-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy path13_Precursor_Compliance.wls
executable file
·32 lines (24 loc) · 1.21 KB
/
13_Precursor_Compliance.wls
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
#!/usr/bin/env wolframscript
(* ::Package:: *)
SetDirectory@ NotebookDirectory[];
allowedPrecursors = Keys@ Import["./data/precursors.json","RawJSON"];
(* functions to perform the compliance checks *)
(* take as input a list of lists of predicted precursors *)
fractionReactionsInCompliance[precursorsUsed_List]:=
N@ Mean@ Boole@ Map[ContainsOnly[allowedPrecursors]]@ Flatten[ precursorsUsed, 1]
fractionTop5AllInCompliance[precursorsUsed_List]:=
N@ Mean@ Boole@ Map[AllTrue[ContainsOnly[allowedPrecursors]]]@ precursorsUsed
(* check one file *)
precursorCompliance[file_?FileExistsQ]:= With[
{p = Lookup["prediction"]@ Lookup["results"]@ Import[file, "RawJSON"]},
Comap[{fractionReactionsInCompliance, fractionTop5AllInCompliance}]@ p]
(* look up results of all top5 (returned as an Association)
and return mean for each quantity *)
precursorComplianceSummary[folder_]:=With[
{results = FileSystemMap[predictionCompliance, folder, FileNameForms->"top5_*.json"]},
SetPrecision[#, 2]&@ Map[Mean]@ Transpose@ Values@ results]
(* perform the calculation *)
AssociationMap[
precursorComplianceSummary,
{"./results/gpt-3.5_rescore", "./results/gpt-4_rescore",
"./results/gpt-3.5_finetune_rescore", "./results/elemwise"}]