-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathmodel.py
executable file
·49 lines (42 loc) · 2.05 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
import logging
import numpy
import theano
logger = logging.getLogger(__name__)
# This is the list of strings required to ignore, if we're going to take a pretrained HRED model
# and fine-tune it as a variational model.
# parameter_strings_to_ignore = ["latent_utterance_prior", "latent_utterance_approx_posterior", "Wd_", "bd_"]
class Model(object):
def __init__(self):
self.floatX = theano.config.floatX
# Parameters of the model
self.params = []
def save(self, filename):
"""
Save the model to file `filename`
"""
vals = dict([(x.name, x.get_value()) for x in self.params])
numpy.savez(filename, **vals)
def load(self, filename, parameter_strings_to_ignore=[]):
"""
Load the model.
Any parameter which has one of the strings inside parameter_strings_to_ignore as a substring,
will not be loaded from the file (but instead initialized as a new model, which usually means random).
"""
vals = numpy.load(filename)
for p in self.params:
load_parameter = True
for string_to_ignore in parameter_strings_to_ignore:
if string_to_ignore in p.name:
logger.debug('Initializing parameter {} as in new model'.format(p.name))
load_parameter = False
if load_parameter:
if p.name in vals:
logger.debug('Loading {} of {}'.format(p.name, p.get_value(borrow=True).shape))
if p.get_value().shape != vals[p.name].shape:
raise Exception('Shape mismatch: {} != {} for {}'.format(p.get_value().shape, vals[p.name].shape, p.name))
p.set_value(vals[p.name])
else:
logger.error('No parameter {} given: default initialization used'.format(p.name))
unknown = set(vals.keys()) - {p.name for p in self.params}
if len(unknown):
logger.error('Unknown parameters {} given'.format(unknown))