Skip to content

Latest commit

 

History

History
742 lines (538 loc) · 30.6 KB

File metadata and controls

742 lines (538 loc) · 30.6 KB

Tracing API

Table of Contents

The Tracing API consist of these main classes:

  • TracerProvider is the entry point of the API. It provides access to Tracers.
  • Tracer is the class responsible for creating Spans.
  • Span is the API to trace an operation.

Data types

While languages and platforms have different ways of representing data, this section defines some generic requirements for this API.

Time

OpenTelemetry can operate on time values up to nanosecond (ns) precision. The representation of those values is language specific.

Timestamp

A timestamp is the time elapsed since the Unix epoch.

  • The minimal precision is milliseconds.
  • The maximal precision is nanoseconds.

Duration

A duration is the elapsed time between two events.

  • The minimal precision is milliseconds.
  • The maximal precision is nanoseconds.

TracerProvider

Tracers can be accessed with a TracerProvider.

In implementations of the API, the TracerProvider is expected to be the stateful object that holds any configuration.

Normally, the TracerProvider is expected to be accessed from a central place. Thus, the API SHOULD provide a way to set/register and access a global default TracerProvider.

Notwithstanding any global TracerProvider, some applications may want to or have to use multiple TracerProvider instances, e.g. to have different configuration (like SpanProcessors) for each (and consequently for the Tracers obtained from them), or because its easier with dependency injection frameworks. Thus, implementations of TracerProvider SHOULD allow creating an arbitrary number of TracerProvider instances.

TracerProvider operations

The TracerProvider MUST provide functions to:

  • Get a Tracer

That API MUST accept the following parameters:

  • name (required): This name must identify the instrumentation library (e.g. io.opentelemetry.contrib.mongodb) and not the instrumented library. In case an invalid name (null or empty string) is specified, a working default Tracer implementation as a fallback is returned rather than returning null or throwing an exception. A library, implementing the OpenTelemetry API may also ignore this name and return a default instance for all calls, if it does not support "named" functionality (e.g. an implementation which is not even observability-related). A TracerProvider could also return a no-op Tracer here if application owners configure the SDK to suppress telemetry produced by this library.
  • version (optional): Specifies the version of the instrumentation library (e.g. 1.0.0).

It is unspecified whether or under which conditions the same or different Tracer instances are returned from this functions.

Implementations MUST NOT require users to repeatedly obtain a Tracer again with the same name+version to pick up configuration changes. This can be achieved either by allowing to work with an outdated configuration or by ensuring that new configuration applies also to previously returned Tracers.

Note: This could, for example, be implemented by storing any mutable configuration in the TracerProvider and having Tracer implementation objects have a reference to the TracerProvider from which they were obtained. If configuration must be stored per-tracer (such as disabling a certain tracer), the tracer could, for example, do a look-up with its name+version in a map in the TracerProvider, or the TracerProvider could maintain a registry of all returned Tracers and actively update their configuration if it changes.

Tracing Context Utilities

Tracing Context Utilities contains all operations within tracing that modify the Context.

As these utilities operate solely on the context API, they MAY be exposed as static methods on the trace module instead of a class.

The Tracing Context Utilities MUST provide the following functions:

  • Get the currently active span
  • Set the currently active span

The above methods MUST be equivalent to a single parameterized method call of the Context management system.

Tracer

The tracer is responsible for creating Spans.

Note that Tracers should usually not be responsible for configuration. This should be the responsibility of the TracerProvider instead.

Tracer operations

The Tracer MUST provide functions to:

The Tracer MAY provide functions to:

  • Get the currently active span
  • Set the currently active span

These functions MUST delegate to the Tracing Context Utilities.

SpanContext

A SpanContext represents the portion of a Span which must be serialized and propagated along side of a distributed context. SpanContexts are immutable. SpanContext MUST be a final (sealed) class.

The OpenTelemetry SpanContext representation conforms to the W3C TraceContext specification. It contains two identifiers - a TraceId and a SpanId - along with a set of common TraceFlags and system-specific TraceState values.

TraceId A valid trace identifier is a 16-byte array with at least one non-zero byte.

SpanId A valid span identifier is an 8-byte array with at least one non-zero byte.

TraceFlags contain details about the trace. Unlike TraceState values, TraceFlags are present in all traces. The current version of the specification only supports a single flag called sampled.

TraceState carries vendor-specific trace identification data, represented as a list of key-value pairs. TraceState allows multiple tracing systems to participate in the same trace. It is fully described in the W3C Trace Context specification.

Retrieving the TraceId and SpanId

The API MUST allow retrieving the TraceId and SpanId in the following forms:

  • Hex - returns the lowercase hex encoded TraceId (result MUST be a 32-hex-character lowercase string) or SpanId (result MUST be a 16-hex-character lowercase string).
  • Binary - returns the binary representation of the TraceId (result MUST be a 16-byte array) SpanId (result MUST be a 8-byte array).

The API should not expose details about how they are internally stored.

IsValid

An API called IsValid, that returns a boolean value, which is true if the SpanContext has a non-zero TraceID and a non-zero SpanID, MUST be provided.

IsRemote

An API called IsRemote, that returns a boolean value, which is true if the SpanContext was propagated from a remote parent, MUST be provided. When extracting a SpanContext through the Propagators API, IsRemote MUST return true, whereas for the SpanContext of any child spans it MUST return false.

TraceState

TraceState is a part of SpanContext, represented by an immutable list of string key/value pairs and formally defined by the W3C Trace Context specification. Tracing API MUST provide at least the following operations on TraceState:

  • Get value for a given key
  • Add a new key/value pair
  • Update an existing value for a given key
  • Delete a key/value pair

These operations MUST follow the rules described in the W3C Trace Context specification. All mutating operations MUST return a new TraceState with the modifications applied. TraceState MUST at all times be valid according to rules specified in W3C Trace Context specification. Every mutating operations MUST validate input parameters. If invalid value is passed the operation MUST NOT return TraceState containing invalid data and MUST follow the general error handling guidelines (e.g. it usually must not return null or throw an exception).

Please note, since SpanContext is immutable, it is not possible to update SpanContext with a new TraceState. Such changes then make sense only right before SpanContext propagation or telemetry data exporting. In both cases, Propagators and SpanExporters may create a modified TraceState copy before serializing it to the wire.

Span

A Span represents a single operation within a trace. Spans can be nested to form a trace tree. Each trace contains a root span, which typically describes the entire operation and, optionally, one or more sub-spans for its sub-operations.

Spans encapsulate:

The span name concisely identifies the work represented by the Span, for example, an RPC method name, a function name, or the name of a subtask or stage within a larger computation. The span name SHOULD be the most general string that identifies a (statistically) interesting class of Spans, rather than individual Span instances while still being human-readable. That is, "get_user" is a reasonable name, while "get_user/314159", where "314159" is a user ID, is not a good name due to its high cardinality. Generality SHOULD be prioritized over human-readability.

For example, here are potential span names for an endpoint that gets a hypothetical account information:

Span Name Guidance
get Too general
get_account/42 Too specific
get_account Good, and account_id=42 would make a nice Span attribute
get_account/{accountId} Also good (using the "HTTP route")

The Span's start and end timestamps reflect the elapsed real time of the operation.

For example, if a span represents a request-response cycle (e.g. HTTP or an RPC), the span should have a start time that corresponds to the start time of the first sub-operation, and an end time of when the final sub-operation is complete. This includes:

  • receiving the data from the request
  • parsing of the data (e.g. from a binary or json format)
  • any middleware or additional processing logic
  • business logic
  • construction of the response
  • sending of the response

Child spans (or in some cases events) may be created to represent sub-operations which require more detailed observability. Child spans should measure the timing of the respective sub-operation, and may add additional attributes.

A Span's start time SHOULD be set to the current time on span creation. After the Span is created, it SHOULD be possible to change its name, set its Attributes, and add Links and Events. These MUST NOT be changed after the Span's end time has been set.

Spans are not meant to be used to propagate information within a process. To prevent misuse, implementations SHOULD NOT provide access to a Span's attributes besides its SpanContext.

Vendors may implement the Span interface to effect vendor-specific logic. However, alternative implementations MUST NOT allow callers to create Spans directly. All Spans MUST be created via a Tracer.

Span Creation

There MUST NOT be any API for creating a Span other than with a Tracer.

Span creation MUST NOT set the newly created Span as the currently active Span by default, but this functionality MAY be offered additionally as a separate operation.

The API MUST accept the following parameters:

  • The span name. This is a required parameter.

  • The parent Context or an indication that the new Span should be a root Span. The API MAY also have an option for implicitly using the current Context as parent as a default behavior. This API MUST NOT accept a Span or SpanContext as parent, only a full Context.

    The semantic parent of the Span MUST be determined according to the rules described in Determining the Parent Span from a Context.

  • SpanKind, default to SpanKind.Internal if not specified.

  • Attributes. Additionally, these attributes may be used to make a sampling decision as noted in sampling description. An empty collection will be assumed if not specified.

    Whenever possible, users SHOULD set any already known attributes at span creation instead of calling SetAttribute later.

  • Links - see API definition here. Empty list will be assumed if not specified.

  • Start timestamp, default to current time. This argument SHOULD only be set when span creation time has already passed. If API is called at a moment of a Span logical start, API user MUST not explicitly set this argument.

Each span has zero or one parent span and zero or more child spans, which represent causally related operations. A tree of related spans comprises a trace. A span is said to be a root span if it does not have a parent. Each trace includes a single root span, which is the shared ancestor of all other spans in the trace. Implementations MUST provide an option to create a Span as a root span, and MUST generate a new TraceId for each root span created. For a Span with a parent, the TraceId MUST be the same as the parent. Also, the child span MUST inherit all TraceState values of its parent by default.

A Span is said to have a remote parent if it is the child of a Span created in another process. Each propagators' deserialization must set IsRemote to true on a parent SpanContext so Span creation knows if the parent is remote.

Determining the Parent Span from a Context

When a new Span is created from a Context, the Context may contain a Span representing the currently active instance, and will be used as parent. If there is no Span in the Context, the newly created Span will be a root span.

A SpanContext cannot be set as active in a Context directly, but through the use of a Propagated Span wrapping it. For example, a Propagator performing context extraction may need this.

Add Links

During the Span creation user MUST have the ability to record links to other Spans. Linked Spans can be from the same or a different trace. See Links description.

Links cannot be added after Span creation.

A Link is defined by the following properties:

  • (Required) SpanContext of the Span to link to.
  • (Optional) One or more Attributes as defined here.

The Link SHOULD be an immutable type.

The Span creation API MUST provide:

  • An API to record a single Link where the Link properties are passed as arguments. This MAY be called AddLink.

Links SHOULD preserve the order in which they're set.

Span operations

With the exception of the function to retrieve the Span's SpanContext and recording status, none of the below may be called after the Span is finished.

Get Context

The Span interface MUST provide:

  • An API that returns the SpanContext for the given Span. The returned value may be used even after the Span is finished. The returned value MUST be the same for the entire Span lifetime. This MAY be called GetContext.

IsRecording

Returns true if this Span is recording information like events with the AddEvent operation, attributes using SetAttributes, status with SetStatus, etc.

There should be no parameter.

This flag SHOULD be used to avoid expensive computations of a Span attributes or events in case when a Span is definitely not recorded. Note that any child span's recording is determined independently from the value of this flag (typically based on the sampled flag of a TraceFlag on SpanContext).

This flag may be true despite the entire trace being sampled out. This allows to record and process information about the individual Span without sending it to the backend. An example of this scenario may be recording and processing of all incoming requests for the processing and building of SLA/SLO latency charts while sending only a subset - sampled spans - to the backend. See also the sampling section of SDK design.

Users of the API should only access the IsRecording property when instrumenting code and never access SampledFlag unless used in context propagators.

Set Attributes

A Span MUST have the ability to set Attributes associated with it.

The Span interface MUST provide:

  • An API to set a single Attribute where the attribute properties are passed as arguments. This MAY be called SetAttribute. To avoid extra allocations some implementations may offer a separate API for each of the possible value types.

Setting an attribute with the same key as an existing attribute SHOULD overwrite the existing attribute's value.

Note that the OpenTelemetry project documents certain "standard attributes" that have prescribed semantic meanings.

Note that Samplers can only consider information already present during span creation. Any changes done later, including new or changed attributes, cannot change their decisions.

Add Events

A Span MUST have the ability to add events. Events have a time associated with the moment when they are added to the Span.

An Event is defined by the following properties:

  • Name of the event.
  • A timestamp for the event. Either the time at which the event was added or a custom timestamp provided by the user.
  • Attributes further describing the event.

The Event SHOULD be an immutable type.

The Span interface MUST provide:

  • An API to record a single Event where the Event properties are passed as arguments. This MAY be called AddEvent. This API takes the name of the event, optional Attributes and an optional Timestamp which can be used to specify the time at which the event occurred. If no custom timestamp is provided by the user, the implementation automatically sets the time at which this API is called on the event.

Events SHOULD preserve the order in which they are recorded. This will typically match the ordering of the events' timestamps, but events may be recorded out-of-order using custom timestamps.

Consumers should be aware that an event's timestamp might be before the start or after the end of the span if custom timestamps were provided by the user for the event or when starting or ending the span. The specification does not require any normalization if provided timestamps are out of range.

Note that the OpenTelemetry project documents certain "standard event names and keys" which have prescribed semantic meanings.

Note that RecordException is a specialized variant of AddEvent for recording exception events.

Set Status

Sets the Status of the Span. If used, this will override the default Span status, which is OK.

Only the value of the last call will be recorded, and implementations are free to ignore previous calls.

The Span interface MUST provide:

  • An API to set the Status where the new status is the only argument. This SHOULD be called SetStatus.

UpdateName

Updates the Span name. Upon this update, any sampling behavior based on Span name will depend on the implementation.

Note that Samplers can only consider information already present during span creation. Any changes done later, including updated span name, cannot change their decisions.

Alternatives for the name update may be late Span creation, when Span is started with the explicit timestamp from the past at the moment where the final Span name is known, or reporting a Span with the desired name as a child Span.

Required parameters:

  • The new span name, which supersedes whatever was passed in when the Span was started

End

Finish the Span. This call will take the current timestamp to set as Span's end time. Implementations MUST ignore all subsequent calls to End (there might be exceptions when Tracer is streaming event and has no mutable state associated with the Span).

Call to End of a Span MUST not have any effects on child spans. Those may still be running and can be ended later.

Parameters:

  • (Optional) Timestamp to explicitly set the end timestamp

This API MUST be non-blocking.

Record Exception

To facilitate recording an exception languages SHOULD provide a RecordException method if the language uses exceptions. This is a specialized variant of AddEvent, so for anything not specified here, the same requirements as for AddEvent apply.

The signature of the method is to be determined by each language and can be overloaded as appropriate. The method MUST record an exception as an Event with the conventions outlined in the exception semantic conventions document. The minimum required argument SHOULD be no more than only an exception object.

If RecordException is provided, the method MUST accept an optional parameter to provide any additional event attributes (this SHOULD be done in the same way as for the AddEvent method). If attributes with the same name would be generated by the method already, the additional attributes take precedence.

Note: RecordException may be seen as a variant of AddEvent with additional exception-specific parameters and all other parameters being optional (because they have defaults from the exception semantic convention).

Span lifetime

Span lifetime represents the process of recording the start and the end timestamps to the Span object:

  • The start time is recorded when the Span is created.
  • The end time needs to be recorded when the operation is ended.

Start and end time as well as Event's timestamps MUST be recorded at a time of a calling of corresponding API.

Propagated Span creation

The API MUST provide an operation for wrapping a SpanContext with an object implementing the Span interface. This is done in order to expose a SpanContext as a Span in operations such as in-process Span propagation.

If a new type is required for supporting this operation, it SHOULD be named PropagatedSpan.

The behavior is defined as follows:

  • GetContext() MUST return the wrapped SpanContext.
  • IsRecording MUST return false to signal that events, attributes and other elements are not being recorded, i.e. they are being dropped.

The remaining functionality of Span MUST be defined as no-op operations.

This functionality MUST be fully implemented in the API, and SHOULD NOT be overridable.

Status

Status interface represents the status of a finished Span. It's composed of a canonical code, and an optional descriptive message.

StatusCanonicalCode

StatusCanonicalCode represents the canonical set of status codes of a finished Span.

  • Unset
    • The default status.
  • Error
    • The operation contains an error.
  • Ok
    • The operation has been validated by an Application developers or Operator to have completed successfully, or contain

The status code SHOULD remain unset, except for the following circumstances:

When the status is set to ERROR by Instrumentation Libraries, the status codes SHOULD be documented and predictable. The status code should only be set to ERROR according to the rules defined within the semantic conventions. For operations not covered by the semantic conventions, Instrumentation Libraries SHOULD publish their own conventions, including status codes.

Generally, Instrumentation Libraries SHOULD NOT set the status code to Ok, unless explicitly configured to do so. Instrumention libraries SHOULD leave the status code as Unset unless there is an error, as described above.

Application developers and Operators may set the status code to Ok.

Analysis tools SHOULD respond to an Ok status by suppressing any errors they would otherwise generate. For example, to suppress noisy errors such as 404s.

Status creation

API MUST provide a way to create a new Status.

Required parameters

  • StatusCanonicalCode of this Status.

Optional parameters

  • Description of this Status.

GetCanonicalCode

Returns the StatusCanonicalCode of this Status.

GetDescription

Returns the description of this Status. Languages should follow their usual conventions on whether to return null or an empty string here if no description was given.

SpanKind

SpanKind describes the relationship between the Span, its parents, and its children in a Trace. SpanKind describes two independent properties that benefit tracing systems during analysis.

The first property described by SpanKind reflects whether the Span is a remote child or parent. Spans with a remote parent are interesting because they are sources of external load. Spans with a remote child are interesting because they reflect a non-local system dependency.

The second property described by SpanKind reflects whether a child Span represents a synchronous call. When a child span is synchronous, the parent is expected to wait for it to complete under ordinary circumstances. It can be useful for tracing systems to know this property, since synchronous Spans may contribute to the overall trace latency. Asynchronous scenarios can be remote or local.

In order for SpanKind to be meaningful, callers should arrange that a single Span does not serve more than one purpose. For example, a server-side span should not be used directly as the parent of another remote span. As a simple guideline, instrumentation should create a new Span prior to extracting and serializing the span context for a remote call.

These are the possible SpanKinds:

  • SERVER Indicates that the span covers server-side handling of a synchronous RPC or other remote request. This span is the child of a remote CLIENT span that was expected to wait for a response.
  • CLIENT Indicates that the span describes a synchronous request to some remote service. This span is the parent of a remote SERVER span and waits for its response.
  • PRODUCER Indicates that the span describes the parent of an asynchronous request. This parent span is expected to end before the corresponding child CONSUMER span, possibly even before the child span starts. In messaging scenarios with batching, tracing individual messages requires a new PRODUCER span per message to be created.
  • CONSUMER Indicates that the span describes the child of an asynchronous PRODUCER request.
  • INTERNAL Default value. Indicates that the span represents an internal operation within an application, as opposed to an operations with remote parents or children.

To summarize the interpretation of these kinds:

SpanKind Synchronous Asynchronous Remote Incoming Remote Outgoing
CLIENT yes yes
SERVER yes yes
PRODUCER yes maybe
CONSUMER yes maybe
INTERNAL

Concurrency

For languages which support concurrent execution the Tracing APIs provide specific guarantees and safeties. Not all of API functions are safe to be called concurrently.

TracerProvider - all methods are safe to be called concurrently.

Tracer - all methods are safe to be called concurrently.

Span - All methods of Span are safe to be called concurrently.

Event - Events are immutable and safe to be used concurrently.

Link - Links are immutable and safe to be used concurrently.

Included Propagators

The API layer MAY include the following Propagators:

Behavior of the API in the absence of an installed SDK

In general, in the absence of an installed SDK, the Trace API is a "no-op" API. This means that operations on a Tracer, or on Spans, should have no side effects and do nothing. However, there is one important exception to this general rule, and that is related to propagation of a SpanContext.

The following cases must be considered when a new Span is requested to be created, especially in relation to the requested parent SpanContext:

  • A valid SpanContext is specified as the parent of the new Span: The API MUST treat this parent context as the context for the newly created Span. This means that a SpanContext that has been provided by a configured Propagator will be propagated through to any child span, but that no new SpanContexts will be created.
  • No valid SpanContext is specified as the parent of the new Span: The API MUST create an non-valid (both SpanID and TradeID are equivalent to being all zeros) Span for use by the API caller. This means that both the TraceID and the SpanID should be invalid.