-
Notifications
You must be signed in to change notification settings - Fork 15
/
Copy pathradioactive-islands2.py
113 lines (105 loc) · 4.46 KB
/
radioactive-islands2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
# Copyright (c) 2019 kamyu. All rights reserved.
#
# Google Code Jam 2016 World Finals - Problem E. Radioactive Islands
# https://code.google.com/codejam/contest/7234486/dashboard#s=p4
#
# Time: O(X/H), X is the const range of x for integral
# , H is the dx parameter for integral
# Space: O(1)
#
# Calculus of Variations: the fastest one
#
from sys import float_info
from math import sqrt
def D(C, x, y):
dose = 0.0
for c in C:
d_square = x**2 + (y-c)**2
if d_square < float_info.epsilon:
return float("inf")
dose += 1.0/d_square
return dose
# Euler-Lagrange equation for finding minima of F(a, b) = sum(f(x, y, y') * dx)
def fp(C, x, y, yp): # y'' = f'(x, y, y')
t, s, syp, sx = 1.0+yp**2, 1.0, 0.0, 0.0
for c in C:
d_square = x**2 + (y-c)**2
s += 1.0/d_square
syp += (y-c)/d_square**2
sx += (x + (y-c)*yp)/d_square**2
# according to Euler-Lagrange equation, i.e. df/dy = d(df/dy')/dx
# let f = s * t^(1/2)
# 1. df/dy = -2 * syp * t^(1/2)
# 2. df/dy' = s * y' * t^(-1/2)
# d(df/dy')/dx = (-2 * sx) * y' * t^(-1/2) + s * (y'' * t^(-1/2) - y' * y' * y'' * t^(-3/2))
# = (-2 * sx * y') * t^(-1/2) + s * (t^(-1/2) - y'^2 * t^(-3/2)) * y''
# df/dy = d(df/dy')/dx
# => -2 * syp * t^(1/2) = (-2 * sx * y') * t^(-1/2) + s * (t^(-1/2) - y'^2 * t^(-3/2)) * y''
# => y'' = 2 * ((sx * y') * t^(-1/2) - syp * t^(1/2)) / (s * (t^(-1/2) - y'^2 * t^(-3/2)))
# = 2 * (sx * y' * t - syp * t^2) / s * (t - y'^2))
# = 2 * (sx * y' * t - syp * t^2) / s * ((1 + y'^2) - y'^2))
# = 2 * (sx * y' * t - syp * t^2) / s
# = 2 * t * (sx * y' - syp * t) / s
return 2.0 * t * (sx * yp - syp * t) / s
# Runge-Kutta methods:
# - https://en.wikipedia.org/wiki/List_of_Runge%E2%80%93Kutta_methods
# RK2 for 2nd-order ODE:
# - https://math.stackexchange.com/questions/1134540/second-order-runge-kutta-method-for-solving-second-order-ode
# RK4 for 2nd-order ODE:
# - https://math.stackexchange.com/questions/2615672/solve-fourth-order-ode-using-fourth-order-runge-kutta-method
# - http://homepages.cae.wisc.edu/~blanchar/eps/ivp/ivp.htm
# - https://stackoverflow.com/questions/52334558/runge-kutta-4th-order-method-to-solve-second-order-odes
# - https://publications.waset.org/1175/pdf
def F(C, x, y, yp):
dose = 0.0
for _ in xrange(int((X_END-X_START)/H)): # more accurate than [while x < X_END]
if not (MIN_Y_BOUND <= y <= MAX_Y_BOUND):
return float("inf"), y
# dose = sum(f(x, y, y') * dx = (1 + sum(1 / (x^2 + (y-ci)^2))) * sqrt(1 + y'^2) * dx)), where dx = H
dose += H * (1.0+D(C, x, y)) * sqrt(1.0 + yp**2)
# applying RK1 (forward Euler) for 2nd-order ODE is enough,
# besides, RK2 (explicit midpoint) is also fine,
# but RK4 is unstable (fine with H = 0.01 but other may not) for some cases due to large y'
k1 = H * yp
l1 = H * fp(C, x, y, yp)
'''
k2 = H * (yp + l1/2.0)
l2 = H * fp(C, x+H/2.0, y+k1/2.0, yp+l1/2.0)
k3 = H * (yp + l2/2.0)
l3 = H * fp(C, x+H/2.0, y+k2/2.0, yp+l2/2.0)
k4 = H * (yp + l3)
l4 = H * fp(C, x+H, y+k3, yp+l3)
'''
x += H
y += k1 # RK2: y += k2, RK4: y += (k1 + 2.0*k2 + 2.0*k3 + k4)/6.0
yp += l1 # RK2: yp += l2, RK4: yp += (l1 + 2.0*l2 + 2.0*l3 + l4)/6.0
return dose, y
def binary_search(A, B, C, left, right):
dose = float("inf")
while abs(right-left)/2.0 > float_info.epsilon:
mid = (left+right)/2.0
dose, y = F(C, X_START, A, mid)
if y >= B:
right = mid
else:
left = mid
return dose
def radioactive_islands():
N, A, B = map(float, raw_input().strip().split())
C = map(float, raw_input().strip().split())
slopes = [MIN_SLOPE, MAX_SLOPE]
slopes.extend((c-A)/(X_C-X_START) for c in C)
slopes.sort()
result = float("inf")
for i in xrange(len(slopes)-1):
result = min(result, binary_search(A, B, C, slopes[i], slopes[i+1]))
return result
H = 0.01 # tuned by experiment, works for RK1, RK2, RK4, besides, H = 0.5 only works for RK1
MIN_Y_BOUND, MAX_Y_BOUND = -13.0, 13.0 # verified by experiment
X_START, X_END = -10.0, 10.0
MIN_A, MAX_A = -10.0, 10.0
MIN_C, MAX_C = -10.0, 10.0
X_C = 0.0
MIN_SLOPE, MAX_SLOPE = (MIN_C-MAX_A)/(X_C-X_START), (MAX_C-MIN_A)/(X_C-X_START)
for case in xrange(input()):
print "Case #%d: %s" % (case+1, radioactive_islands())