Vectors • Distance Metrics • Clustering

Lecture 13 – Statistical Fallacies • Misusing Statistics • Garbage In Garbage Out • Data Enhancement

About

MITx: 6.00.2x Introduction to Computational Thinking and Data Science

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published