-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain_sa_testing.py
95 lines (84 loc) · 3.62 KB
/
main_sa_testing.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
from SimulatedAnnealing import SA
from item import Item
from random import shuffle
from datetime import datetime
import numpy as np
import json
import matplotlib.pyplot as plt
def log(message, end=None):
print(message, flush=True, end=end)
def generate_random_params(min_T0,max_T0,min_tt,max_tt,min_iter,max_iter):
return np.random.randint(min_T0,high=max_T0),np.random.randint(min_tt,high=max_tt),np.random.randint(min_iter,high=max_iter)
if __name__ == '__main__':
nb_iter_values = [int(i/2)+1 for i in range(100) ]
t0_values = [(i+1)*20 for i in range(50) ]
t_target_values = [i+1 for i in range(50) ]
alpha_values = [0.5 + i / 100 for i in range(50) ]
x = []
y_bins = []
y_time = []
datasets = [
{"name": "HARD9.txt", "solution":56, "results": {}},
{"name": "HARD0.txt", "solution":56, "results": {}},
{"name": "HARD6.txt", "solution":57, "results": {}},
{"name": "HARD7.txt", "solution":55, "results": {}},
# {"name": "N1C1W4_E.txt", "solution":0, "results": {}},
# {"name": "N1C2W2_H.txt", "solution":0, "results": {}},
# {"name": "N1C3W1_C.txt", "solution":0, "results": {}},
# {"name": "N2C1W1_G.txt", "solution":0, "results": {}},
# {"name": "N2C2W1_F.txt", "solution":0, "results": {}},
# {"name": "N2C3W1_Q.txt", "solution":0, "results": {}},
# {"name": "N3C1W1_K.txt", "solution":0, "results": {}},
]
# Loop through each data set.
log(" Iteration", end=" ")
for global_i in range(50):
log(global_i+1, end=" ")
cost = 0
t = 0
for dataset in datasets:
# Read the data into memory
with open('datasets/{}'.format(dataset["name"]), 'r') as file:
data = file.read().splitlines()
num_items, capacity, items = int(data[0]), int(data[1]), data[2:]
#log("\n\nDATASET {}: num_items {} capacity {} items_read {}".format(dataset["name"], num_items, capacity, len(items)))
items = [Item(size=int(i)) for i in items]
#log(" Iteration", end=" ")
# Perform 30 independent iterations.
for iteration in range(1):
#log(iteration+1, end=" ")
# Randomize the order of the items in the item list.
shuffle(items)
t0, t_target, nb_iter =500,10,10
sa = SA(0.9,capacity,items,t0_values[global_i],5,5)
start_time = datetime.now()
sa.run()
execution_time = datetime.now() - start_time
cost += len(sa.bins) - dataset["solution"]
t += execution_time.total_seconds()
# Record the relevant data for analysis
summary = {
"execution_time": str(execution_time),
"t0" : t0,
"t_target" : t_target,
"nb_iter" : nb_iter_values[iteration],
"num_bins": len(sa.bins),
}
dataset["results"].setdefault("SA", []).append(summary)
#dataset["results"].setdefault("SA", []).append(summary)
x.append(t0_values[global_i])
y_bins.append(cost)
y_time.append(t / len(dataset))
# Write the captured data to disk.
with open("./results/results_sa.json", "w") as file:
file.write(json.dumps(datasets, indent=2))
f1 = plt.figure(1)
plt.plot(x,y_bins)
plt.ylabel("Nb of bins")
plt.xlabel("T0")
f2 = plt.figure(2)
plt.plot(x,y_time)
plt.ylabel("Time")
plt.xlabel("T0")
plt.show()
input()