-
Notifications
You must be signed in to change notification settings - Fork 0
/
overview-commands-plus-output.tex
219 lines (174 loc) · 4.85 KB
/
overview-commands-plus-output.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
\documentclass{article}
% Required packages
\usepackage{etoolbox}
\usepackage{amsmath}
\usepackage{amssymb}
% Commands you provided go here
\input{pmed-tex-preamble}
\begin{document}
% Now we test each command
The covariate space is $\covarspace$ or $\cspc$.
\begin{verbatim}
\covarspace or \cspc: represents the covariate space.
\end{verbatim}
The action space is $\armspace$ or $\aspc$.
\begin{verbatim}
\armspace or \aspc: represents the action space.
\end{verbatim}
The outcome space is $\outspace$ or $\ospc$ or $\yspc$.
\begin{verbatim}
\outspace or \ospc or \yspc: represents the outcome space.
\end{verbatim}
The history space is $\histspace$ or $\hspc$.
\begin{verbatim}
\histspace or \hspc: represents the history space.
\end{verbatim}
The covariate distribution is $\covardist$.
\begin{verbatim}
\covardist: represents the covariate distribution.
\end{verbatim}
The covariate matrix is $\covarmat$.
\begin{verbatim}
\covarmat: represents the covariate matrix.
\end{verbatim}
The observed variable is $\obs$.
\begin{verbatim}
\obs: represents the observed variable.
\end{verbatim}
The history is $\hist$.
\begin{verbatim}
\hist: represents the history.
\end{verbatim}
The response is $\resp$.
\begin{verbatim}
\resp: represents the response.
\end{verbatim}
The history up to time $t$ is $\histt$.
\begin{verbatim}
\histt: represents the history up to time t.
\end{verbatim}
The history up to $n$ observations is $\histn$.
\begin{verbatim}
\histn: represents the history up to n observations.
\end{verbatim}
The generic policy is $\pol$.
\begin{verbatim}
\pol: represents the generic policy.
\end{verbatim}
The optimal policy is $\optpol$.
\begin{verbatim}
\optpol: represents the optimal policy.
\end{verbatim}
The parameter vector for a generic arm is $\armparam$.
\begin{verbatim}
\armparam: represents the parameter vector for a generic arm.
\end{verbatim}
The estimated policy is $\polhat$.
\begin{verbatim}
\polhat: represents the estimated policy.
\end{verbatim}
The estimated arm parameter vector is $\armhat$.
\begin{verbatim}
\armhat: represents the estimated arm parameter vector.
\end{verbatim}
The estimated policy based on a sample size of $n$ is $\polhatn$.
\begin{verbatim}
\polhatn: represents the estimated policy based on a sample size of n.
\end{verbatim}
The parameter vector for arm $k$ is $\armparamk$.
\begin{verbatim}
\armparamk: represents the parameter vector for arm k.
\end{verbatim}
The value function is $\val$.
\begin{verbatim}
\val: represents the value function.
\end{verbatim}
The Bayes regret is $\BR$.
\begin{verbatim}
\BR: represents the Bayes regret.
\end{verbatim}
The regret is $\R$ or $\Reg$.
\begin{verbatim}
\R or \Reg: represents the regret.
\end{verbatim}
The population regret is $\Regpop$.
\begin{verbatim}
\Regpop: represents the population regret.
\end{verbatim}
The estimated regret is $\reghat$.
\begin{verbatim}
\reghat: represents the estimated regret.
\end{verbatim}
The estimated value function is $\valhat$.
\begin{verbatim}
\valhat: represents the estimated value function.
\end{verbatim}
The estimated value function based on a sample size of $n$ is $\valhatn$.
\begin{verbatim}
\valhatn: represents the estimated value function based on a sample size of n.
\end{verbatim}
The indicator function is $\indfun$.
\begin{verbatim}
\indfun: represents the indicator function.
\end{verbatim}
The sign function is $\sign$.
\begin{verbatim}
\sign: represents the sign function.
\end{verbatim}
The probability is $\prob$.
\begin{verbatim}
\prob: represents the probability.
\end{verbatim}
The expectation is $\expt$ or $\E$.
\begin{verbatim}
\expt or \E: represents the expectation.
\end{verbatim}
The diagonal is $\diag$.
\begin{verbatim}
\diag: represents the diagonal of a matrix.
\end{verbatim}
The block diagonal is $\blkdiag$.
\begin{verbatim}
\blkdiag: represents the block diagonal of a matrix.
\end{verbatim}
The KL-divergence is $\KL$.
\begin{verbatim}
\KL: represents the KL-divergence.
\end{verbatim}
The asymptotic variance is $\avar$.
\begin{verbatim}
\avar: represents the asymptotic variance.
\end{verbatim}
The vec operator is $\vect$.
\begin{verbatim}
\vect: represents the vec operator.
\end{verbatim}
The argmax is $\argmax$.
\begin{verbatim}
\argmax: represents the argmax function.
\end{verbatim}
The argmin is $\argmin$.
\begin{verbatim}
\argmin: represents the argmin function.
\end{verbatim}
The variance is $\var$.
\begin{verbatim}
\var: represents the variance.
\end{verbatim}
The covariance is $\cov$.
\begin{verbatim}
\cov: represents the covariance.
\end{verbatim}
The mean squared error is $\mse$.
\begin{verbatim}
\mse: represents the mean squared error.
\end{verbatim}
The norm of a vector is $\norm{v}$.
\begin{verbatim}
\norm{v}: represents the norm of a vector v.
\end{verbatim}
And finally, the boldsymbol command can be used as follows: $\bs{a}$
\begin{verbatim}
\bs{a}: makes the letter a bold.
\end{verbatim}
\end{document}