-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgeoloc.py
316 lines (261 loc) · 12.2 KB
/
geoloc.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
# -*- coding: utf-8 -*-
"""
Created on Wed Oct 9 18:41:47 2019
@author: hongsang yoo
"""
from sklearn.svm import LinearSVC
from sklearn.naive_bayes import MultinomialNB
from sklearn.ensemble import RandomForestClassifier, VotingClassifier
import pandas as pd
import numpy as np
from sklearn.metrics import classification_report, accuracy_score
from sklearn import preprocessing
from sklearn.feature_selection import chi2
import re
import string
from sklearn.feature_extraction.text import CountVectorizer, TfidfVectorizer
from nltk.tokenize import TweetTokenizer
from nltk.stem import WordNetLemmatizer
from nltk.corpus import stopwords
from scipy.sparse import hstack
le = preprocessing.LabelEncoder()
from imblearn.over_sampling import SMOTE
def clean_text(text):
text_nonum = re.sub(r'\d+', '', text)
text_nopunct = "".join([char.lower() for char in text_nonum if char not in string.punctuation])
text_no_doublespace = re.sub('\s+', ' ', text_nopunct).strip()
return text_no_doublespace
def chk_stop(text):
idx = text.index('\'')
text = text[:idx]
return text.lower()
def split_token(text):
returnlist = []
splitted = text.split('_')
for x in splitted:
returnlist.append("".join([char.lower() for char in x if char not in string.punctuation]))
return returnlist
def chk_repeated(string):
cnt=0
for i in range(len(string)-1):
if string[i] == string[i+1]:
cnt+=1
if cnt>3:
return True
else:
return False
def match_fword(string):
f_match = ['fuck', 'fucked', 'fucking', 'fucker', 'fuxk', 'f**k', 'f*ck', 'fuuuck', 'facefuck', 'f——k',
'ass', 'asses', 'dumbass', 'bastard', 'bastards', 'bitch', 'bitches', 'damn', 'damned',
'darn', 'goddamn', 'hell', 'hellish', 'shit', 'shits', 'shitted', 'shitting', 'shat', 'shite',
'piss', 'cunt', 'cock', 'sucker', 'cocksucker', 'motherfucker', 'tits', 'christ', 'crap', 'wtf', 'wtff']
if string in f_match:
return True
else:
return False
def match_emo(string):
emo_match = [':)', '(:', ':(', ':):)',':(:(',':((',':(((', ':):(', ':/', ':-(', ';-(', ';-)', ':-)', ':-*', ':-/', ':~/',
':D',';D','xD', '=D','XD', '=/', ':]', ';]', ';[', ':[', '=]', '=[', '-_-', '-__-', '-___-','=)', '=(' ]
if string in emo_match:
return True
else:
return False
def proc_texts(output_text, input_text):
with open(output_text, 'w', encoding="latin-1") as out, open(input_text, encoding="latin-1") as tweets:
tweets = tweets.readlines()
stop = set(stopwords.words('english'))
lemmatizer = WordNetLemmatizer()
collist = ['tweet-id', 'user', 'text', 'emo_cnt', 'textlen', 'f_cnt', 'repeated_cnt', 'upper_ratio', 'class']
fmt = ''
for col in collist:
fmt+= col + '\t'
fmt = fmt.strip() + '\n'
out.write(fmt)
glotaggedlist = []
group = None
groupcnt=0
for line in tweets:
line = line.strip()
tweet_id = line.split(',')[0]
first_user_st_idx = line.index('USER_')
taggedlist, f_list = [],[]
emo_cnt, f_cnt, upper_cnt, upper_ratio, repeated_cnt, user_cnt = 0,0,0,0,0,0
#emo_list =[]
locadict = dict.fromkeys(['ny', 'gg', 'cl'], 0)
label_idx = -(line[::-1].index(','))
label = line[label_idx:]
text = line[first_user_st_idx:label_idx-1]
textlen = "{:.4f}".format(float(len(text)/100))
while "USER_" in text:
st_idx = text.index('USER_')
end_idx = st_idx+13
user = text[st_idx:end_idx]
taggedlist.append(user)
text = text[end_idx:]
former = text[:st_idx-1]
if 'RT' in former:
former=former[:former.index('RT')]
latter = text[end_idx+1:]
text = former + ' ' + latter
tt = TweetTokenizer(strip_handles=True, reduce_len=True)
tokens = tt.tokenize(text)
removelist = []
tokenlist= []
pronoun = ''
for token in tokens:
if len(token)>1 and token.isupper() and token.isalpha():
upper_cnt +=1
token = token.lower()
if match_fword(token) or match_fword(lemmatizer.lemmatize(token)):
f_cnt +=1
f_list.append(lemmatizer.lemmatize(token))
tokenlist.append(lemmatizer.lemmatize(token))
if match_emo(token):
emo_cnt +=1
tokenlist.append(token)
continue
if '_' in token:
splitted = split_token(token)
tokenlist.extend(splitted)
continue
if '\'' in token:
pronoun = chk_stop(token)
if '#' in token:
tokenlist.append(token)
continue
if chk_repeated(token):
repeated_cnt+=1
cleaned = clean_text(token)
if '#' not in token and cleaned not in stop and cleaned not in string.punctuation and pronoun not in stop \
and len(token)> 1 and not bool(re.search(r'^[0-9]*$', token)) :
#lemma = lemmatizer.lemmatize(cleaned)
tokenlist.append(cleaned)
pronoun = ''
else:
removelist.append(token)
if len(taggedlist)==0:
taggedlist = glotaggedlist
#taggedlist.append('nottagged')
else:
glotaggedlist = taggedlist
tokens = [e for e in tokens if e not in removelist]
if upper_cnt>0:
upper_ratio = "{:.4f}".format(float(upper_cnt/len(tokens)))
1==1
if len(tokenlist) == 0:
tokenlist.append('nomessage')
fmt = "{}\t{}\t{}\t{}\t{}\t{}\t{}\t{}\t{}\n".format(tweet_id, ' '.join(map(str, taggedlist)),
' '.join(map(str, tokenlist)), emo_cnt, textlen, f_cnt, repeated_cnt, upper_ratio, label)
out.write(fmt)
def get_TFIDF(X_train, X_test, MAX_NB_WORDS=1000):
param = { "sublinear_tf":True, "analyzer":'word', "min_df":5, "max_df": 0.5,
"max_features":MAX_NB_WORDS, "stop_words":'english', 'norm':'l2' }
vectorizer_x = TfidfVectorizer(**param)
X_train = vectorizer_x.fit_transform(X_train)
X_test = vectorizer_x.transform(X_test)
#print("tf-idf with",str(np.array(X_train).shape[1]),"features")
return (X_train,X_test)
def preprocess():
##### development mode => feature engineering
proc_texts('tfidf.csv', 'tweets/train_tweets.txt')
proc_texts('tfidf_test.csv', 'tweets/dev_tweets.txt')
##### test mode => feature engineering
#proc_texts('userny.csv','usergg.csv','usercl.csv', 'tfidf.csv', 'tweets/traindev_tweets.txt')
#proc_texts('userny.csv','usergg.csv','usercl.csv', 'tfidf_test.csv', 'tweets/test_tweets.txt')
def getfeature(col, df):
param = { "sublinear_tf":True, "analyzer":'word', "min_df":10, "max_df": 0.5, 'norm':'l2' } #sublinear for lagarithm scale
tfidf = TfidfVectorizer(**param)
features = tfidf.fit_transform(df[col])
return tfidf, features
## Get TOP N vocabulary that has the highest chi square scores in each class
def return_topval(list_, col, label_dict, labels, df):
N = 100
tfidf, features = getfeature(col, df)
for label, num in sorted(label_dict.items()):
features_chi2 = chi2(features, labels == num)
indices = np.argsort(features_chi2[0])
feature_names = np.array(tfidf.get_feature_names())[indices]
unigrams = [v for v in feature_names if len(v.split(' ')) == 1]
## display highly related words by class
print("# '{}':".format(label))
print(" . Most correlated unigrams:\n. {}".format('\n. '.join(unigrams[-N:])))
# Return N vocabulary to feed TF-IDF vectorizer
list_.extend(unigrams[-N:])
return list_
def model():
##### development mode
df =pd.read_csv('x_tfidf.csv', encoding ='latin1', sep = '\t')
df_test =pd.read_csv('x_tfidf_test.csv', encoding ='latin1', sep = '\t')
##### test mode
#df =pd.read_csv('tfidf.csv', encoding ='latin1', sep = '\t')
#df_test =pd.read_csv('tfidf_test.csv', encoding ='latin1', sep = '\t')
train_y = df['class']
test_y = df_test['class']
df['id'] = df['class'].factorize()[0]
label_df = df[['class', 'id']].drop_duplicates().sort_values('id')
label_dict = dict(label_df.values)
labels=df['id']
df['text'] = df['text'].fillna("None")
df_test['text'] = df_test['text'].fillna("None")
rf = RandomForestClassifier(bootstrap=True,
min_samples_leaf=3,
n_estimators=1000,
min_samples_split=4,
max_features='sqrt',
max_depth= 9,
max_leaf_nodes=None,
random_state=1,
n_jobs=1,
class_weight='balanced', #for balancing
criterion='gini')
models = [
LinearSVC(random_state=0, class_weight='balanced'),
MultinomialNB(),
rf
]
#### Vectorising userid and text features
vocalist = []
vocalist = return_topval(vocalist, 'text', label_dict, labels, df)
tfidf_vec = TfidfVectorizer(analyzer='word', sublinear_tf=True, norm='l2', min_df=2, max_df= 0.5, vocabulary=set(vocalist) )
tf = tfidf_vec.fit_transform(df['text'])
tf_test = tfidf_vec.transform(df_test['text'])
user_vec = TfidfVectorizer( analyzer='word', sublinear_tf=True, norm='l2', min_df=2, max_df= 0.5)
user = user_vec.fit_transform(df['user'])
user_test = user_vec.transform(df_test['user'])
meta_list = ['emo_cnt', 'textlen', 'f_cnt', 'repeated_cnt', 'upper_ratio'] #'ny', 'gg', 'cl',
### Stacking all features together
train_X = hstack((tf, user ), format='csr')
test_X = hstack((tf_test, user_test) , format='csr')
for col in meta_list:
train_X = hstack((train_X, df[col].values.reshape(df.shape[0], 1)) )
test_X = hstack((test_X, df_test[col].values.reshape(df_test.shape[0], 1)) )
### SAMPLING : SMOTE
train_X, train_y = SMOTE(random_state=42).fit_resample(train_X, train_y) ## sampling technique: SMOTE, SMOTEEN, etc.
return models, train_X, test_X, train_y, test_y
def evaluate(models, train_X, test_X, train_y, test_y ):
estimators=[]
for classifier in models:
model_name = classifier.__class__.__name__
model = classifier.fit(train_X, train_y)
''' .... for ensemble voting classifier
#clf = (model_name, model)
#estimators.append(clf)
#model = VotingClassifier(estimators, voting='hard')
#model.fit(train_X, train_y)
'''
predictions = model.predict(test_X)
accuracies = accuracy_score(test_y ,predictions)
print(model_name , ':')
print(accuracies)
print(classification_report(test_y, predictions))
### IN THE TEST MODE
#df_test["class"] = predictions
#df_test = df_test.drop(['user', 'text', 'ny', 'gg', 'cl', 'emo_cnt', 'textlen', 'f_cnt', 'repeated_cnt', 'upper_ratio'], axis = 1)
#df_test.to_csv("prediction.csv")
if __name__ == "__main__":
# feature engineering
preprocess()
# modelling
models, train_X, test_X, train_y, test_y = model()
# evaluation metrics
evaluate(models, train_X, test_X, train_y, test_y )