forked from xxlya/Fed_ABIDE
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfederated_align.py
executable file
·462 lines (411 loc) · 20.2 KB
/
federated_align.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torch.utils.data import TensorDataset, DataLoader, ConcatDataset
import time
import deepdish as dd
from networks import Classifier, Discriminator
import torch.distributions as tdist
import os
import argparse
import numpy as np
import copy
from tensorboardX import SummaryWriter
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
EPS = 1e-15
site = ['NYU','UM','USM','UCLA']
def main(args):
torch.manual_seed(args.seed)
if not os.path.exists(args.res_dir):
os.mkdir(args.res_dir)
if not os.path.exists(args.model_dir):
os.mkdir(args.model_dir)
log_dir = os.path.join('./log', 'Align_' + str(args.split))
if not os.path.exists(log_dir):
os.mkdir(log_dir)
writer = SummaryWriter(log_dir)
data1 = dd.io.load(os.path.join(args.vec_dir,'NYU_correlation_matrix.h5'))
data2 = dd.io.load(os.path.join(args.vec_dir,'UM_correlation_matrix.h5'))
data3 = dd.io.load(os.path.join(args.vec_dir,'USM_correlation_matrix.h5'))
data4 = dd.io.load(os.path.join(args.vec_dir,'UCLA_correlation_matrix.h5'))
x1 = torch.from_numpy(data1['data']).float()
y1 = torch.from_numpy(data1['label']).long()
x2 = torch.from_numpy(data2['data']).float()
y2 = torch.from_numpy(data2['label']).long()
x3 = torch.from_numpy(data3['data']).float()
y3 = torch.from_numpy(data3['label']).long()
x4 = torch.from_numpy(data4['data']).float()
y4 = torch.from_numpy(data4['label']).long()
if args.overlap:
idNYU = dd.io.load('./idx/NYU_sub_overlap.h5')
idUM = dd.io.load('./idx/UM_sub_overlap.h5')
idUSM = dd.io.load('./idx/USM_sub_overlap.h5')
idUCLA = dd.io.load('./idx/UCLA_sub_overlap.h5')
else:
idNYU = dd.io.load('./idx/NYU_sub.h5')
idUM = dd.io.load('./idx/UM_sub.h5')
idUSM = dd.io.load('./idx/USM_sub.h5')
idUCLA = dd.io.load('./idx/UCLA_sub.h5')
if args.split==0:
tr1 = idNYU['1']+idNYU['2']+idNYU['3']+idNYU['4']
tr2 = idUM['1']+idUM['2']+idUM['3']+idUM['4']
tr3 = idUSM['1']+idUSM['2']+idUSM['3']+idUSM['4']
tr4 = idUCLA['1']+idUCLA['2']+idUCLA['3']+idUCLA['4']
te1= idNYU['0']
te2 = idUM['0']
te3= idUSM['0']
te4 = idUCLA['0']
elif args.split==1:
tr1 = idNYU['0']+idNYU['2']+idNYU['3']+idNYU['4']
tr2 = idUM['0']+idUM['2']+idUM['3']+idUM['4']
tr3 = idUSM['0']+idUSM['2']+idUSM['3']+idUSM['4']
tr4 = idUCLA['0']+idUCLA['2']+idUCLA['3']+idUCLA['4']
te1= idNYU['1']
te2 = idUM['1']
te3= idUSM['1']
te4 = idUCLA['1']
elif args.split==2:
tr1 = idNYU['0']+idNYU['1']+idNYU['3']+idNYU['4']
tr2 = idUM['0']+idUM['1']+idUM['3']+idUM['4']
tr3 = idUSM['0']+idUSM['1']+idUSM['3']+idUSM['4']
tr4 = idUCLA['0']+idUCLA['1']+idUCLA['3']+idUCLA['4']
te1= idNYU['2']
te2 = idUM['2']
te3= idUSM['2']
te4 = idUCLA['2']
elif args.split==3:
tr1 = idNYU['0']+idNYU['1']+idNYU['2']+idNYU['4']
tr2 = idUM['0']+idUM['1']+idUM['2']+idUM['4']
tr3 = idUSM['0']+idUSM['1']+idUSM['2']+idUSM['4']
tr4 = idUCLA['0']+idUCLA['1']+idUCLA['2']+idUCLA['4']
te1= idNYU['3']
te2 = idUM['3']
te3= idUSM['3']
te4 = idUCLA['3']
elif args.split==4:
tr1 = idNYU['0']+idNYU['1']+idNYU['2']+idNYU['3']
tr2 = idUM['0']+idUM['1']+idUM['2']+idUM['3']
tr3 = idUSM['0']+idUSM['1']+idUSM['2']+idUSM['3']
tr4 = idUCLA['0']+idUCLA['1']+idUCLA['2']+idUCLA['3']
te1= idNYU['4']
te2 = idUM['4']
te3= idUSM['4']
te4 = idUCLA['4']
x1_train = x1[tr1]
y1_train = y1[tr1]
x2_train = x2[tr2]
y2_train = y2[tr2]
x3_train = x3[tr3]
y3_train = y3[tr3]
x4_train = x4[tr4]
y4_train = y4[tr4]
x1_test = x1[te1]
y1_test = y1[te1]
x2_test = x2[te2]
y2_test = y2[te2]
x3_test = x3[te3]
y3_test = y3[te3]
x4_test = x4[te4]
y4_test = y4[te4]
if args.sepnorm:
mean = x1_train.mean(0, keepdim=True)
dev = x1_train.std(0, keepdim=True)
x1_train = (x1_train - mean) / dev
x1_test = (x1_test - mean) / dev
mean = x2_train.mean(0, keepdim=True)
dev = x2_train.std(0, keepdim=True)
x2_train = (x2_train - mean) / dev
x2_test = (x2_test - mean) / dev
mean = x3_train.mean(0, keepdim=True)
dev = x3_train.std(0, keepdim=True)
x3_train = (x3_train - mean) / dev
x3_test = (x3_test - mean) / dev
mean = x4_train.mean(0, keepdim=True)
dev = x4_train.std(0, keepdim=True)
x4_train = (x4_train - mean) / dev
x4_test = (x4_test - mean) / dev
else:
mean = torch.cat((x1_train,x2_train,x3_train,x4_train),0).mean(0, keepdim=True)
dev = torch.cat((x1_train,x2_train,x3_train,x4_train),0).std(0, keepdim=True)
x1_train = (x1_train - mean) / dev
x1_test = (x1_test - mean) / dev
x2_train = (x2_train - mean) / dev
x2_test = (x2_test - mean) / dev
x3_train = (x3_train - mean) / dev
x3_test = (x3_test - mean) / dev
x4_train = (x4_train - mean) / dev
x4_test = (x4_test - mean) / dev
train1 = TensorDataset(x1_train, y1_train)
train_loader1 = DataLoader(train1, batch_size=len(train1)//args.nsteps, shuffle=True)
train2 = TensorDataset(x2_train, y2_train)
train_loader2 = DataLoader(train2, batch_size=len(train2)//args.nsteps, shuffle=True)
train3 = TensorDataset(x3_train, y3_train)
train_loader3 = DataLoader(train3, batch_size=len(train3)//args.nsteps, shuffle=True)
train4 = TensorDataset(x4_train, y4_train)
train_loader4 = DataLoader(train4, batch_size=len(train4)//args.nsteps, shuffle=True)
train_loaders = [train_loader1, train_loader2, train_loader3, train_loader4]
data_inters = [iter(train_loader1),iter(train_loader2),iter(train_loader3),iter(train_loader4)]
test1 = TensorDataset(x1_test, y1_test)
test2 = TensorDataset(x2_test, y2_test)
test3 = TensorDataset(x3_test, y3_test)
test4 = TensorDataset(x4_test, y4_test)
test_loader1 = DataLoader(test1, batch_size=args.test_batch_size1, shuffle=False)
test_loader2 = DataLoader(test2, batch_size=args.test_batch_size2, shuffle=False)
test_loader3 = DataLoader(test3, batch_size=args.test_batch_size3, shuffle=False)
test_loader4 = DataLoader(test4, batch_size=args.test_batch_size4, shuffle=False)
tbs= [args.test_batch_size1, args.test_batch_size2, args.test_batch_size3, args.test_batch_size4]
test_loaders = [test_loader1,test_loader2,test_loader3,test_loader4]
# federated setup
model1 = Classifier(6105,args.dim,2).to(device)
model2 = Classifier(6105,args.dim,2).to(device)
model3 = Classifier(6105,args.dim,2).to(device)
model4 = Classifier(6105,args.dim,2).to(device)
models = [model1, model2, model3, model4]
optimizer1 = optim.Adam(model1.parameters(), lr=args.lr1, weight_decay=1e-3)
optimizer2 = optim.Adam(model2.parameters(), lr=args.lr2, weight_decay=1e-3)
optimizer3 = optim.Adam(model3.parameters(), lr=args.lr3, weight_decay=1e-3)
optimizer4 = optim.Adam(model4.parameters(), lr=args.lr4, weight_decay=1e-3)
optimizers = [optimizer1, optimizer2, optimizer3, optimizer4]
optimizerG1 = optim.Adam(model1.encoder.parameters(), lr=args.lr, weight_decay=1e-3)
optimizerG2 = optim.Adam(model2.encoder.parameters(), lr=args.lr, weight_decay=1e-3)
optimizerG3 = optim.Adam(model3.encoder.parameters(), lr=args.lr, weight_decay=1e-3)
optimizerG4 = optim.Adam(model4.encoder.parameters(), lr=args.lr, weight_decay=1e-3)
optimizerGs = [optimizerG1, optimizerG2, optimizerG3, optimizerG4]
discriminators = dict()
optimizerDs = dict()
for i in range(4):
discriminators[i] = Discriminator(args.dim).to(device)
optimizerDs[i] = optim.Adam(discriminators[i].parameters(), lr= args.lr, weight_decay=1e-3)
#global model
model = Classifier(6105,args.dim,2).to(device)
print(model)
# loss functions
celoss = nn.CrossEntropyLoss()
def advDloss(d1,d2):
res = -torch.log(d1).mean()-torch.log(1-d2).mean()
return res
def advGloss(d1,d2):
res = -torch.log(d1).mean()-torch.log(d2).mean()
return res.mean()
def train(epoch):
pace = args.pace
for i in range(4):
models[i].train()
if epoch <= 50 and epoch % 20 == 0:
for param_group1 in optimizers[i].param_groups:
param_group1['lr'] = 0.5 * param_group1['lr']
elif epoch > 50 and epoch % 20 == 0:
for param_group1 in optimizers[i].param_groups:
param_group1['lr'] = 0.5 * param_group1['lr']
if epoch <= 50 and epoch % 20 == 0:
for param_group1 in optimizerGs[i].param_groups:
param_group1['lr'] = 0.5 * param_group1['lr']
elif epoch > 50 and epoch % 20 == 0:
for param_group1 in optimizerGs[i].param_groups:
param_group1['lr'] = 0.5 * param_group1['lr']
discriminators[i].train()
if epoch <= 50 and epoch % 20 == 0:
for param_group1 in optimizerDs[i].param_groups:
param_group1['lr'] = 0.5 * param_group1['lr']
elif epoch > 50 and epoch % 20 == 0:
for param_group1 in optimizerDs[i].param_groups:
param_group1['lr'] = 0.5 * param_group1['lr']
#define weights
w = dict()
denominator = np.sum(np.array(tbs))
for i in range(4):
w[i] = 0.25 #tbs[i]/denominator
loss_all = dict()
lossD_all = dict()
lossG_all = dict()
num_data = dict()
num_dataG = dict()
num_dataD = dict()
for i in range(4):
loss_all[i] = 0
num_data[i] = EPS
num_dataG[i] = EPS
lossG_all[i] = 0
lossD_all[i] = 0
num_dataD[i] = EPS
count = 0
for t in range(args.nsteps):
fs=[]
# optimize classifier
for i in range(4):
optimizers[i].zero_grad()
a, b= next(data_iters[i])
num_data[i] += b.size(0)
a = a.to(device)
b = b.to(device)
output = models[i](a)
loss = celoss(output,b)
loss_all[i] += loss.item() * b.size(0)
if epoch >=0:
loss.backward(retain_graph=True)
optimizers[i].step()
fs.append(models[i].encoder(a))
#optimize alignment
nn = []
noises = []
for i in range(4):
nn =tdist.Normal(torch.tensor([0.0]), 0.001 * torch.std(fs[i].detach().cpu()))
noises.append(nn.sample(fs[i].size()).squeeze().to(device))
for i in range(4):
for j in range(4):
if i!=j:
optimizerDs[i].zero_grad()
optimizerGs[i].zero_grad()
optimizerGs[j].zero_grad()
d1 = discriminators[i](fs[i]+noises[i])
d2 = discriminators[i](fs[j]+noises[j])
num_dataG[i] += d1.size(0)
num_dataD[i] += d1.size(0)
lossD = advDloss(d1, d2)
lossG = advGloss(d1, d2)
lossD_all[i] += lossD.item() * d1.size(0)
lossG_all[i] += lossG.item() * d1.size(0)
lossG_all[j] += lossG.item() * d2.size(0)
lossD = 0.1*lossD
if epoch >= 5:
lossD.backward(retain_graph=True)
optimizerDs[i].step()
lossG.backward(retain_graph=True)
optimizerGs[i].step()
optimizerGs[j].step()
writer.add_histogram('Hist/hist_'+ site[i]+'2'+site[j]+'_source', d1, epoch*args.nsteps+t)
writer.add_histogram('Hist/hist_' + site[i]+'2'+site[j]+'_target', d2,
epoch * args.nsteps + t)
count += 1
if count % pace == 0 or t == args.nsteps - 1:
with torch.no_grad():
for key in model.state_dict().keys():
if models[0].state_dict()[key].dtype == torch.int64:
model.state_dict()[key].data.copy_(models[0].state_dict()[key])
else:
temp = torch.zeros_like(model.state_dict()[key])
# add noise
for s in range(4):
if args.type == 'G':
nn = tdist.Normal(torch.tensor([0.0]),
args.noise * torch.std(models[s].state_dict()[key].detach().cpu()))
else:
nn = tdist.Laplace(torch.tensor([0.0]),
args.noise * torch.std(models[s].state_dict()[key].detach().cpu()))
noise = nn.sample(models[s].state_dict()[key].size()).squeeze()
noise = noise.to(device)
temp += w[s] * (models[s].state_dict()[key] + noise)
# update global model
model.state_dict()[key].data.copy_(temp)
# updata local model
for s in range(4):
models[s].state_dict()[key].data.copy_(model.state_dict()[key])
return loss_all,lossG_all,lossD_all,num_data,num_dataG,num_dataD
def test(federated_model,data_loader,train = False):
federated_model= federated_model.to(device)
federated_model.eval()
test_loss = 0
correct = 0
outputs = []
preds = []
targets = []
for data, target in data_loader:
targets.append(target[0].detach().numpy())
data = data.to(device)
target = target.to(device)
output = federated_model(data)
outputs.append(output.detach().cpu().numpy())
test_loss += celoss(output, target).item()*target.size(0)
pred = output.data.max(1)[1]
preds.append(pred.detach().cpu().numpy())
correct += pred.eq(target.view(-1)).sum().item()
test_loss /= len(data_loader.dataset)
correct /= len(data_loader.dataset)
if train:
print('Train set local: Average loss: {:.4f}, Average acc: {:.4f}'.format(test_loss, correct))
else:
print('Test set local: Average loss: {:.4f}, Average acc: {:.4f}'.format(test_loss, correct))
return test_loss, correct, targets, outputs, preds
best_acc = 0
best_epoch = 0
for epoch in range(args.epochs):
start_time = time.time()
print(f"Epoch Number {epoch + 1}")
l,lG,lD,n,nG,nD = train(epoch)
print("===========================")
print("L1: {:.7f}, L2: {:.7f}, L3: {:.7f}, L4: {:.7f} ".format(l[0]/n[0],l[1]/n[1],l[2]/n[2],l[3]/n[3]))
print("G1: {:.7f}, G2: {:.7f}, G3: {:.7f}, G4: {:.7f} ".format(lG[0] / nG[0], lG[1] / nG[1], lG[2] / nG[2],
lG[3] / nG[3]))
print("D1: {:.7f}, D2: {:.7f}, D3: {:.7f}, D4: {:.7f} ".format(lD[0] / nD[0], lD[1] / nD[1], lD[2] / nD[2],
lD[3] / nD[3]))
writer.add_scalars('CEloss', {'l1': l[0]/n[0],'l2': l[1]/n[1],'l3': l[2]/n[2],'l4': l[3]/n[3] }, epoch)
writer.add_scalars('Gloss', {'gl1': lG[0] / nG[0], 'gl2': lG[1] / nG[1], 'gl3': lG[2] / nG[2], 'gl4': lG[3] / nG[3]},
epoch)
writer.add_scalars('Dloss', {'dl1': lD[0]/ nD[0],
'dl2': lD[1]/ nD[1],
'dl3': lD[2]/ nD[2],
'dl4': lD[3]/ nD[3]},
epoch)
print('===NYU===')
test(model, train_loader1, train=True)
_, acc1,targets1, outputs1, preds1 = test(model, test_loader1, train=False)
print('===UM===')
test(model, train_loader2, train=True)
_, acc2,targets2, outputs2, preds2 = test(model, test_loader2, train=False)
print('===USM===')
test(model, train_loader3, train=True)
_, acc3,targets3, outputs3, preds3 = test(model, test_loader3, train=False)
print('===UCLA===')
test(model, train_loader4, train=True)
_, acc4,targets4, outputs4, preds4 = test(model, test_loader4, train=False)
if (acc1+acc2+acc3+acc4)/4 > best_acc:
best_acc = (acc1+acc2+acc3+acc4)/4
best_epoch = epoch
total_time = time.time() - start_time
print('Communication time over the network', round(total_time, 2), 's\n')
model_wts = copy.deepcopy(model.state_dict())
torch.save(model_wts, os.path.join(args.model_dir, str(args.split) +'.pth'))
print('Best Acc:',best_acc, 'Beat Epoch:', best_epoch)
print('split:', args.split,' noise:', args.noise, ' pace:', args.pace)
dd.io.save(os.path.join(args.res_dir, 'NYU_' + str(args.split) + '.h5'),
{'outputs': outputs1, 'preds': preds1, 'targets': targets1})
dd.io.save(os.path.join(args.res_dir, 'UM_' + str(args.split) + '.h5'),
{'outputs': outputs2, 'preds': preds2, 'targets': targets2})
dd.io.save(os.path.join(args.res_dir, 'USM_' + str(args.split) + '.h5'),
{'outputs': outputs3, 'preds': preds3, 'targets': targets3})
dd.io.save(os.path.join(args.res_dir, 'UCLA_' + str(args.split) + '.h5'),
{'outputs': outputs4, 'preds': preds4, 'targets': targets4})
#==========================================================================
if __name__ == '__main__':
parser = argparse.ArgumentParser()
# specify for dataset site
parser.add_argument('--split', type=int, default=0, help='select 0-4 fold')
# do not need to change
parser.add_argument('--pace', type=int, default=50, help='communication pace')
parser.add_argument('--noise', type=float, default=0, help='noise level for gaussian or err level for Lap')
parser.add_argument('--type', type=str, default='G', help='Gaussian or Lap')
parser.add_argument('--seed', type=int, default=1)
parser.add_argument('--epochs', type=int, default=50)
parser.add_argument('--lr', type=float, default=1e-4)
parser.add_argument('--lr1', type=float, default=1e-4)
parser.add_argument('--lr2', type=float, default=1e-4)
parser.add_argument('--lr3', type=float, default=1e-4)
parser.add_argument('--lr4', type=float, default=1e-4)
parser.add_argument('--lamb', type=float, default=0.1, help = 'lossG weight')
parser.add_argument('--clip', type=float, default=5.0, help='gradient clip')
parser.add_argument('--dim', type=int, default=16,help='hidden dim of MLP')
parser.add_argument('--nsteps', type=int, default=60, help='training steps/epoach')
parser.add_argument('-tbs1', '--test_batch_size1', type=int, default=145, help='NYU test batch size')
parser.add_argument('-tbs2', '--test_batch_size2', type=int, default=265, help='UM test batch size')
parser.add_argument('-tbs3', '--test_batch_size3', type=int, default=205, help='USM test batch size')
parser.add_argument('-tbs4', '--test_batch_size4', type=int, default=85, help='UCLA test batch size')
parser.add_argument('--overlap', type=bool, default=True, help='augmentation method')
parser.add_argument('--sepnorm', type=bool, default=False, help='normalization method')
parser.add_argument('--id_dir', type=str, default='./idx')
parser.add_argument('--res_dir', type=str, default='./result/align_overlap')
parser.add_argument('--vec_dir', type=str, default='./data/HO_vector_overlap')
parser.add_argument('--model_dir', type=str, default='./model/align_overlap')
args = parser.parse_args()
assert args.split in [0,1,2,3,4]
main(args)