-
Notifications
You must be signed in to change notification settings - Fork 12
/
Copy pathsample.py
96 lines (81 loc) · 3.46 KB
/
sample.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
import torch
import matplotlib.pyplot as plt
import numpy as np
import argparse,pickle,os
from utils import *
from torch.autograd import Variable
from torchvision import transforms
from build_vocab import Vocabulary
from model import EncoderCNN, DecoderRNN
from PIL import Image
def load_image(image_path, transform=None):
image = Image.open(image_path)
image = image.resize([224, 224], Image.LANCZOS)
if transform is not None:
image = transform(image).unsqueeze(0)
return image
def main(args):
# Image preprocessing
transform = transforms.Compose([
transforms.Scale(args.crop_size),
#transforms.CenterCrop(args.crop_size),
transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)) ])
# Load vocabulary wrapper
with open(args.vocab_path, 'rb') as f:
vocab = pickle.load(f)
# Build Models
encoder = EncoderCNN(args.embed_size)
encoder.eval() # evaluation mode (BN uses moving mean/variance)
decoder = DecoderRNN(args.embed_size, args.hidden_size, len(vocab), args.num_layers)
# Load the trained model parameters
encoder.load_state_dict(torch.load(args.encoder_path))
decoder.load_state_dict(torch.load(args.decoder_path))
# Prepare Image
image = load_image(args.image,transform)
image_tensor = to_var(image,volatile=True)
# If use gpu
if torch.cuda.is_available():
encoder.cuda()
decoder.cuda()
image_tensor = image_tensor.cuda()
# Generate caption from image
feature = encoder(image_tensor)
sampled_ids = decoder.sample(feature, args.length)
sampled_ids = sampled_ids.cpu().data.numpy()
# Decode word_ids to words
sampled_caption = []
for word_id in sampled_ids:
word = vocab.idx2word[word_id]
if word != '<start>' and word != '<end>':
sampled_caption.append(word)
if word == '<end>':
break
sentence = ''.join(sampled_caption)
# Print out image and generated caption.
print(sentence)
#TODO only call plt if we know we are in xwindows
#plt.imshow(np.asarray(image))
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--image', type=str, required=True,
help='input image for generating caption')
parser.add_argument('--encoder_path', type=str, default='./models/encoder-5-3000.pkl',
help='path for trained encoder')
parser.add_argument('--decoder_path', type=str, default='./models/decoder-5-3000.pkl',
help='path for trained decoder')
parser.add_argument('--vocab_path', type=str, default='./data/vocab.pkl',
help='path for vocabulary wrapper')
parser.add_argument('--crop_size', type=int, default=224,
help='size for center cropping images')
# Model parameters (should be same as paramters in train.py)
parser.add_argument('--embed_size', type=int , default=256,
help='dimension of word embedding vectors')
parser.add_argument('--hidden_size', type=int , default=512,
help='dimension of lstm hidden states')
parser.add_argument('--num_layers', type=int , default=1 ,
help='number of layers in lstm')
parser.add_argument('--length', type=int, default=200,
help='length of output')
args = parser.parse_args()
main(args)