-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathchunking.py
44 lines (32 loc) · 1.11 KB
/
chunking.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Wed Jan 23 17:52:50 2019
@author: jeetu
"""
import nltk
#importing the speech of george bush from state union
from nltk.corpus import state_union
# PunktSentenceTokenizer is unsupervised ML
from nltk.tokenize import PunktSentenceTokenizer
#training the data of 2005 speech
train_text = state_union.raw("2005-GWBush.txt")
#sample text of 2006
sample_text = state_union.raw("2006-GWBush.txt")
custom_sent_tokenizer=PunktSentenceTokenizer(train_text)
#tokenized by sentenced
tokenized = custom_sent_tokenizer.tokenize(sample_text)
def process_content():
try:
for i in tokenized:
words=nltk.word_tokenize(i)
tagged=nltk.pos_tag(words)
#RegularExpression taking adverb verb noun proper and noun
chunkGram = r"""Chunk:{<RB.?>*<VB.?>*<NNP>+<NN>?} """
chunkParser =nltk.RegexpParser(chunkGram)
chunked = chunkParser.parse(tagged)
#output in the tree format
chunked.draw()
except Exception as e:
print(str(e))
process_content()