-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
fixed bad flag statements for saving new samples, plus fixed small er…
…rors to sample_morphs. adding CE's MDS script
- Loading branch information
1 parent
801c1f6
commit fd7d21d
Showing
14 changed files
with
417 additions
and
129 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,191 @@ | ||
clear all | ||
close all | ||
clc | ||
|
||
addpath(genpath('./helpers')) | ||
addpath(genpath('./hmaxMatlab')) | ||
|
||
corrTypes= {'correlation', 'euclidean'}; %{'correlation', 'euclidean'}; | ||
input = 'V1features'; | ||
|
||
[~, user_name] = system('whoami'); | ||
|
||
if strfind(user_name, 'rhee') % ON DIXIE | ||
base_root = '/nas/volume1/behavior/stimuli/pnas_morphs/samples/'; %,... | ||
feature_base_root = '/nas/volume1/behavior/stimuli/pnas_morphs/V1features/'; | ||
else | ||
base_root = '/media/nas/volume1/behavior/stimuli/pnas_morphs/samples/'; | ||
feature_base_root = '/media/nas/volume1/behavior/stimuli/pnas_morphs/V1features/'; | ||
end | ||
|
||
sample_dirs = dir(base_root); | ||
sample_dirs = sample_dirs([sample_dirs.isdir]); | ||
sample_dirs = sample_dirs(arrayfun(@(x) x.name(1), sample_dirs) ~= '.'); | ||
|
||
D = struct(); | ||
|
||
for CORR=1:length(corrTypes) | ||
corrType = corrTypes{CORR}; | ||
|
||
for root=1:length(sample_dirs) | ||
clear dist_mat D M | ||
source_root = [base_root, sample_dirs(root).name, '/']; | ||
|
||
parts = strsplit(source_root,'/'); | ||
stimset = parts{end-1}; | ||
|
||
cond_info = strsplit(stimset, '_'); | ||
D.source_root = source_root; | ||
D.stimset = stimset; | ||
D.sampled_feature = cond_info{1}; | ||
D.sampled_distance = cond_info{2}; | ||
D.sampled_comparison = cond_info{3}; | ||
|
||
if strfind(stimset, 'v1_') | ||
nstims = 2002; | ||
feature_root = [, ]; | ||
else | ||
nstims = 22; | ||
% Samples generated with python (i.e,. not using | ||
% V1-features) do not have associated sample_idxs... | ||
% Instead, use V1 features created for specific stimsets: | ||
feature_root = [feature_base_root, sprintf('%s_%s20/', D.sampled_distance, D.sampled_comparison)] | ||
end | ||
|
||
D.nstims = nstims | ||
|
||
% out_root=fullfile(parts{1:end-2}); | ||
out_root = [strjoin(parts(1:end-3), '/'), '/figures/']; | ||
|
||
if ~isdir(out_root) | ||
mkdir(out_root) | ||
sprintf('Created output dir: %s', out_root) | ||
end | ||
|
||
sprintf('SOURCE: %s\nSTIMSET: %s\nCORR: %s | INPUT: %s\n', source_root, stimset, corrType, input) | ||
|
||
% Get the stimuli for pdist matrix: | ||
% if strfind(input, 'pixels') % Compare images pixel-wise | ||
% iminfo = dir([source_root,'*.png']); | ||
% | ||
% elseif strfind(input, 'V1features') | ||
% iminfo = dir([base_root,'*.mat']); % Compare V1-feature responses to image | ||
% end | ||
|
||
iminfo = dir([source_root,'/*.png']); | ||
imnames = cell(1, length(iminfo)); | ||
for i=1:length(iminfo) | ||
imnames{i} = iminfo(i).name; | ||
end | ||
imnames = sort_nat(imnames); | ||
sprintf('N sampled image: %i', length(imnames)) | ||
|
||
% Load main .mat for V1 feature vector to get the sample_idxs (need | ||
% this to grab the correct V1-feature-vector from source bank. | ||
|
||
% NO .MAT for any _fixedref, since sampling looked terrible | ||
main_mfiles = dir([base_root,'*.mat']); | ||
mfiles = cell(1,length(main_mfiles)); | ||
for m=1:length(main_mfiles) | ||
%curr_mfile = main_mfiles(m).name; | ||
mfiles{m} = main_mfiles(m).name; | ||
end | ||
|
||
curr_mfile_idx = ~cellfun('isempty', strfind(mfiles, sprintf('_%s_%s_%i', D.sampled_distance, D.sampled_comparison, D.nstims))) | ||
curr_mfile = mfiles(curr_mfile_idx); | ||
curr_mfile = curr_mfile{1} | ||
|
||
if strfind(curr_mfile, '_fixedref') | ||
sprintf('Skipping MDS for bad-sampling of %s stimset...', curr_mfile) | ||
continue; | ||
end | ||
|
||
save_new = 0; | ||
if isempty(curr_mfile) | ||
M = struct(); | ||
M.sample_idxs = linspace(1, length(imnames), length(imnames)); | ||
curr_mfile = sprintf('pdistmat_%s_%s_%i.mat', D.sampled_distance, D.sampled_comparison, D.nstims); | ||
save_new = 1; | ||
else | ||
|
||
M = load([base_root, curr_mfile]); | ||
if isfield(M, 'M') | ||
M = M.M; | ||
end | ||
end | ||
|
||
if isfield(M, 'pdist') && isfield(M.pdist, corrType) | ||
dist_mat = M.pdist.(corrType); | ||
nsamples = length(M.sample_idxs); | ||
else | ||
if ~isfield(M, 'pdist') | ||
M.pdist = struct(); | ||
end | ||
sampled_feature_vects = []; | ||
for idx=1:length(M.sample_idxs) | ||
curr_feat = load([feature_root, sprintf('V1_features_morph%i.mat', (M.sample_idxs(idx)-1))]); | ||
sampled_feature_vects = [sampled_feature_vects; curr_feat.featureVector]; % F = [F curr_feat.featureVector']; doesn't work.. too big | ||
end | ||
nsamples = length(M.sample_idxs); | ||
|
||
dist_mat = pdist(sampled_feature_vects, corrType); | ||
dist_mat=squareform(dist_mat); | ||
|
||
%get rid of float-point artifacts that make matrix unsymmetric | ||
dist_mat=round(dist_mat*10000)/10000; | ||
M.pdist.(corrType) = dist_mat; | ||
if save_new==1 | ||
save([base_root, curr_mfile], 'M') | ||
else | ||
save([base_root, curr_mfile], 'M', '-append') | ||
end | ||
end | ||
|
||
|
||
% opts = statset('Display','iter', 'MaxIter', 1500); | ||
opts = statset('MaxIter', 5000); | ||
|
||
[distMatrixMap,distMatrixStress]=mdscale(dist_mat, 2, 'Options', opts); | ||
|
||
%plot w/ color scatter plot | ||
colorList={'r','b'}; | ||
sz=10; | ||
hF=figure; | ||
hold all | ||
|
||
scatter(distMatrixMap(1:nsamples,1),distMatrixMap(1:nsamples,2),sz,colorList{1},'o') | ||
scatter(distMatrixMap(1,1),distMatrixMap(1,2),sz,'b','o') | ||
title(sprintf('_%s_MDS_%s_scatter.png', input, stimset)) | ||
saveas(hF,[out_root,corrType,sprintf('_%s_MDS_%s_scatter.png', input, stimset)]) | ||
outstring = [out_root,corrType,sprintf('_%s_MDS_%s_scatter.png', input, stimset)]; | ||
sprintf('Saved SCATTER to:\n%s', outstring) | ||
|
||
%plot w/ images | ||
% im_source_root='/media/nas/volume1/behavior/stimuli/pnas_morphs/pov20_gray_resize/'; | ||
% im_source_root = source_root; | ||
|
||
sz=.03; | ||
hF=figure; | ||
hold all | ||
for i=1:length(imnames) | ||
imName=[source_root,imnames{i}]; | ||
im0=double(imread(imName)); | ||
centerX=distMatrixMap(i,1); | ||
centerY=distMatrixMap(i,2); | ||
X1=centerX-(sz/2)*2; | ||
X2=centerX+(sz/2)*2; | ||
Y1=centerY-(sz/2); | ||
Y2=centerY+(sz/2); | ||
image([X2, X1],[Y2, Y1],(im0/255)*64) | ||
end | ||
|
||
colormap('gray') | ||
title('MDS map') | ||
|
||
saveas(hF,[out_root,corrType,sprintf('_%s_MDS_%s.png', input, stimset)]) | ||
outstring = [out_root,corrType,sprintf('_%s_MDS_%s.png', input, stimset)]; | ||
sprintf('Saved IMAGES to:\n%s', outstring) | ||
|
||
end | ||
|
||
end |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Oops, something went wrong.