-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathLogicalRelation.agda
176 lines (137 loc) · 5.59 KB
/
LogicalRelation.agda
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
{-# OPTIONS --cumulativity #-}
-- Because we are loading LogicalRelation.agda in Canonicity.agda which has unresolved goals, we have to
-- use the following Pragma. Delete this when you complete LogicalRelation.agda
{-# OPTIONS --allow-unsolved-metas #-}
module LogicalRelation where
open import Level
open import SOAS.Common
open import SOAS.Context
open import SOAS.Variable
open import SOAS.Families.Core
open import SOAS.Metatheory.Syntax
open import T.Syntax hiding (_▷_)
open import T.Signature
open import Assumptions
open import OperationalSemantics
open import Data.Nat
open import Data.Unit
open import Data.Empty
open import Data.Sum
open import Data.Product
open import Relation.Binary.Construct.Closure.ReflexiveTransitive
private
variable
Γ Δ Π : Ctx
σ τ ρ : ΛT
open import SubLemma T.Syntax.⅀F ⅀:Str Ø (𝕋:Init Ø)
open Theory Ø
module Candidate where
record cand (τ : ΛT) : Set1 where
field
-- underlying set of the candidate
set : Set
-- logical relation
_⊩_ : P τ → set → Set
-- closure under reverse execution
← : {e e' : P τ} {a : set} → e ↦* e' → e' ⊩ a → e ⊩ a
infix 3 _⊩_
open cand
⟦_⟧ : cand τ → Set
⟦ 𝔖 ⟧ = 𝔖 . set
_∣_⊩_ : (𝔖 : cand τ) → P τ → ⟦ 𝔖 ⟧ → Set
𝔖 ∣ e ⊩ a = 𝔖 ._⊩_ e a
numeral : ℕ → P N
numeral ℕ.zero = ze
numeral (suc n) = su (numeral n)
numeral/val : (n : ℕ) → val (numeral n)
numeral/val ℕ.zero = ze/val
numeral/val (ℕ.suc n) = su/val (numeral/val n)
𝔑 : cand N
𝔑 . set = ℕ
𝔑 . _⊩_ = λ e n → e ⇓ numeral n
𝔑 . ← = head/exp
_⇒_ : cand σ → cand τ → cand (σ ↣ τ)
𝔖 ⇒ 𝔗 = {! !}
𝔘 : cand 𝟙
𝔘 = {! !}
𝔈 : cand 𝟘
𝔈 = {! !}
_⊞_ : cand σ → cand τ → cand (σ ⊕ τ)
_⊞_ = {! !}
_⊠_ : cand σ → cand τ → cand (σ ⊗ τ)
_⊠_ = {! !}
open Candidate hiding (⟦_⟧ ; _∣_⊩_)
module LR where
open cand
-- assignment of candidate to types of T
𝓕 : (τ : ΛT) → cand τ
𝓕 N = 𝔑
𝓕 (σ ↣ τ) = 𝓕 σ ⇒ 𝓕 τ
𝓕 𝟙 = 𝔘
𝓕 (σ ⊗ τ) = 𝓕 σ ⊠ 𝓕 τ
𝓕 𝟘 = 𝔈
𝓕 (σ ⊕ τ) = 𝓕 σ ⊞ 𝓕 τ
⟦_⟧ : ΛT → Set
⟦ τ ⟧ = 𝓕 τ . set
_∣_⊩_ : (τ : ΛT) → P τ → ⟦ τ ⟧ → Set
τ ∣ e ⊩ a = (𝓕 τ) ._⊩_ e a
_∣_←_ : (τ : ΛT) → ∀ {e e' : P τ} {a : ⟦ τ ⟧} → (τ ∣ e' ⊩ a) → e ↦* e' → (τ ∣ e ⊩ a)
τ ∣ e'⊩a ← e↦*e' = (𝓕 τ) .← e↦*e' e'⊩a
cand/Ctx : Ctx → Set1
cand/Ctx ∅ = ⊤
cand/Ctx (τ ∙ Γ) = cand τ × cand/Ctx Γ
open import SOAS.ContextMaps.Inductive {T = ΛT}
open import SOAS.Coalgebraic.Lift {T = ΛT} using (lift₁)
-- semantic closing substitutions
⟦_⟧₁ : Ctx → Set
⟦ ∅ ⟧₁ = ⊤
⟦ τ ∙ Γ ⟧₁ = ⟦ τ ⟧ × ⟦ Γ ⟧₁
open import SOAS.ContextMaps.Combinators Λᴳ using (add)
open import Level
private
add/index : (e : Λᴳ τ Δ) (𝕤 : Sub Λᴳ Γ Δ) →
_≡_ {a = 0ℓ} {A = (τ ∙ Γ) ~[ Λᴳ ]↝ Δ}
(index {𝒳 = Λᴳ} {Γ = τ ∙ Γ} {Δ = Δ} (e ◂ 𝕤))
(add {α = τ} {Δ = Δ} {Γ = Γ} e (index 𝕤))
add/index e 𝕤 = funext (λ τ → λ { new → refl ; (old v) → refl })
-- you may find the following lemma useful in the proof of the ftlr for elimination forms that involve binding
𝕤𝕦𝕓[/]'' : (𝕤 : Sub Λᴳ Γ ∅) (e : Λᴳ τ (σ ∙ Γ)) (e1 : 𝕋 σ ∅)
→ [ e1 /] (𝕤𝕦𝕓 e (lift₁ 𝕋ᴮ (index 𝕤))) ≡ 𝕤𝕦𝕓 e (index (e1 ◂ 𝕤))
𝕤𝕦𝕓[/]'' 𝕤 e e1 = sym (trans (cong (𝕤𝕦𝕓 e) (add/index e1 𝕤)) (𝕤𝕦𝕓[/]' (index 𝕤) e e1 ))
data _∣_▷_ : (Γ : Ctx) → Sub Λᴳ Γ ∅ → ⟦ Γ ⟧₁ → Set where
-- "bullet" • code: \bub
* : ∅ ∣ • ▷ tt
-- "bullet operator" ∙ code: \.
_::_ : ∀ {Γ} {𝕤} {γ} {τ} {e} {a} → τ ∣ e ⊩ a → Γ ∣ 𝕤 ▷ γ → (τ ∙ Γ) ∣ (e ◂ 𝕤) ▷ (a , γ)
ftlr/var : (Γ : Ctx) → (τ : ΛT) →
(𝓋 : ℐ τ Γ) →
Σ (⟦ Γ ⟧₁ → ⟦ τ ⟧) λ f →
(𝕤 : Sub Λᴳ Γ ∅) → (γ : ⟦ Γ ⟧₁ ) → Γ ∣ 𝕤 ▷ γ →
τ ∣ (𝕤𝕦𝕓 (var 𝓋) (index 𝕤)) ⊩ f γ
ftlr/var .(_ ∙ _) τ new = proj₁ ,
λ {(e ◂ 𝕤) (a , γ) (prf :: 𝕤▷γ) →
≡subst (λ e → τ ∣ e ⊩ a) (sym (Substitution.𝕥⟨𝕧⟩ {σ = index (e ◂ 𝕤)} {x = new})) prf
}
ftlr/var (_ ∙ Γ) τ (old x) =
let (f , prf') = ftlr/var Γ τ x in
f ∘ proj₂ ,
λ { (e ◂ 𝕤) (a , γ) (prf :: 𝕤▷γ) → prf' 𝕤 γ 𝕤▷γ }
ftlr : (Γ : Ctx) → (τ : ΛT) →
(e : Λᴳ τ Γ) →
Σ (⟦ Γ ⟧₁ → ⟦ τ ⟧) λ f →
(𝕤 : Sub Λᴳ Γ ∅) → (γ : ⟦ Γ ⟧₁ ) → Γ ∣ 𝕤 ▷ γ →
τ ∣ (𝕤𝕦𝕓 e (index 𝕤)) ⊩ f γ
ftlr Γ τ (var 𝓋) = ftlr/var Γ τ 𝓋
ftlr Γ (σ ↣ τ) (ƛ e) = {! !}
ftlr Γ τ (_$_ {α = σ} {β = ρ} e e1) = {! !}
ftlr Γ τ (iter e e0 e1) = {! !}
ftlr Γ .𝟙 triv = {! !}
ftlr Γ τ (fst e) = {! !}
ftlr Γ τ (snd e) = {! !}
ftlr Γ τ (abort e) = {! !}
ftlr Γ .(_ ⊕ _) (inl e) = {! !}
ftlr Γ .(_ ⊕ _) (inr e) = {! !}
ftlr Γ τ (case {α = σ} {β = ρ} e e₁ e₂) = {! !}
ftlr Γ .N ze = {! !}
ftlr Γ .N (su e) = {! !}
ftlr Γ (σ ⊗ τ) ⟨ e1 , e2 ⟩ = {! !}