-
Notifications
You must be signed in to change notification settings - Fork 12
/
Copy pathtrain.py
195 lines (172 loc) · 8.29 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
import torch.nn as nn
import numpy as np
import torch,os,pickle,json,time,argparse
from utils import *
from data_loader import * #get_loader,validation_split
from build_vocab import Vocabulary
from build_vocab import build_vocab
from model import EncoderCNN, DecoderRNN
from torch.autograd import Variable
from torch.nn.utils.rnn import pack_padded_sequence
from torchvision import transforms
from pycrayon import CrayonClient
def to_var(x,volatile=False):
if torch.cuda.is_available():
x = x.cuda()
return Variable(x,volatile=volatile)
def main(args):
#setup tensorboard
if args.tensorboard:
cc = CrayonClient(hostname="localhost")
print(cc.get_experiment_names())
#if args.name in cc.get_experiment_names():
try:
cc.remove_experiment(args.name)
except:
print("experiment didnt exist")
cc_server = cc.create_experiment(args.name)
# Create model directory
full_model_path = args.model_path+ "/" +args.name
if not os.path.exists(full_model_path):
os.makedirs(full_model_path)
with open(full_model_path+"/parameters.json", 'w') as f:
f.write((json.dumps(vars(args))))
# Image preprocessing
transform = transforms.Compose([
transforms.Scale(args.crop_size),
transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))])
mini_transform = transforms.Compose([
transforms.ToPILImage(),
transforms.Scale(20),
transforms.ToTensor() ])
# Load vocabulary wrapper.
if args.vocab_path is not None:
with open(args.vocab_path, 'rb') as f:
vocab = pickle.load(f)
else:
print("building new vocab")
vocab = build_vocab(args.image_dir,1,None)
with open((full_model_path+"/vocab.pkl"), 'wb') as f:
pickle.dump(vocab, f)
# Build data loader
data_loader = get_loader(args.image_dir, vocab, transform, args.batch_size, shuffle=True, num_workers=args.num_workers)
code_data_set = ProcessingDataset(root=args.image_dir, vocab=vocab, transform=transform)
train_ds, val_ds = validation_split(code_data_set)
train_loader = torch.utils.data.DataLoader(train_ds,collate_fn=collate_fn)
test_loader = torch.utils.data.DataLoader(val_ds,collate_fn=collate_fn)
train_size = len(train_loader)
test_size = len(test_loader)
# Build the models
encoder = EncoderCNN(args.embed_size,args.train_cnn)
print(encoder)
decoder = DecoderRNN(args.embed_size, args.hidden_size, len(vocab), args.num_layers)
print(decoder)
if torch.cuda.is_available():
encoder.cuda()
decoder.cuda()
# Loss and Optimizer
criterion = nn.CrossEntropyLoss()
params = list(decoder.parameters()) + list(encoder.linear.parameters()) + list(encoder.bn.parameters())
#params = list(decoder.parameters()) #+ list(encoder.linear.parameters()) + list(encoder.bn.parameters())
optimizer = torch.optim.Adam(params, lr=args.learning_rate)
start_time = time.time()
add_log_entry(args.name,start_time,vars(args))
# Train the Models
total_step = len(data_loader)
for epoch in range(args.num_epochs):
for i, (images, captions, lengths) in enumerate(data_loader):
decoder.train()
encoder.train()
# Set mini-batch dataset
image_ts = to_var(images, volatile=True)
captions = to_var(captions)
targets = pack_padded_sequence(captions, lengths, batch_first=True)[0]
count = images.size()[0]
# Forward, Backward and Optimize
decoder.zero_grad()
encoder.zero_grad()
features = encoder(image_ts)
outputs = decoder(features, captions, lengths)
loss = criterion(outputs, targets)
loss.backward()
optimizer.step()
total = targets.size(0)
max_index = outputs.max(dim = 1)[1]
#correct = (max_index == targets).sum()
_, predicted = torch.max(outputs.data, 1)
correct = predicted.eq(targets.data).cpu().sum()
accuracy = 100.*correct/total
if args.tensorboard:
cc_server.add_scalar_value("train_loss", loss.data[0])
cc_server.add_scalar_value("perplexity", np.exp(loss.data[0]))
cc_server.add_scalar_value("accuracy", accuracy)
# Print log info
if i % args.log_step == 0:
print('Epoch [%d/%d], Step [%d/%d], Loss: %.4f, accuracy: %2.2f Perplexity: %5.4f'
%(epoch, args.num_epochs, i, total_step,
loss.data[0], accuracy, np.exp(loss.data[0])))
# Save the models
if (i+1) % args.save_step == 0:
torch.save(decoder.state_dict(),
os.path.join(full_model_path,
'decoder-%d-%d.pkl' %(epoch+1, i+1)))
torch.save(encoder.state_dict(),
os.path.join(full_model_path,
'encoder-%d-%d.pkl' %(epoch+1, i+1)))
if 1 ==2 and i%int(train_size/10) == 0:
encoder.eval()
#decoder.eval()
correct = 0
for ti, (timages, tcaptions, tlengths) in enumerate(test_loader):
timage_ts = to_var(timages, volatile=True)
tcaptions = to_var(tcaptions)
ttargets = pack_padded_sequence(tcaptions, tlengths, batch_first=True)[0]
tfeatures = encoder(timage_ts)
toutputs = decoder(tfeatures, tcaptions, tlengths)
print(ttargets)
print(toutputs)
print(ttargets.size())
print(toutputs.size())
#correct = (ttargets.eq(toutputs[0].long())).sum()
accuracy = 100 * correct / test_size
print('accuracy: %.4f' %(accuracy))
if args.tensorboard:
cc_server.add_scalar_value("accuracy", accuracy)
torch.save(decoder.state_dict(), os.path.join(full_model_path, 'decoder-%d-%d.pkl' %(epoch+1, i+1)))
torch.save(encoder.state_dict(), os.path.join(full_model_path, 'encoder-%d-%d.pkl' %(epoch+1, i+1)))
end_time = time.time()
print("finished training, runtime: %d",[(end_time-start_time)])
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--model_path', type=str, default='./models/' ,
help='path for saving trained models')
parser.add_argument('--name', type=str,required=True ,
help='name of model')
parser.add_argument('--crop_size', type=int, default=224 ,
help='size for randomly cropping images')
parser.add_argument('--vocab_path', type=str, help='path for vocabulary wrapper')
parser.add_argument('--image_dir', type=str, help='directory for images')
parser.add_argument('--log_step', type=int , default=10,
help='step size for prining log info')
parser.add_argument('--save_step', type=int , default=1000,
help='step size for saving trained models')
# Model parameters
parser.add_argument('--embed_size', type=int , default=256 ,
help='dimension of word embedding vectors')
parser.add_argument('--hidden_size', type=int , default=512 ,
help='dimension of lstm hidden states')
parser.add_argument('--num_layers', type=int , default=1 ,
help='number of layers in lstm')
parser.add_argument('-n','--notes', type=str ,required=True,
help='commit message')
parser.add_argument('--loss', type=str, help='use my special loss')
parser.add_argument('--num_epochs', type=int, default=5)
parser.add_argument('--batch_size', type=int, default=128)
parser.add_argument('--num_workers', type=int, default=2)
parser.add_argument('--learning_rate', type=float, default=0.001)
parser.add_argument('--tensorboard', type=str)
parser.add_argument('--train_cnn', action="store_false")
args = parser.parse_args()
print(args)
main(args)