-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathconfig.py
377 lines (316 loc) · 17.3 KB
/
config.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
import copy
import itertools
import logging
import os
from pathlib import Path
import numpy as np
import torch.utils.data
from detectron2.config import CfgNode as CN
import utils
from datasets import FlowPairDetectron, FlowEvalDetectron
logger = logging.getLogger('gwm')
def scan_train_flow(folders, res, pairs, basepath):
pair_list = [p for p in itertools.combinations(pairs, 2)]
flow_dir = {}
for pair in pair_list:
p1, p2 = pair
flowpairs = []
for f in folders:
path1 = basepath / f'Flows_gap{p1}' / res / f
path2 = basepath / f'Flows_gap{p2}' / res / f
flows1 = [p.name for p in path1.glob('*.flo')]
flows2 = [p.name for p in path2.glob('*.flo')]
flows1 = sorted(flows1)
flows2 = sorted(flows2)
intersect = list(set(flows1).intersection(flows2))
intersect.sort()
flowpair = np.array([[path1 / i, path2 / i] for i in intersect])
flowpairs += [flowpair]
flow_dir['gap_{}_{}'.format(p1, p2)] = flowpairs
# flow_dir is a dictionary, with keys indicating the flow gap, and each value is a list of sequence names,
# each item then is an array with Nx2, N indicates the number of available pairs.
return flow_dir
def setup_dataset(cfg=None, multi_val=False):
dataset_str = cfg.GWM.DATASET
if '+' in dataset_str:
datasets = dataset_str.split('+')
logger.info(f'Multiple datasets detected: {datasets}')
train_datasets = []
val_datasets = []
for ds in datasets:
proxy_cfg = copy.deepcopy(cfg)
proxy_cfg.merge_from_list(['GWM.DATASET', ds]),
train_ds, val_ds = setup_dataset(proxy_cfg, multi_val=multi_val)
train_datasets.append(train_ds)
val_datasets.append(val_ds)
logger.info(f'Multiple datasets detected: {datasets}')
logger.info(f'Validation is still : {datasets[0]}')
return torch.utils.data.ConcatDataset(train_datasets), val_datasets[0]
resolution = cfg.GWM.RESOLUTION # h,w
res = ""
with_gt = True
pairs = [1, 2, -1, -2]
trainval_data_dir = None
if cfg.GWM.DATASET == 'DAVIS':
basepath = '/DAVIS2016'
img_dir = '/DAVIS2016/JPEGImages/480p'
gt_dir = '/DAVIS2016/Annotations/480p'
val_flow_dir = '/DAVIS2016/Flows_gap1/1080p'
val_seq = ['dog', 'cows', 'goat', 'camel', 'libby', 'parkour', 'soapbox', 'blackswan', 'bmx-trees',
'kite-surf', 'car-shadow', 'breakdance', 'dance-twirl', 'scooter-black', 'drift-chicane',
'motocross-jump', 'horsejump-high', 'drift-straight', 'car-roundabout', 'paragliding-launch']
val_data_dir = [val_flow_dir, img_dir, gt_dir]
res = "1080p"
elif cfg.GWM.DATASET in ['FBMS']:
basepath = '/FBMS_clean'
img_dir = '/FBMS_clean/JPEGImages/'
gt_dir = '/FBMS_clean/Annotations/'
val_flow_dir = '/FBMS_val/Flows_gap1/'
val_seq = ['camel01', 'cars1', 'cars10', 'cars4', 'cars5', 'cats01', 'cats03', 'cats06',
'dogs01', 'dogs02', 'farm01', 'giraffes01', 'goats01', 'horses02', 'horses04',
'horses05', 'lion01', 'marple12', 'marple2', 'marple4', 'marple6', 'marple7', 'marple9',
'people03', 'people1', 'people2', 'rabbits02', 'rabbits03', 'rabbits04', 'tennis']
val_img_dir = '/FBMS_val/JPEGImages/'
val_gt_dir = '/FBMS_val/Annotations/'
val_data_dir = [val_flow_dir, val_img_dir, val_gt_dir]
with_gt = False
pairs = [3, 6, -3, -6]
elif cfg.GWM.DATASET in ['STv2']:
basepath = '/SegTrackv2'
img_dir = '/SegTrackv2/JPEGImages'
gt_dir = '/SegTrackv2/Annotations'
val_flow_dir = '/SegTrackv2/Flows_gap1/'
val_seq = ['drift', 'birdfall', 'girl', 'cheetah', 'worm', 'parachute', 'monkeydog',
'hummingbird', 'soldier', 'bmx', 'frog', 'penguin', 'monkey', 'bird_of_paradise']
val_data_dir = [val_flow_dir, img_dir, gt_dir]
else:
raise ValueError('Unknown Setting/Dataset.')
# Switching this section to pathlib, which should prevent double // errors in paths and dict keys
root_path_str = cfg.GWM.DATA_ROOT
logger.info(f"Found DATA_ROOT in config: {root_path_str}")
root_path_str = '../data'
if root_path_str.startswith('/'):
root_path = Path(f"/{root_path_str.lstrip('/').rstrip('/')}")
else:
root_path = Path(f"{root_path_str.lstrip('/').rstrip('/')}")
logger.info(f"Loading dataset from: {root_path}")
basepath = root_path / basepath.lstrip('/').rstrip('/')
img_dir = root_path / img_dir.lstrip('/').rstrip('/')
gt_dir = root_path / gt_dir.lstrip('/').rstrip('/')
val_data_dir = [root_path / path.lstrip('/').rstrip('/') for path in val_data_dir]
folders = [p.name for p in (basepath / f'Flows_gap{pairs[0]}' / res).iterdir() if p.is_dir()]
folders = sorted(folders)
# flow_dir is a dictionary, with keys indicating the flow gap, and each value is a list of sequence names,
# each item then is an array with Nx2, N indicates the number of available pairs.
flow_dir = scan_train_flow(folders, res, pairs, basepath)
data_dir = [flow_dir, img_dir, gt_dir]
force1080p = ('DAVIS' not in cfg.GWM.DATASET) and 'RGB_BIG' in cfg.GWM.SAMPLE_KEYS
enable_photometric_augmentations = cfg.FLAGS.INF_TPS
train_dataset = FlowPairDetectron(data_dir=data_dir,
resolution=resolution,
to_rgb=cfg.GWM.FLOW2RGB,
size_divisibility=cfg.MODEL.MASK_FORMER.SIZE_DIVISIBILITY if not cfg.FLAGS.IGNORE_SIZE_DIV else -1,
enable_photo_aug=enable_photometric_augmentations,
flow_clip=cfg.GWM.FLOW_CLIP,
norm=cfg.GWM.FLOW_NORM,
force1080p=force1080p,
flow_res=cfg.GWM.FLOW_RES, )
if multi_val:
print(f"Using multiple validation datasets from {val_data_dir}")
val_dataset = [FlowEvalDetectron(data_dir=val_data_dir,
resolution=resolution,
pair_list=pairs,
val_seq=[vs],
to_rgb=cfg.GWM.FLOW2RGB,
with_rgb=False,
size_divisibility=cfg.MODEL.MASK_FORMER.SIZE_DIVISIBILITY if not cfg.FLAGS.IGNORE_SIZE_DIV else -1,
flow_clip=cfg.GWM.FLOW_CLIP,
norm=cfg.GWM.FLOW_NORM,
force1080p=force1080p) for vs in val_seq]
for vs, vds in zip(val_seq, val_dataset):
print(f"Validation dataset for {vs}: {len(vds)}")
if len(vds) == 0:
raise ValueError(f"Empty validation dataset for {vs}")
if cfg.GWM.TTA_AS_TRAIN:
if trainval_data_dir is None:
trainval_data_dir = val_data_dir
else:
trainval_data_dir = [root_path / path.lstrip('/').rstrip('/') for path in trainval_data_dir]
trainval_dataset = []
tvd_basepath = root_path / str(trainval_data_dir[0].relative_to(root_path)).split('/')[0]
print("TVD BASE DIR", tvd_basepath)
for vs in val_seq:
tvd_data_dir = [scan_train_flow([vs], res, pairs, tvd_basepath), *trainval_data_dir[1:]]
tvd = FlowPairDetectron(data_dir=tvd_data_dir,
resolution=resolution,
to_rgb=cfg.GWM.FLOW2RGB,
size_divisibility=cfg.MODEL.MASK_FORMER.SIZE_DIVISIBILITY if not cfg.FLAGS.IGNORE_SIZE_DIV else -1,
enable_photo_aug=cfg.GWM.LOSS_MULT.EQV is not None,
flow_clip=cfg.GWM.FLOW_CLIP,
norm=cfg.GWM.FLOW_NORM,
force1080p=force1080p,
flow_res=cfg.GWM.FLOW_RES, )
trainval_dataset.append(tvd)
print(f'Seq {trainval_data_dir[0]}/{vs} dataset: {len(tvd)}')
else:
if trainval_data_dir is None:
trainval_dataset = val_dataset
else:
trainval_data_dir = [root_path / path.lstrip('/').rstrip('/') for path in trainval_data_dir]
trainval_dataset = []
for vs in val_seq:
tvd = FlowEvalDetectron(data_dir=trainval_data_dir,
resolution=resolution,
pair_list=pairs,
val_seq=[vs],
to_rgb=cfg.GWM.FLOW2RGB,
with_rgb=False,
size_divisibility=cfg.MODEL.MASK_FORMER.SIZE_DIVISIBILITY if not cfg.FLAGS.IGNORE_SIZE_DIV else -1,
flow_clip=cfg.GWM.FLOW_CLIP,
norm=cfg.GWM.FLOW_NORM,
force1080p=force1080p)
trainval_dataset.append(tvd)
print(f'Seq {trainval_data_dir[0]}/{vs} dataset: {len(tvd)}')
return train_dataset, val_dataset, trainval_dataset
val_dataset = FlowEvalDetectron(data_dir=val_data_dir,
resolution=resolution,
pair_list=pairs,
val_seq=val_seq,
to_rgb=cfg.GWM.FLOW2RGB,
with_rgb=False,
size_divisibility=cfg.MODEL.MASK_FORMER.SIZE_DIVISIBILITY if not cfg.FLAGS.IGNORE_SIZE_DIV else -1,
flow_clip=cfg.GWM.FLOW_CLIP,
norm=cfg.GWM.FLOW_NORM,
force1080p=force1080p)
return train_dataset, val_dataset
def loaders(cfg):
train_dataset, val_dataset = setup_dataset(cfg)
logger.info(f"Sourcing data from {val_dataset.data_dir[0]}")
if cfg.FLAGS.DEV_DATA:
subset = cfg.SOLVER.IMS_PER_BATCH * 3
train_dataset = torch.utils.data.Subset(train_dataset, list(range(subset)))
val_dataset = torch.utils.data.Subset(val_dataset, list(range(subset)))
g = torch.Generator()
data_generator_seed = int(torch.randint(int(1e6), (1,)).item())
logger.info(f"Dataloaders generator seed {data_generator_seed}")
g.manual_seed(data_generator_seed)
train_loader = torch.utils.data.DataLoader(train_dataset,
num_workers=cfg.DATALOADER.NUM_WORKERS,
batch_size=cfg.SOLVER.IMS_PER_BATCH,
collate_fn=lambda x: x,
shuffle=True,
pin_memory=True,
drop_last=True,
persistent_workers=cfg.DATALOADER.NUM_WORKERS > 0,
worker_init_fn=utils.random_state.worker_init_function,
generator=g
)
val_loader = torch.utils.data.DataLoader(val_dataset,
num_workers=cfg.DATALOADER.NUM_WORKERS,
batch_size=1,
shuffle=False,
pin_memory=True,
collate_fn=lambda x: x,
drop_last=False,
persistent_workers=cfg.DATALOADER.NUM_WORKERS > 0,
worker_init_fn=utils.random_state.worker_init_function,
generator=g)
return train_loader, val_loader
def multi_loaders(cfg):
train_dataset, val_datasets, train_val_datasets = setup_dataset(cfg, multi_val=True)
logger.info(f"Sourcing multiple loaders from {len(val_datasets)}")
logger.info(f"Sourcing data from {val_datasets[0].data_dir[0]}")
g = torch.Generator()
data_generator_seed = int(torch.randint(int(1e6), (1,)).item())
logger.info(f"Dataloaders generator seed {data_generator_seed}")
g.manual_seed(data_generator_seed)
train_loader = torch.utils.data.DataLoader(train_dataset,
num_workers=cfg.DATALOADER.NUM_WORKERS,
batch_size=cfg.SOLVER.IMS_PER_BATCH,
collate_fn=lambda x: x,
shuffle=True,
pin_memory=True,
drop_last=True,
persistent_workers=cfg.DATALOADER.NUM_WORKERS > 0,
worker_init_fn=utils.random_state.worker_init_function,
generator=g
)
val_loaders = [(torch.utils.data.DataLoader(val_dataset,
num_workers=0,
batch_size=1,
shuffle=False,
pin_memory=True,
collate_fn=lambda x: x,
drop_last=False,
persistent_workers=False,
worker_init_fn=utils.random_state.worker_init_function,
generator=g),
torch.utils.data.DataLoader(tv_dataset,
num_workers=0,
batch_size=cfg.SOLVER.IMS_PER_BATCH,
shuffle=True,
pin_memory=False,
collate_fn=lambda x: x,
drop_last=False,
persistent_workers=False,
worker_init_fn=utils.random_state.worker_init_function,
generator=g))
for val_dataset, tv_dataset in zip(val_datasets, train_val_datasets)]
return train_loader, val_loaders
def add_gwm_config(cfg):
cfg.GWM = CN()
cfg.GWM.MODEL = "MASKFORMER"
cfg.GWM.RESOLUTION = (128, 224)
cfg.GWM.FLOW_RES = (480, 854)
cfg.GWM.SAMPLE_KEYS = ["rgb"]
cfg.GWM.ADD_POS_EMB = False
cfg.GWM.CRITERION = "L2"
cfg.GWM.L1_OPTIMIZE = False
cfg.GWM.HOMOGRAPHY = 'quad' # False
cfg.GWM.HOMOGRAPHY_SUBSAMPLE = 8
cfg.GWM.HOMOGRAPHY_SKIP = 0.4
cfg.GWM.DATASET = 'DAVIS'
cfg.GWM.DATA_ROOT = None
cfg.GWM.FLOW2RGB = False
cfg.GWM.SIMPLE_REC = False
cfg.GWM.DAVIS_SINGLE_VID = None
cfg.GWM.USE_MULT_FLOW = False
cfg.GWM.FLOW_COLORSPACE_REC = None
cfg.GWM.FLOW_CLIP_U_LOW = float('-inf')
cfg.GWM.FLOW_CLIP_U_HIGH = float('inf')
cfg.GWM.FLOW_CLIP_V_LOW = float('-inf')
cfg.GWM.FLOW_CLIP_V_HIGH = float('inf')
cfg.GWM.FLOW_CLIP = float('inf')
cfg.GWM.FLOW_NORM = False
cfg.GWM.LOSS_MULT = CN()
cfg.GWM.LOSS_MULT.REC = 0.03
cfg.GWM.LOSS_MULT.HEIR_W = [0.1, 0.3, 0.6]
cfg.GWM.TTA = 100 # Test-time-adaptation
cfg.GWM.TTA_AS_TRAIN = False # Use train-like data logic for test-time-adaptation
cfg.GWM.LOSS = 'OG'
cfg.FLAGS = CN()
cfg.FLAGS.MAKE_VIS_VIDEOS = False # Making videos is kinda slow
cfg.FLAGS.EXTENDED_FLOW_RECON_VIS = False # Does not cost much
cfg.FLAGS.COMP_NLL_FOR_GT = False # Should we log loss against ground truth?
cfg.FLAGS.DEV_DATA = False
cfg.FLAGS.KEEP_ALL = True # Keep all checkoints
cfg.FLAGS.ORACLE_CHECK = False # Use oracle check to estimate max performance when grouping multiple components
cfg.FLAGS.INF_TPS = False
# cfg.FLAGS.UNFREEZE_AT = [(1, 10000), (0, 20000), (-1, 30000)]
cfg.FLAGS.UNFREEZE_AT = [(4, 0), (2, 500), (1, 1000), (-1, 10000)]
cfg.FLAGS.IGNORE_SIZE_DIV = False
cfg.FLAGS.IGNORE_TMP = True
cfg.WANDB = CN()
cfg.WANDB.ENABLE = False
cfg.WANDB.BASEDIR = '../'
cfg.DEBUG = False
cfg.LOG_ID = 'exp'
cfg.LOG_FREQ = 250
cfg.OUTPUT_BASEDIR = '../outputs'
cfg.SLURM = False
cfg.SKIP_TB = False
cfg.TOTAL_ITER = 20000
cfg.CONFIG_FILE = None
if os.environ.get('SLURM_JOB_ID', None):
cfg.LOG_ID = os.environ.get('SLURM_JOB_NAME', cfg.LOG_ID)
logger.info(f"Setting name {cfg.LOG_ID} based on SLURM job name")