This repository has been archived by the owner on Sep 24, 2023. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathPlantDetector.py
411 lines (326 loc) · 14.5 KB
/
PlantDetector.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
import cv2 as cv # opencv
import copy # for deepcopy on images
import numpy as np # numpy
from random import randint # for random values
import threading # for deamon processing
from pathlib import Path # for directory information
import os # for directory information
from constants import constants # constants
class PlantDetector:
"""Dynamically apply detection algorithms to source images
All images are sourced from and follow naming standard from
the KOMATSUNA dataset
http://limu.ait.kyushu-u.ac.jp/~agri/komatsuna/
METHODS
__init__(self, src='multi_plant', labels='multi_label') [void]
prepares the images and labels for display
initializes windows and trackbars
runs background subtraction on plant group images
on_low_H_thresh_trackbar(self, val)
on_high_H_thresh_trackbar(self, val)
on_low_S_thresh_trackbar(self, val)
on_high_S_thresh_trackbar(self, val)
on_low_V_thresh_trackbar(self, val)
on_high_V_thresh_trackbar(self, val)
HSV trackbar triggers
prepare_plant_collection(self, src, labelsrc)
returns [plants, plant_groups, labels]
constructor helper function for loading plant images
parse(self, auto_inc=False, mode=0) [void]
main function
dynamically applies
HSV inRange filters
watershed algorithm
to the currently displayed image
based on selected HSV trackbar values
six modes are displayable:
mode: window1 + window2
0 : original (fallback) + original
1 : HSV filter range + original
2 : bare watershed masks + labels
3 : watershed masks w/ bg + original
4 : sequential bg sub + original
5 : seq bg sub w/ watersh + original
additionally, the user is allowed control
key | function
m | next image
n | prev image
s | save selected image in the selected mode
z | save all images in selected mode
esc | exit the program
d | dynamically calculate dice
f | show dice data based on saved images
1-5 | select the respective mode
parse is also used for saving all images
parse is run for all images in the given mode
either in parrallel or in place
save_one(self, mode, image, filename) [void]
saves the image in the appropriate mode folder with filename
HSV_filtering_and_watershed(self, input_im) [mask, input_im, im_threshold]
image is filtered through HSV inRange according to trackbar values
image is prepared (threshold) for watershed algorithm
watershed algorithm is applied
markers are applied to image
dicify_wrapper(self, image_id) [void]
runs dice summary in background
dicify_summary(self, image_id) [void]
prints summary of dice values for image, plant, dateset
note: based on saved images
dicify_one(self, image_id) [dice]
returns the dice value for the given image_id
based on saved segmentation and label images
dicify_one_dynamic(self, mask, image_id) [dice]
returns dice value for the given image_id
based on given mask (current) and saved label image
dicify_plant(self, plant_id) [mean, min, max]
returns mean, min and max dice values for images in plant group
dicify_all(self) [mean, min, max]
returns mean, min and max dice values for images in dataset
and for each plant
"""
def __init__(self, src='multi_plant', labels='multi_label'):
self.c = constants()
self.window1 = self.c.window.window1
self.window2 = self.c.window.window2
cv.namedWindow(self.window1)
cv.namedWindow(self.window2)
cv.moveWindow(self.window2, 550, 90)
cv.createTrackbar(
self.c.HSV.low_H_name, self.window1, self.c.HSV.low_H,
self.c.HSV.max_value_H, self.on_low_H_thresh_trackbar)
cv.createTrackbar(
self.c.HSV.high_H_name, self.window1, self.c.HSV.high_H,
self.c.HSV.max_value_H, self.on_high_H_thresh_trackbar)
cv.createTrackbar(
self.c.HSV.low_S_name, self.window1, self.c.HSV.low_S,
self.c.HSV.max_value, self.on_low_S_thresh_trackbar)
cv.createTrackbar(
self.c.HSV.high_S_name, self.window1, self.c.HSV.high_S,
self.c.HSV.max_value, self.on_high_S_thresh_trackbar)
cv.createTrackbar(
self.c.HSV.low_V_name, self.window1, self.c.HSV.low_V,
self.c.HSV.max_value, self.on_low_V_thresh_trackbar)
cv.createTrackbar(
self.c.HSV.high_V_name, self.window1, self.c.HSV.high_V,
self.c.HSV.max_value, self.on_high_V_thresh_trackbar)
self.plants, self.plant_groups, self.labels = self.prepare_plant_collection(src, labels)
# source https://docs.opencv.org/3.4/d1/dc5/tutorial_background_subtraction.html
for key in self.plant_groups:
if self.c.bgsub.mod == 'MOG2':
backSub = cv.createBackgroundSubtractorMOG2(history=60, detectShadows=True)
elif self.c.bgsub.mod == 'KNN':
backSub = cv.createBackgroundSubtractorKNN()
fgMask = None
for i, image in enumerate(self.plant_groups[key]):
fgMask = backSub.apply(image)
self.plant_groups[key][i] = fgMask
def on_low_H_thresh_trackbar(self, val):
self.c.HSV.low_H = val
self.c.HSV.low_H = min(self.c.HSV.high_H-1, self.c.HSV.low_H)
cv.setTrackbarPos(
self.c.HSV.low_H_name, self.window1, self.c.HSV.low_H)
def on_high_H_thresh_trackbar(self, val):
self.c.HSV.high_H = val
self.c.HSV.high_H = max(self.c.HSV.high_H, self.c.HSV.low_H+1)
cv.setTrackbarPos(
self.c.HSV.high_H_name, self.window1, self.c.HSV.high_H)
def on_low_S_thresh_trackbar(self, val):
self.c.HSV.low_S = val
self.c.HSV.low_S = min(self.c.HSV.high_S-1, self.c.HSV.low_S)
cv.setTrackbarPos(
self.c.HSV.low_S_name, self.window1, self.c.HSV.low_S)
def on_high_S_thresh_trackbar(self, val):
self.c.HSV.high_S = val
self.c.HSV.high_S = max(self.c.HSV.high_S, self.c.HSV.low_S+1)
cv.setTrackbarPos(
self.c.HSV.high_S_name, self.window1, self.c.HSV.high_S)
def on_low_V_thresh_trackbar(self, val):
self.c.HSV.low_V = val
self.c.HSV.low_V = min(self.c.HSV.high_V-1, self.c.HSV.low_V)
cv.setTrackbarPos(
self.c.HSV.low_V_name, self.window1, self.c.HSV.low_V)
def on_high_V_thresh_trackbar(self, val):
self.c.HSV.high_V = val
self.c.HSV.high_V = max(self.c.HSV.high_V, self.c.HSV.low_V+1)
cv.setTrackbarPos(
self.c.HSV.high_V_name, self.window1, self.c.HSV.high_V)
def prepare_plant_collection(self, src, labelsrc):
plants = []
plant_groups = dict()
files = os.listdir(src)
files.sort()
for fl in files:
input_im = cv.imread(src + '/' + fl, cv.IMREAD_COLOR)
if (input_im is None):
exit()
plants.append({
'p': input_im,
'n': fl
})
group_id = f'{fl.split("_")[1]}{fl.split("_")[2]}'
if group_id not in plant_groups:
plant_groups[group_id] = []
plant_groups[group_id].append(input_im)
labels = []
files = os.listdir(labelsrc)
files.sort()
for fl in files:
input_im = cv.imread(labelsrc + '/' + fl)
if (input_im is None):
exit()
labels.append(input_im)
return plants, plant_groups, labels
def parse(self, auto_inc=False, mode=0):
key = 0
i = 0
l_tog = False
while key != self.c.cntr.exit_k:
if auto_inc and i == len(self.plants):
break
image = copy.deepcopy(self.plants[i]['p'])
group_id = f'{self.plants[i]["n"].split("_")[1]}{self.plants[i]["n"].split("_")[2]}'
mask, markers, im_threshold = self.HSV_filtering_and_watershed(image)
_, bgfgSegMarkers, _ = self.HSV_filtering_and_watershed(
cv.cvtColor(self.plant_groups[group_id][i % 60], cv.COLOR_GRAY2BGR)
)
if mode == 5:
alt = bgfgSegMarkers
text = f'Watershed new areas w/ fg/bg segm. {self.plants[i]["n"]}'
tcol = (255, 255, 255)
elif mode == 4:
alt = copy.deepcopy(self.plant_groups[group_id][i % 60])
text = f'FG/BG segmentation {self.plants[i]["n"]}'
tcol = (255, 255, 255)
elif mode == 3:
alt = markers
text = f'Watershed algorithm areas w/ bg {self.plants[i]["n"]}'
tcol = (0, 0, 0)
elif mode == 2:
alt = mask
text = f'Watershed algorithm areas bare {self.plants[i]["n"]}'
tcol = (255, 255, 255)
elif mode == 1:
alt = im_threshold
text = f'HSV inRange threshold {self.plants[i]["n"]}'
tcol = (255, 255, 255)
else:
alt = copy.deepcopy(self.plants[i]['p'])
text = f'Original {self.plants[i]["n"]}'
tcol = (0, 0, 0)
if self.c.asth.text:
cv.putText(alt, text, (0, 20), self.c.asth.font, .5, tcol, 1)
cv.imshow(self.window1, alt)
if l_tog:
cv.imshow(self.window2, self.labels[i])
else:
cv.imshow(self.window2, self.plants[i]['p'])
key = cv.waitKey(10)
if key == self.c.cntr.prev_k and i > 0:
i -= 1
if key == self.c.cntr.next_k and i < len(self.plants) - 1:
i += 1
if key == self.c.cntr.save or auto_inc:
self.save_one(mode, alt, self.plants[i]["n"])
if key == self.c.cntr.save_all:
self.parse(True, mode)
if key == self.c.cntr.dice:
print(self.dicify_one_dynamic(mask, self.plants[i]['n']))
if key == self.c.cntr.dice_more:
self.dicify_wrapper(self.plants[i]['n'])
if key == self.c.cntr.m1_k:
mode = 1
l_tog = False
elif key == self.c.cntr.m2_k:
mode = 2
l_tog = True
elif key == self.c.cntr.m3_k:
mode = 3
l_tog = False
elif key == self.c.cntr.m4_k:
mode = 4
l_tog = False
elif key == self.c.cntr.m5_k:
mode = 5
l_tog = False
if auto_inc:
i += 1
def save_one(self, mode, image, filename):
Path(f'formatted/{self.c.cntr.modes[mode]}').mkdir(parents=True, exist_ok=True)
cv.imwrite(f'formatted/{self.c.cntr.modes[mode]}/{filename}', image)
def HSV_filtering_and_watershed(self, input_im):
im_threshold = cv.inRange(
cv.cvtColor(input_im, cv.COLOR_BGR2HSV),
(self.c.HSV.low_H, self.c.HSV.low_S, self.c.HSV.low_V),
(self.c.HSV.high_H, self.c.HSV.high_S, self.c.HSV.high_V)
)
# source https://docs.opencv.org/master/d3/db4/tutorial_py_watershed.html
kernel = np.ones((3, 3), np.uint8)
opening = cv.morphologyEx(im_threshold, cv.MORPH_OPEN, kernel, iterations=5)
sure_bg = cv.dilate(opening, kernel, iterations=7)
dist_transform = cv.distanceTransform(opening, cv.DIST_L2, 5)
_, sure_fg = cv.threshold(dist_transform, 0.3*dist_transform.max(), 255, 0)
sure_fg = np.uint8(sure_fg)
unknown = cv.subtract(sure_bg, sure_fg)
_, markers = cv.connectedComponents(sure_fg)
markers = markers + 1
markers[unknown == 255] = 0
markers = cv.watershed(input_im, markers)
input_im[markers == -1] = [255, 0, 0]
for i in range(2, markers.max() + 1):
input_im[markers == i] = [
randint(0, 255), randint(0, 255), randint(0, 255)
] if self.c.xtra.disco else [
(40 + i * 40) % 255, (i * 40) % 255, (50 + i * 40) % 255
]
mask = copy.deepcopy(input_im)
mask[markers < 2] = [0, 0, 0]
return mask, input_im, im_threshold
def dicify_wrapper(self, image_id):
thread = threading.Thread(target=self.dicify_summary, args=(image_id,), daemon=True)
thread.start()
def dicify_summary(self, image_id):
print(self.dicify_all())
def dicify_one(self, image_id):
# Source: https://github.com/Kornelos/CV_MINI_1/blob/master/process_plants.py
img = cv.imread(f'multi_label/label_{image_id.split("_", 1)[1]}')
img = cv.cvtColor(img, cv.COLOR_BGR2GRAY)
_, gt = cv.threshold(img, 1, 255, cv.THRESH_BINARY)
img = cv.imread(f'formatted/ws_mask/{image_id}')
img = cv.cvtColor(img, cv.COLOR_BGR2GRAY)
_, rt = cv.threshold(img, 1, 255, cv.THRESH_BINARY)
k = 255
dice = np.sum(rt[gt == k]) * 2.0 / (np.sum(rt[rt == k]) + np.sum(gt[gt == k]))
return dice
def dicify_one_dynamic(self, mask, image_id):
img = cv.imread(f'multi_label/label_{image_id.split("_", 1)[1]}')
img = cv.cvtColor(img, cv.COLOR_BGR2GRAY)
_, gt = cv.threshold(img, 1, 255, cv.THRESH_BINARY)
img = cv.cvtColor(mask, cv.COLOR_BGR2GRAY)
_, rt = cv.threshold(img, 1, 255, cv.THRESH_BINARY)
k = 255
dice = np.sum(rt[gt == k]) * 2.0 / (np.sum(rt[rt == k]) + np.sum(gt[gt == k]))
return dice
def dicify_plant(self, plant_id):
vals = []
for im_data in [
t for t in self.plants
if t['n'].split('_')[2] == plant_id
]:
vals.append(self.dicify_one(im_data['n']))
return [np.mean(vals), min(vals), max(vals)]
def dicify_all(self):
means = []
mins = []
maxs = []
summ = "id | mean | min | max"
for i in range(0, 5):
plant = self.dicify_plant(f'0{str(i)}')
means.append(plant[0])
mins.append(plant[1])
maxs.append(plant[2])
summ += f'\n0{str(i)} | {round(plant[0], 3)} | {round(plant[1], 3)} | {round(plant[2], 3)}'
summ += f'\nsm | {round(np.mean(means), 3)} | {round(min(mins), 3)} | {round(max(maxs), 3)}'
return summ
# Main
plDt = PlantDetector()
plDt.parse()