-
Notifications
You must be signed in to change notification settings - Fork 1
/
dense_net.py
112 lines (92 loc) · 4.79 KB
/
dense_net.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
from __future__ import print_function, division
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.autograd import Variable
from torch.utils.data import DataLoader
from collections import OrderedDict
from data_loading import Protein_Dataset
class _DenseLayer(nn.Sequential):
def __init__(self, num_input_features, growth_rate, bn_size, drop_rate):
super(_DenseLayer, self).__init__()
self.add_module('norm.1', nn.BatchNorm1d(num_input_features)),
self.add_module('relu.1', nn.ReLU(inplace=True)),
self.add_module('conv.1', nn.Conv1d(num_input_features, bn_size *
growth_rate, kernel_size=1, stride=1, bias=False)),
self.add_module('norm.2', nn.BatchNorm1d(bn_size * growth_rate)),
self.add_module('relu.2', nn.ReLU(inplace=True)),
self.add_module('conv.2', nn.Conv1d(bn_size * growth_rate, growth_rate,
kernel_size=3, stride=1, padding=1, bias=False)),
self.drop_rate = drop_rate
def forward(self, x):
new_features = super(_DenseLayer, self).forward(x)
if self.drop_rate > 0:
new_features = F.dropout(new_features, p=self.drop_rate, training=self.training)
return torch.cat([x, new_features], 1)
class _DenseBlock(nn.Sequential):
def __init__(self, num_layers, num_input_features, bn_size, growth_rate, drop_rate):
super(_DenseBlock, self).__init__()
for i in range(num_layers):
layer = _DenseLayer(num_input_features + i * growth_rate, growth_rate, bn_size, drop_rate)
self.add_module('denselayer%d' % (i + 1), layer)
class _Transition(nn.Sequential):
def __init__(self, num_input_features, num_output_features):
super(_Transition, self).__init__()
self.add_module('norm', nn.BatchNorm1d(num_input_features))
self.add_module('relu', nn.ReLU(inplace=True))
self.add_module('conv', nn.Conv1d(num_input_features, num_output_features,
kernel_size=1, stride=1, bias=False))
self.add_module('pool', nn.AvgPool1d(kernel_size=3, padding=1, stride=1))
class DenseNet(nn.Module):
r"""Densenet-BC model class, based on
`"Densely Connected Convolutional Networks" <https://arxiv.org/pdf/1608.06993.pdf>`_
Args:
growth_rate (int) - how many filters to add each layer (`k` in paper)
block_config (list of 4 ints) - how many layers in each pooling block
num_init_features (int) - the number of filters to learn in the first convolution layer
bn_size (int) - multiplicative factor for number of bottle neck layers
(i.e. bn_size * k features in the bottleneck layer)
drop_rate (float) - dropout rate after each dense layer
num_classes (int) - number of classification classes
"""
def __init__(self, growth_rate=32, block_config=(6, 12, 24, 16),
num_init_features=64, bn_size=4, drop_rate=0, num_classes=8):
super(DenseNet, self).__init__()
# First convolution
self.features = nn.Sequential(OrderedDict([
('conv0', nn.Conv1d(66, num_init_features, kernel_size=7, stride=1, padding=3, bias=False)),
('norm0', nn.BatchNorm1d(num_init_features)),
('relu0', nn.ReLU(inplace=True)),
('pool0', nn.MaxPool1d(kernel_size=3, stride=1, padding=1)),
]))
# Each denseblock
num_features = num_init_features
for i, num_layers in enumerate(block_config):
block = _DenseBlock(num_layers=num_layers, num_input_features=num_features,
bn_size=bn_size, growth_rate=growth_rate, drop_rate=drop_rate)
self.features.add_module('denseblock%d' % (i + 1), block)
num_features = num_features + num_layers * growth_rate
if i != len(block_config) - 1:
trans = _Transition(num_input_features=num_features, num_output_features=num_features // 2)
self.features.add_module('transition%d' % (i + 1), trans)
num_features = num_features // 2
# Final batch norm
self.features.add_module('norm5', nn.BatchNorm1d(num_features))
# Linear layer
self.classifier = nn.Linear(num_features, num_classes)
def forward(self, x):
features = self.features(x)
out = F.relu(features, inplace=True) # torch.Size([64, 1024, 498])
out = self.classifier(out.permute(0, 2, 1))
return out
if __name__ == '__main__':
x = Variable(torch.rand(64, 66, 498))
# conv = BasicConv1d(64)
# y1 = conv(x)
# print(y1.size())
# denseblock = _DenseBlock(num_layers=6, num_input_features=64, bn_size=4, growth_rate=32, drop_rate=0)
# y2 = denseblock(y1)
# print(y2.size())
densenet = DenseNet()
y3 = densenet(x)
print(y3.size())