-
Notifications
You must be signed in to change notification settings - Fork 19
/
Copy pathmusical_cords.py
100 lines (87 loc) · 3.97 KB
/
musical_cords.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
# Copyright (c) 2020 kamyu. All rights reserved.
#
# Google Code Jam 2020 Virtual World Finals - Problem D. Musical Cords
# https://codingcompetitions.withgoogle.com/codejam/round/000000000019ff31/00000000003b532b
#
# Time: O(NlogN + N * K) on average, pass in PyPy2 but Python2
# Space: O(N * K)
#
from math import sin, pi
from functools import partial
from random import randint
def nth_element(nums, n, compare=lambda a, b: a < b):
def tri_partition(nums, left, right, target, compare):
mid = left
while mid <= right:
if nums[mid] == target:
mid += 1
elif compare(nums[mid], target):
nums[left], nums[mid] = nums[mid], nums[left]
left += 1
mid += 1
else:
nums[mid], nums[right] = nums[right], nums[mid]
right -= 1
return left, right
left, right = 0, len(nums)-1
while left <= right:
pivot_idx = randint(left, right)
pivot_left, pivot_right = tri_partition(nums, left, right, nums[pivot_idx], compare)
if pivot_left <= n <= pivot_right:
return
elif pivot_left > n:
right = pivot_left-1
else: # pivot_right < n.
left = pivot_right+1
def binary_search(left, right, check_fn):
while left <= right:
mid = left + (right-left)//2
if check_fn(mid):
right = mid-1
else:
left = mid+1
return left
def unordered_pair(i, j):
return (i, j) if i < j else (j, i)
def f(R, D, L, i, j):
return 2*R*sin(((D[j]-D[i])%NANODEGREE_360)*pi/NANODEGREE_360)+L[j]
def is_overllaped(N, D, i, x):
return 0 < (D[i%N]-D[x%N])%NANODEGREE_360 <= NANODEGREE_180
def is_above(N, R, D, L, curr, prev, x):
return f(R, D, L, x%N, curr%N) >= f(R, D, L, x%N, prev%N)
def check(N, R, D, L, curr, prev, x):
return is_overllaped(N, D, curr, x) and is_above(N, R, D, L, curr, prev, x)
def musical_cords():
N, R, K = map(int, raw_input().strip().split())
D, L = [0]*N, [0]*N
for i in xrange(N):
D[i], L[i] = map(int, raw_input().strip().split())
intervals = []
for i in xrange(2*N-1): # Total Time: O(NlogN)
left = i
while intervals and is_overllaped(N, D, i, intervals[-1][0]) and \
is_above(N, R, D, L, i, intervals[-1][2], intervals[-1][0]):
left = intervals.pop()[0] # remove fully covered and smaller intervals, and expand the left point of the current one
if intervals and is_overllaped(N, D, i, intervals[-1][1]): # overlapped
intersect = binary_search(intervals[-1][0], intervals[-1][1], partial(check, N, R, D, L, i, intervals[-1][2])) # Time: O(logN)
if intersect <= intervals[-1][1]: # adjust both intervals
intervals[-1][1] = left = intersect
else: # adjust the current interval by including the right point of the previous one
left = intervals[-1][1]
intervals.append([left, i, i])
max_pair = [-1]*N
for left, right, j in intervals: # Time: O(N)
for i in xrange(left, right):
if max_pair[i%N] == -1 or f(R, D, L, i%N, j%N) > f(R, D, L, i%N, max_pair[i%N]):
max_pair[i%N] = j%N
pairs = {unordered_pair(i, j):f(R, D, L, i, j)+L[i] for i, j in enumerate(max_pair) if j != -1} # Time: O(N)
value_pairs = [(v, pair) for pair, v in pairs.iteritems()]
nth_element(value_pairs, K-1, compare=lambda a, b: a > b) # Time: O(N) on average
possible_pairs = {unordered_pair(i, j):f(R, D, L, i, j)+L[i] for _, pair in value_pairs[:K] for i in pair for j in xrange(N) if j != i} # Time: O(N * K)
result = possible_pairs.values()
nth_element(result, K-1, compare=lambda a, b: a > b) # Time: O(N * K) on average
return " ".join(map(lambda x: "%.10f"%x, sorted(result[:K], reverse=True))) # Time: O(KlogK)
NANODEGREE_180 = 180*10**9
NANODEGREE_360 = 360*10**9
for case in xrange(input()):
print 'Case #%d: %s' % (case+1, musical_cords())