-
Notifications
You must be signed in to change notification settings - Fork 12
/
Copy pathdata_loader.py
121 lines (104 loc) · 4.54 KB
/
data_loader.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
import torch
import torchvision.transforms as transforms
import torch.utils.data as data
import os
import pickle
import re
import numpy as np
from PIL import Image
from build_vocab import parse_code
# data_loader = get_loader(args.image_dir, vocab, transform, args.batch_size, shuffle=True, num_workers=args.num_workers)
def make_dataset(dir):
folders = []
for root, dirs, files in os.walk(os.path.abspath(dir)):
for file in files:
if file.endswith(".txt"):
folders.append(root)
return folders
def validation_split(dataset, val_share=0.1):
val_offset = int(len(dataset)*(1-val_share))
return PartialDataset(dataset, 0, val_offset), PartialDataset(dataset, val_offset, len(dataset)-val_offset)
class PartialDataset(torch.utils.data.Dataset):
def __init__(self, parent_ds, offset, length):
self.parent_ds = parent_ds
self.offset = offset
self.length = length
assert len(parent_ds)>=offset+length, Exception("Parent Dataset not long enough")
super(PartialDataset, self).__init__()
def __len__(self):
return self.length
def __getitem__(self, i):
return self.parent_ds[i+self.offset]
class ProcessingDataset(data.Dataset):
"""Dataset compatible with torch.utils.data.DataLoader."""
def __init__(self, root, vocab, transform=None,length=None):
"""Set the path for images, captions and vocabulary wrapper.
Args:
root: image directory.
vocab: vocabulary wrapper.
transform: image transformer.
"""
self.root = root
self.folders = make_dataset(root)
self.vocab = vocab
self.transform = transform
def __getitem__(self, index):
"""Returns one data pair (image and caption)."""
path = self.folders[index]
vocab = self.vocab
with open(os.path.join(path,"code.txt"), 'r') as f:
code = str(f.read())
image = Image.open(os.path.join(path, "image.jpg")).convert('RGB')
if self.transform is not None:
image = self.transform(image)
# Convert caption (string) to word ids.
tokens = parse_code(code)
code = []
code.append(vocab('<start>'))
code.extend([vocab(token) for token in tokens])
code.append(vocab('<end>'))
target = torch.Tensor(code)
return image, target
def __len__(self):
return len(self.folders)
def collate_fn(data):
"""Creates mini-batch tensors from the list of tuples (image, caption).
We should build custom collate_fn rather than using default collate_fn,
because merging code (including padding) is not supported in default.
Args:
data: list of tuple (image, caption).
- image: torch tensor of shape (3, 256, 256).
- caption: torch tensor of shape (?); variable length.
Returns:
images: torch tensor of shape (batch_size, 3, 256, 256).
targets: torch tensor of shape (batch_size, padded_length).
lengths: list; valid length for each padded caption.
"""
# Sort a data list by code length (descending order).
data.sort(key=lambda x: len(x[1]), reverse=True)
images, captions = zip(*data)
# Merge images (from tuple of 3D tensor to 4D tensor).
images = torch.stack(images, 0)
# Merge code (from tuple of 1D tensor to 2D tensor).
lengths = [len(cap) for cap in captions]
targets = torch.zeros(len(captions), max(lengths)).long()
for i, cap in enumerate(captions):
end = lengths[i]
targets[i, :end] = cap[:end]
return images, targets, lengths
def get_loader(root, vocab, transform, batch_size, shuffle, num_workers):
"""Returns torch.utils.data.DataLoader for custom processing dataset."""
processing = ProcessingDataset(root=root,
vocab=vocab,
transform=transform)
# Data loader for processing dataset
# This will return (images, code, lengths) for every iteration.
# images: tensor of shape (batch_size, 3, 224, 224).
# captions: tensor of shape (batch_size, padded_length).
# lengths: list indicating valid length for each caption. length is (batch_size).
data_loader = torch.utils.data.DataLoader(dataset=processing,
batch_size=batch_size,
shuffle=shuffle,
num_workers=num_workers,
collate_fn=collate_fn)
return data_loader