-
Notifications
You must be signed in to change notification settings - Fork 0
/
application.py
38 lines (30 loc) · 1.22 KB
/
application.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
from flask import Flask, request, render_template, jsonify
from src.pipelines.prediction_pipeline import CustomData, PredictPipeline
application = Flask(__name__)
app = application
@app.route('/')
def home_page():
return render_template('index.html')
@app.route('/predict', methods = ['GET', 'POST'])
def predict_datapoint():
if request.method == 'GET':
return render_template('form.html')
else:
data = CustomData(
carat = float(request.form.get('carat')),
depth = float(request.form.get('depth')),
table = float(request.form.get('table')),
x = float(request.form.get('x')),
y = float(request.form.get('y')),
z = float(request.form.get('z')),
cut = str(request.form.get('cut')),
color = str(request.form.get('color')),
clarity = str(request.form.get('clarity'))
)
final_new_data = data.get_data_as_dataframe()
predict_pipeline = PredictPipeline()
pred = predict_pipeline.predict(final_new_data)
results = round(pred[0],2)
return(render_template('form.html', final_result = results))
if __name__ == "__main__":
app.run(host = '0.0.0.0', debug = True)