-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_imgseg.py
83 lines (70 loc) · 2.5 KB
/
train_imgseg.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
import sys
sys.path.append('../')
sys.path.append('./')
import os
import os.path as osp
import random
from glob import glob
import argparse
import yaml, addict
import numpy as np
from datetime import datetime
import importlib
import torch
torch.autograd.set_detect_anomaly(True)
import warnings
warnings.filterwarnings('ignore')
# =============================== #
# seed all for re-implementation #
# =============================== #
def set_seed(seed=42):
random.seed(seed)
os.environ['PYTHONHASHSEED'] = str(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
torch.backends.cudnn.deterministic = True
set_seed()
# =============================== #
# seed all for re-implementation #
# =============================== #
# set used config .yml file path
parser = argparse.ArgumentParser(description='input the configure file path')
parser.add_argument('-opt', type=str, required=True, help='config file path')
args = parser.parse_args()
config_path = args.opt
# load configs
with open(config_path, 'r') as f:
opt = yaml.load(f, Loader=yaml.FullLoader)
opt = addict.Dict(opt)
# modify params in config on the fly, set exp_name to config filename
opt['exp_name'] = os.path.basename(config_path)[:-4]
# make dirs for save
save_dir = osp.join(opt['save_dir'], opt['exp_name'])
timestamp = datetime.now().strftime("%Y%h%d%H%M")
if os.path.exists(save_dir):
os.system(f'mv {save_dir} {save_dir}_archived_{timestamp}')
os.makedirs(save_dir, exist_ok=False)
os.system(f'cp {config_path} {save_dir}')
log_dir = osp.join(opt['log_dir'], opt['exp_name'])
if os.path.exists(log_dir):
os.system(f'mv {log_dir} {log_dir}_archived_{timestamp}')
os.makedirs(log_dir, exist_ok=False)
eval_interval = opt['eval']['eval_interval']
num_epoch = opt['train']['num_epoch']
model_type = opt['model_type']
# get model dynamically
model = getattr(importlib.import_module('models'), model_type)(opt)
model.prepare_training()
# training process
for epoch_id in range(num_epoch):
print(f"\n[TRAIN] Epoch {epoch_id}/{num_epoch}")
model.train_epoch(epoch_id)
# last 5 epochs all eval for the best val score
if epoch_id % eval_interval == 0 or epoch_id > num_epoch - 5:
print(f"\n[EVAL] Epoch {epoch_id}/{num_epoch}")
model.eval_epoch(epoch_id)
if os.path.exists(f"logs/{opt['exp_name'][:3]}*.log"):
os.system(f"cp logs/{opt['exp_name'][:3]}*.log {save_dir}")
print(f"\nSync trainning logs to save_dir done")
print('[JZSHERLOCK] all done, everything ok')