-
Notifications
You must be signed in to change notification settings - Fork 2
/
eval_knn.py
218 lines (191 loc) · 9.49 KB
/
eval_knn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
import sys
import os
import argparse
import random
from tqdm import tqdm
import torch
from torch import nn
import torch.distributed as dist
import torch.backends.cudnn as cudnn
from torchvision import datasets
from torchvision import models
from torchvision import transforms
import utils
def extract_feature_pipeline(args):
# ============ preparing data ... ============
transform = transforms.Compose([
transforms.Resize(256, interpolation=3),
transforms.CenterCrop(224),
transforms.ToTensor(),
transforms.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225)),
])
dataset_train = ReturnIndexDataset(os.path.join(args.data_path, "train"), transform=transform)
dataset_val = ReturnIndexDataset(os.path.join(args.data_path, "val"), transform=transform)
sampler = torch.utils.data.DistributedSampler(dataset_train, shuffle=False)
data_loader_train = torch.utils.data.DataLoader(
dataset_train,
sampler=sampler,
batch_size=args.batch_size_per_gpu,
num_workers=args.num_workers,
pin_memory=True,
drop_last=False,
)
data_loader_val = torch.utils.data.DataLoader(
dataset_val,
batch_size=args.batch_size_per_gpu,
num_workers=args.num_workers,
pin_memory=True,
drop_last=False,
)
print(f"Data loaded with {len(dataset_train)} train and {len(dataset_val)} val imgs.")
# ============ building network ... ============
model = models.__dict__[args.arch](num_classes=1000)
model.fc = nn.Identity()
model.cuda()
utils.load_listener_weights(model, args.pretrained_weights)
model.eval()
# ============ extract features ... ============
print("Extracting features for train set...")
train_features = extract_features(model, data_loader_train)
print("Extracting features for val set...")
test_features = extract_features(model, data_loader_val)
if utils.get_rank() == 0:
train_features = nn.functional.normalize(train_features, dim=1, p=2)
test_features = nn.functional.normalize(test_features, dim=1, p=2)
train_labels = torch.tensor([s[-1] for s in dataset_train.samples]).long()
test_labels = torch.tensor([s[-1] for s in dataset_val.samples]).long()
# save features and labels
if args.dump_features and dist.get_rank() == 0:
torch.save(train_features.cpu(), os.path.join(args.dump_features, "trainfeat.pth"))
torch.save(test_features.cpu(), os.path.join(args.dump_features, "testfeat.pth"))
torch.save(train_labels.cpu(), os.path.join(args.dump_features, "trainlabels.pth"))
torch.save(test_labels.cpu(), os.path.join(args.dump_features, "testlabels.pth"))
return train_features, test_features, train_labels, test_labels
@torch.no_grad()
def extract_features(model, data_loader):
metric_logger = utils.MetricLogger(delimiter=" ")
features = None
for samples, index in metric_logger.log_every(data_loader, 10):
samples = samples.cuda(non_blocking=True)
index = index.cuda(non_blocking=True)
feats = model(samples).clone()
# init storage feature matrix
if dist.get_rank() == 0 and features is None:
features = torch.zeros(len(data_loader.dataset), feats.shape[-1])
if args.use_cuda:
features = features.cuda(non_blocking=True)
print(f"Storing features into tensor of shape {features.shape}")
# get indexes from all processes
y_all = torch.empty(dist.get_world_size(), index.size(0), dtype=index.dtype, device=index.device)
y_l = list(y_all.unbind(0))
y_all_reduce = torch.distributed.all_gather(y_l, index, async_op=True)
y_all_reduce.wait()
index_all = torch.cat(y_l)
# share features between processes
feats_all = torch.empty(
dist.get_world_size(),
feats.size(0),
feats.size(1),
dtype=feats.dtype,
device=feats.device,
)
output_l = list(feats_all.unbind(0))
output_all_reduce = torch.distributed.all_gather(output_l, feats, async_op=True)
output_all_reduce.wait()
# update storage feature matrix
if dist.get_rank() == 0:
if args.use_cuda:
features.index_copy_(0, index_all, torch.cat(output_l))
else:
features.index_copy_(0, index_all.cpu(), torch.cat(output_l).cpu())
return features
@torch.no_grad()
def knn_classifier(train_features, train_labels, test_features, test_labels, k, T, num_classes=1000):
top1, top5, total = 0.0, 0.0, 0
train_features = train_features.t()
num_test_images, num_chunks = test_labels.shape[0], 100
imgs_per_chunk = num_test_images // num_chunks
retrieval_one_hot = torch.zeros(k, num_classes).to(train_features.device)
for idx in tqdm(range(0, num_test_images, imgs_per_chunk)):
# get the features for test images
features = test_features[
idx : min((idx + imgs_per_chunk), num_test_images), :
]
targets = test_labels[idx : min((idx + imgs_per_chunk), num_test_images)]
batch_size = targets.shape[0]
# calculate the dot product and compute top-k neighbors
similarity = torch.mm(features, train_features)
distances, indices = similarity.topk(k, largest=True, sorted=True)
candidates = train_labels.view(1, -1).expand(batch_size, -1)
retrieved_neighbors = torch.gather(candidates, 1, indices)
retrieval_one_hot.resize_(batch_size * k, num_classes).zero_()
retrieval_one_hot.scatter_(1, retrieved_neighbors.view(-1, 1), 1)
distances_transform = distances.clone().div_(T).exp_()
probs = torch.sum(
torch.mul(
retrieval_one_hot.view(batch_size, -1, num_classes),
distances_transform.view(batch_size, -1, 1),
),
1,
)
_, predictions = probs.sort(1, True)
# find the predictions that match the target
correct = predictions.eq(targets.data.view(-1, 1))
top1 = top1 + correct.narrow(1, 0, 1).sum().item()
top5 = top5 + correct.narrow(1, 0, 5).sum().item()
total += targets.size(0)
top1 = top1 * 100.0 / total
top5 = top5 * 100.0 / total
return top1, top5
class ReturnIndexDataset(datasets.ImageFolder):
def __getitem__(self, idx):
img, lab = super(ReturnIndexDataset, self).__getitem__(idx)
return img, idx
if __name__ == '__main__':
parser = argparse.ArgumentParser('Evaluation with weighted k-NN on ImageNet')
parser.add_argument('--batch_size_per_gpu', default=128, type=int, help='Per-GPU batch-size')
parser.add_argument('--nb_knn', default=[10, 20, 100, 200], nargs='+', type=int,
help='Number of NN to use. 20 is usually working the best.')
parser.add_argument('--temperature', default=0.07, type=float,
help='Temperature used in the voting coefficient')
parser.add_argument('--pretrained_weights', default='', type=str, help="Path to pretrained weights to evaluate.")
parser.add_argument('--use_cuda', default=True, type=utils.bool_flag,
help="Should we store the features on GPU? We recommend setting this to False if you encounter OOM")
parser.add_argument('--arch', default='resnet18', type=str,
help='Architecture.')
parser.add_argument('--dump_features', default=None,
help='Path where to save computed features, empty for no saving')
parser.add_argument('--load_features', default=None, help="""If the features have
already been computed, where to find them.""")
parser.add_argument('--num_workers', default=4, type=int, help='Number of data loading workers per GPU.')
parser.add_argument("--dist_url", default="env://", type=str, help="""url used to set up
distributed training; see https://pytorch.org/docs/stable/distributed.html""")
parser.add_argument("--world_size", default=1, type=int, help="Please ignore and do not set this argument.")
parser.add_argument("--local_rank", default=0, type=int, help="Please ignore and do not set this argument.")
parser.add_argument('--data_path', default='/path/to/imagenet/', type=str)
args = parser.parse_args()
args.dist_url = f'tcp://localhost:{random.randrange(49152, 65535)}'
utils.init_distributed_mode(args)
print("git:\n {}\n".format(utils.get_sha()))
print("\n".join("%s: %s" % (k, str(v)) for k, v in sorted(dict(vars(args)).items())))
cudnn.benchmark = True
if args.load_features:
train_features = torch.load(os.path.join(args.load_features, "trainfeat.pth"))
test_features = torch.load(os.path.join(args.load_features, "testfeat.pth"))
train_labels = torch.load(os.path.join(args.load_features, "trainlabels.pth"))
test_labels = torch.load(os.path.join(args.load_features, "testlabels.pth"))
else:
# need to extract features !
train_features, test_features, train_labels, test_labels = extract_feature_pipeline(args)
if utils.get_rank() == 0:
if args.use_cuda:
train_features = train_features.cuda()
test_features = test_features.cuda()
train_labels = train_labels.cuda()
test_labels = test_labels.cuda()
print("Features are ready!\nStart the k-NN classification.")
for k in args.nb_knn:
top1, top5 = knn_classifier(train_features, train_labels,
test_features, test_labels, k, args.temperature)
print(f"{k}-NN classifier result: Top1: {top1}, Top5: {top5}")
dist.barrier()