-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathcalibrate3.py
165 lines (124 loc) · 5.58 KB
/
calibrate3.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
import numpy as np
from scipy import linalg
from matplotlib import pyplot as plt
#started with https://github.com/nliaudat/magnetometer_calibration/blob/main/calibrate.py
#this corrected code by S. James Remington, see issue #1 in above contribution.
#required data input file: x,y,z values in .csv (text, comma separated value) format.
# see example mag3_raw.csv, .out
class Magnetometer(object):
'''
references :
- https://teslabs.com/articles/magnetometer-calibration/
- https://www.best-microcontroller-projects.com/hmc5883l.html
'''
MField = 1000 #arbitrary norm of magnetic field vectors
def __init__(self, F=MField):
# initialize values
self.F = F
self.b = np.zeros([3, 1])
self.A_1 = np.eye(3)
def run(self):
data = np.loadtxt("mag3_raw.csv",delimiter=',')
print("shape of data array:",data.shape)
#print("datatype of data:",data.dtype)
print("First 5 rows raw:\n", data[:5])
# ellipsoid fit
s = np.array(data).T
M, n, d = self.__ellipsoid_fit(s)
# calibration parameters
M_1 = linalg.inv(M)
self.b = -np.dot(M_1, n)
self.A_1 = np.real(self.F / np.sqrt(np.dot(n.T, np.dot(M_1, n)) - d) * linalg.sqrtm(M))
#print("M:\n", M, "\nn:\n", n, "\nd:\n", d)
#print("M_1:\n",M_1, "\nb:\n", self.b, "\nA_1:\n", self.A_1)
print("\nData normalized to ",self.F)
print("Soft iron transformation matrix:\n",self.A_1)
print("Hard iron bias:\n", self.b)
plt.rcParams["figure.autolayout"] = True
#fig = plt.figure()
#ax = fig.add_subplot(111, projection='3d')
#ax.scatter(data[:,0], data[:,1], data[:,2], marker='o', color='r')
#plt.show()
result = []
for row in data:
# subtract the hard iron offset
xm_off = row[0]-self.b[0]
ym_off = row[1]-self.b[1]
zm_off = row[2]-self.b[2]
#multiply by the inverse soft iron offset
xm_cal = xm_off * self.A_1[0,0] + ym_off * self.A_1[0,1] + zm_off * self.A_1[0,2]
ym_cal = xm_off * self.A_1[1,0] + ym_off * self.A_1[1,1] + zm_off * self.A_1[1,2]
zm_cal = xm_off * self.A_1[2,0] + ym_off * self.A_1[2,1] + zm_off * self.A_1[2,2]
result = np.append(result, np.array([xm_cal, ym_cal, zm_cal]) )#, axis=0 )
result = result.reshape(-1, 3)
fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')
ax.scatter(result[:,0], result[:,1], result[:,2], marker='o', color='g')
plt.show()
print("First 5 rows calibrated:\n", result[:5])
#save corrected data to file "out.txt"
np.savetxt('out.txt', result, fmt='%f', delimiter=' ,')
print("*************************" )
print("code to paste (edits required) : " )
print("*************************" )
self.b = np.round(self.b,2)
print("float B[3] = {", self.b[0],",", self.b[1],",", self.b[2],"};")
print("\n")
self.A_1 = np.round(self.A_1,5)
print("float A_inv[3][3] = {")
print("{", self.A_1[0,0],",", self.A_1[0,1],",", self.A_1[0,2], "},")
print("{", self.A_1[1,0],",", self.A_1[1,1],",", self.A_1[2,1], "},")
print("{", self.A_1[2,0],",", self.A_1[2,1],",", self.A_1[2,2], "}};")
print("\n")
def __ellipsoid_fit(self, s):
''' Estimate ellipsoid parameters from a set of points.
Parameters
----------
s : array_like
The samples (M,N) where M=3 (x,y,z) and N=number of samples.
Returns
-------
M, n, d : array_like, array_like, float
The ellipsoid parameters M, n, d.
References
----------
.. [1] Qingde Li; Griffiths, J.G., "Least squares ellipsoid specific
fitting," in Geometric Modeling and Processing, 2004.
Proceedings, vol., no., pp.335-340, 2004
'''
# D (samples)
D = np.array([s[0]**2., s[1]**2., s[2]**2.,
2.*s[1]*s[2], 2.*s[0]*s[2], 2.*s[0]*s[1],
2.*s[0], 2.*s[1], 2.*s[2], np.ones_like(s[0])])
# S, S_11, S_12, S_21, S_22 (eq. 11)
S = np.dot(D, D.T)
S_11 = S[:6,:6]
S_12 = S[:6,6:]
S_21 = S[6:,:6]
S_22 = S[6:,6:]
# C (Eq. 8, k=4)
C = np.array([[-1, 1, 1, 0, 0, 0],
[ 1, -1, 1, 0, 0, 0],
[ 1, 1, -1, 0, 0, 0],
[ 0, 0, 0, -4, 0, 0],
[ 0, 0, 0, 0, -4, 0],
[ 0, 0, 0, 0, 0, -4]])
# v_1 (eq. 15, solution)
E = np.dot(linalg.inv(C),
S_11 - np.dot(S_12, np.dot(linalg.inv(S_22), S_21)))
E_w, E_v = np.linalg.eig(E)
v_1 = E_v[:, np.argmax(E_w)]
if v_1[0] < 0: v_1 = -v_1
# v_2 (eq. 13, solution)
v_2 = np.dot(np.dot(-np.linalg.inv(S_22), S_21), v_1)
# quadratic-form parameters, parameters h and f swapped as per correction by Roger R on Teslabs page
M = np.array([[v_1[0], v_1[5], v_1[4]],
[v_1[5], v_1[1], v_1[3]],
[v_1[4], v_1[3], v_1[2]]])
n = np.array([[v_2[0]],
[v_2[1]],
[v_2[2]]])
d = v_2[3]
return M, n, d
if __name__=='__main__':
Magnetometer().run()